Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2834-2842.DOI: 10.16085/j.issn.1000-6613.2023-1936
• Carbon dioxide capture and utilization • Previous Articles
LI Haipeng1,2(), WU Tong1,3, WANG Qi1,3, GAO Shiwang1,3(), WANG Xiaolong1, LI Xu1,4, GAO Xinhua2(), NIAN Pei2, WEI Yibin2()
Received:
2023-11-03
Revised:
2024-03-27
Online:
2024-06-15
Published:
2024-05-15
Contact:
GAO Shiwang, GAO Xinhua, WEI Yibin
李海鹏1,2(), 吴桐1,3, 王琪1,3, 郜时旺1,3(), 王晓龙1, 李旭1,4, 高新华2(), 年佩2, 魏逸彬2()
通讯作者:
郜时旺,高新华,魏逸彬
作者简介:
李海鹏(1999—),男,硕士研究生,研究方向为CO2催化转化。E-mail:2891861797@qq.com。
基金资助:
CLC Number:
LI Haipeng, WU Tong, WANG Qi, GAO Shiwang, WANG Xiaolong, LI Xu, GAO Xinhua, NIAN Pei, WEI Yibin. Effective methanol production by CO2 hydrogenation using water-permeable NaA zeolite membrane[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2834-2842.
李海鹏, 吴桐, 王琪, 郜时旺, 王晓龙, 李旭, 高新华, 年佩, 魏逸彬. 透水NaA分子筛膜强化的CO2加氢高效制甲醇[J]. 化工进展, 2024, 43(5): 2834-2842.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1936
催化剂 | ICP(样品元素所占比例)/% | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 平均孔径 /nm | |||
---|---|---|---|---|---|---|---|
Cu | Zn | Al | 其他 | ||||
Cu基催化剂 | 66.36 | 25.72 | 6.55 | 1.37 | 85.7 | 0.3 | 11.2 |
催化剂 | ICP(样品元素所占比例)/% | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 平均孔径 /nm | |||
---|---|---|---|---|---|---|---|
Cu | Zn | Al | 其他 | ||||
Cu基催化剂 | 66.36 | 25.72 | 6.55 | 1.37 | 85.7 | 0.3 | 11.2 |
反应器类型 | CO2转化率 /% | CH3OH选择性 /% | CO选择性 /% | CH3OH收率 /% |
---|---|---|---|---|
固定床 | 3.34 | 98.08 | 1.92 | 3.28 |
α-Al2O3膜 | 4.91 | 86.34 | 13.66 | 4.24 |
NaA分子筛膜 | 16.48 | 90.10 | 9.90 | 14.85 |
反应器类型 | CO2转化率 /% | CH3OH选择性 /% | CO选择性 /% | CH3OH收率 /% |
---|---|---|---|---|
固定床 | 3.34 | 98.08 | 1.92 | 3.28 |
α-Al2O3膜 | 4.91 | 86.34 | 13.66 | 4.24 |
NaA分子筛膜 | 16.48 | 90.10 | 9.90 | 14.85 |
流速 /mL·min-1 | CO2转化率 /% | CH3OH选择性 /% | CO选择性 /% | CH3OH收率 /% |
---|---|---|---|---|
0 | 28.78 | 95.97 | 4.03 | 27.62 |
1.8 | 26.59 | 95.35 | 4.65 | 25.35 |
3.8 | 12.75 | 89.67 | 10.33 | 11.43 |
15.2 | 11.59 | 80.79 | 19.21 | 9.36 |
22.7 | 11.11 | 80.03 | 19.97 | 8.89 |
流速 /mL·min-1 | CO2转化率 /% | CH3OH选择性 /% | CO选择性 /% | CH3OH收率 /% |
---|---|---|---|---|
0 | 28.78 | 95.97 | 4.03 | 27.62 |
1.8 | 26.59 | 95.35 | 4.65 | 25.35 |
3.8 | 12.75 | 89.67 | 10.33 | 11.43 |
15.2 | 11.59 | 80.79 | 19.21 | 9.36 |
22.7 | 11.11 | 80.03 | 19.97 | 8.89 |
14 | LI Chao, ZHANG Daihua, HAN Song, et al. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties[J]. Advanced Materials, 2003, 15(2): 143-146. |
15 | OJELADE Opeyemi A, ZAMAN Sharif F. A review on Pd based catalysts for CO2 hydrogenation to methanol: In-depth activity and DRIFTS mechanistic study[J]. Catalysis Surveys from Asia, 2020, 24: 11-37. |
16 | COLLINS Sebastián E, CHIAVASSA Dante L, BONIVARDI Adrian L, et al. Hydrogen spillover in Ga2O3-Pd/SiO2 catalysts for methanol synthesis from CO2/H2 [J]. Catalysis Letters, 2005, 103: 83-88. |
17 | MA Jun, SUN Nannan, ZHANG Xuelan, et al. A short review of catalysis for CO2 conversion[J]. Catalysis Today, 2009, 148(3/4): 221-231. |
18 | PAZDERA Jakub, BERGER Edith, LERCHER Johannes A, et al. Conversion of CO2 to methanol over bifunctional basic-metallic catalysts[J]. Catalysis Communications, 2021, 159: 106347. |
19 | YANG Youwei, ZHANG Jingyu, GAO Yueqi, et al. Highly dispersed nickel boosts catalysis by Cu/SiO2 in the hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol[J]. Chinese Journal of Chemical Engineering, 2022, 43: 77-85. |
20 | XU Chaoqin, YAN Zhiqiang, YU Jian, et al. Development of stable water-resistant Cu-based catalyst for methanol synthesis[J]. Applied Catalysis A: General, 2021, 623: 118299. |
21 | ZHENG Huayan, NARKHEDE Nilesh, ZHANG Guoqiang, et al. Highly dispersed Cu catalyst based on the layer confinement effect of Cu/Zn/Ga-LDH for methanol synthesis[J]. Molecular Catalysis, 2021, 516: 111984. |
22 | YANG Huanhuan, CHEN Yanyan, CUI Xiaojing, et al. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation[J]. Angewandte Chemie International Edition, 2018, 130(7): 1854-1858. |
23 | LIU Huan, CHEN Tong, YANG Guang, et al. Investigation of active center of Cu-based catalyst for low temperature methanol synthesis from syngas in liquid phase: The contribution of Cu+ and Cu0 [J]. ChemistrySelect, 2017, 2(26): 8000-8007. |
24 | KARAMAN Birce Pekmezci, CAKIRYILMAZ Nurbanu, ARBAG Huseyin, et al. Performance comparison of mesoporous alumina supported Cu & Ni based catalysts in acetic acid reforming[J]. International Journal of Hydrogen Energy, 2017, 42(42): 26257-26269. |
25 | SAFFARY Soheil, RAFIEE Mansoureh, VARNOOSFADERANI Mohammadreza Saeidi, et al. Smart paradigm to predict copper surface area of Cu/ZnO/Al2O3 catalyst based on synthesis parameters[J]. Chemical Engineering Research and Design, 2023, 191: 604-616. |
26 | ZHAO Yafan, YANG Yong, MIMS Charles, et al. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O[J]. Journal of Catalysis, 2011, 281(2): 199-211. |
27 | POROSOFF Marc D, YAN Binhang, CHEN Jingguang G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy & Environmental Science, 2016, 9(1): 62-73. |
28 | 侯瑞君, 邱瑞, 孙克宁. Cu基CO2合成甲醇催化剂载体的研究进展[J]. 化工进展, 2020, 39(7): 2639-2647. |
HOU Ruijun, QIU Rui, SUN Kening. Progress in the Cu-based catalyst supports for methanol synthesis from CO2 [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2639-2647. | |
29 | LIU Xinmei, LU G Q, YAN Zifeng, et al. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2 [J]. Industrial & Engineering Chemistry Research, 2003, 42(25): 6518-6530. |
30 | ZHAO Guoyan, ZHANG Chenghua, QIN Shaodong, et al. Effect of interaction between potassium and structural promoters on Fischer-Tropsch performance in iron-based catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2008, 286(1/2): 137-142. |
31 | SAEIDI Samrand, AMIN Nor Aishah Saidina, RAHIMPOUR Mohammad Reza. Hydrogenation of CO2 to value-added products—A review and potential future developments[J]. Journal of CO2 Utilization, 2014, 5: 66-81. |
32 | 安欣, 左宜赞, 张强, 等. Cu/Zn/Al/Zr纳米纤维催化剂上的CO2加氢合成甲醇过程[J]. 中国化学工程学报(英文), 2009, 17(1): 88–94. |
AN Xin, ZUO Yizan, ZHANG Qianget al. Methanol synthesis from CO2 hydrogenation with a Cu/Zn/Al/Zr fibrous catalyst[J]. Chinese Journal of Chemical Engineering, 2009, 17(1): 88–94. | |
33 | 姜秀云, 杨文兵, 宋昊, 等. 甲酸辅助Cu-ZnO-Al2O3催化剂制备及其CO2加氢制甲醇性能研究[J]. 燃料化学学报(中英文), 2023, 51(1): 120-128. |
JIANG Xiuyun, YANG Wenbing, SONG Hao, et al. Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 120-128. | |
34 | FANG Xin, Yuhan MEN, WU Fan, et al. Promoting CO2 hydrogenation to methanol by incorporating adsorbents into catalysts: Effects of hydrotalcite[J]. Chemical Engineering Journal, 2019, 378: 122052. |
35 | 张一凡, 杨文兵, 马清祥, 等. 氮化碳对Cu-ZnO-Al2O3催化CO2加氢合成甲醇的影响[J]. 石油学报(石油加工), 2021, 37(3): 508-517. |
ZHANG Yifan, YANG Wenbing, MA Qingxiang, et al. Effect of carbon nitride addition on Cu-ZnO-Al2O3 catalytic performance for CO2 hydrogenation to methanol[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(3): 508-517. | |
36 | LI Congming, YUAN Xingdong, FUJIMOTO Kaoru. Development of highly stable catalyst for methanol synthesis from carbon dioxide[J]. Applied Catalysis A: General, 2014, 469: 306-311. |
37 | REN Hong, XU Chenghua, ZHAO Haoyang, et al. Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 261-267. |
38 | YUE Wenzhe, LI Yanhong, WEI Wan, et al. Highly selective CO2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor[J]. Angewandte Chemie International Edition, 2021, 60(33): 18289-18294. |
39 | LI Huazheng, QIU Chenglong, REN Shoujie, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels[J]. Science, 2020, 367(6478): 667-671. |
40 | 陈茂重, 王斓懿, 于学华, 等. 不同水热条件下MnO2的制备及其催化炭烟颗粒燃烧性能[J]. 工业催化, 2018, 26(10): 56-63. |
CHEN Maozhong, WANG Lanyi, YU Xuehua, et al. Preparation of MnO2 under different hydrothermal conditions and its catalytic performance for soot combustion[J]. Industrial Catalysis, 2018, 26(10): 56-63. | |
41 | LIU Ruiwen, QIN Zuzeng, JI Hongbing, et al. Synthesis of dimethyl ether from CO2 and H2 using a Cu-Fe-Zr/HZSM-5 catalyst system[J]. Industrial & Engineering Chemistry Research, 2013, 52(47): 16648-16655. |
1 | 赵震宇, 姚舜, 杨朔鹏, 等. “双碳” 目标下:中国CCUS发展现状、存在问题及建议[J]. 环境科学, 2023, 44(2): 1128-1138. |
ZHAO Zhenyu, YAO Shun, YANG Shuopeng, et al. Under goals of carbon peaking and carbon neutrality: Status, problems, and suggestions of CCUS in China[J]. Environmental Science, 2023, 44(2): 1128-1138. | |
2 | 赵锦波, 卞凤鸣. CO2化学转化基础与应用研究进展[J]. 化工进展, 2022, 41(S1): 524-535. |
ZHAO Jinbo, BIAN Fengming. Research progress on the basis and application of chemical transformation of CO2 [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 524-535. | |
3 | BRYNOLF Selma, TALJEGARD Maria, GRAHN Maria, et al. Electrofuels for the transport sector: A review of production costs[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1887-1905. |
4 | WANG Xilong, ALABSI Mohnnad H, CHEN Xingzhu, et al. CO2 hydrogenation to methanol over PdZn catalysts on bimetallic modified dendritic mesoporous silica nanospheres[J]. Chemical Engineering Journal, 2023, 476: 146596. |
5 | SAKAKURA Toshiyasu, CHOI Jun-Chul, YASUDA Hiroyuki. Transformation of carbon dioxide[J]. Chemical Reviews, 2007, 107(6): 2365-2387. |
6 | BENSON Eric E, KUBIAK Clifford P, SATHRUM Aaron J, et al. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels[J]. Chemical Society Reviews, 2009, 38(1): 89-99. |
7 | HE Mingyuan, SUN Yuhan, HAN Buxing. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality[J]. Angewandte Chemie International Edition, 2022, 134(15): e202112835. |
8 | CENTI Gabriele, QUADRELLI Elsje Alessandra, PERATHONER Siglinda. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries[J]. Energy & Environmental Science, 2013, 6(6): 1711-1731. |
9 | 郭嘉懿, 何育荣, 马晶晶, 等. 二氧化碳催化加氢制甲醇研究进展[J]. 洁净煤技术, 2023, 29(4): 49-64. |
GUO Jiayi, HE Yurong, MA Jingjing, et al. Research progress on catalytic hydrogenation of carbon dioxide to methanol[J]. Clean Coal Technology, 2023, 29(4): 49-64. | |
10 | 叶知远, 饶娜, 夏菖佑, 等. CO2加氢制甲醇催化剂与项目进展研究[J/OL]. 洁净煤技术, . |
YE Zhiyuan, RAO Na, XIA Changyou, et al. Advances in catalysts and project progress for CO2 hydrogenation to methanol[J/OL]. Clean Coal Technology, . | |
11 | 徐敏杰, 朱明辉, 陈天元, 等. CO2高值化利用:CO2加氢制甲醇催化剂研究进展[J]. 化工进展, 2021, 40(2): 565-576. |
XU Minjie, ZHU Minghui, CHEN Tianyuan, et al. High value utilization of CO2: Research progress of catalyst for hydrogenation of CO2 to methanol[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 565-576. | |
12 | 焦春学, 慕红梅, 高鹏, 等. In2O3基催化剂在热催化二氧化碳加氢反应中的研究进展[J]. 燃料化学学报(中英文), 2023, 51(12): 1701-1717. |
JIAO Chunxue, MU Hongmei, GAO Peng, et al. Progress of In2O3-based catalysts in thermal catalytic CO2 hydrogenation reaction[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1701-1717. | |
13 | BELLINGHAM J R, MACKENZIE A P, PHILLIPS W A. Precise measurements of oxygen content: Oxygen vacancies in transparent conducting indium oxide films[J]. Applied Physics Letters, 1991, 58(22): 2506-2508. |
[1] | FENG Yongqiang, WANG Jieru, WANG Chaoxian, LI Fang, SU Wanting, SUN Yu, ZHAO Binran. Influence of Ni, Fe, and Cu loaded on γ-Al2O3 in CO2/CH4 conversion via dielectric barrier discharge plasma [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2705-2713. |
[2] | XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722. |
[3] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
[4] | HUANG Peng, ZOU Ying, WANG Baohuan, WANG Xiaoyan, ZHAO Yong, LAING Xin, HU Di. Research progress of electrocatalysts towards electrocatalytic reduction reaction of carbon dioxide to syngas [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2760-2775. |
[5] | ZHOU Qiuming, NIU Congcong, LYU Shuaishuai, LI Hongwei, WEN Fuli, XU Run, LI Mingfeng. Promoting CO2 hydrogenation to methanol through product transformation and separation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2776-2785. |
[6] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
[7] | WU Xining, ZHANG Ning, QIN Jiamin, XU Long, WEI Chaoyang, MA Xiaoxun. Performance of methanol-based nanofluids with enhanced CO2 absorption under low cooling demand [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2811-2822. |
[8] | LI Xinze, ZOU Weijie, SUN Chen, FU Xuan, CHEN Qian, YUAN Liang, WANG Zicheng, XING Xiaokai, XIONG Xiaoqin, GUO Lianghui. Prediction of safe shutdown time of a supercritical CO2 pipeline in Xinjiang oilfield [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2823-2833. |
[9] | YAO Naiyu, CAO Jingpei, PANG Xinbo, ZHAO Xiaoyan, CAI Shijie, XU Min, ZHAO Jingping, FENG Xiaobo, YI Fengjiao. Research progress in catalytic reforming of low rank coal pyrolysis volatiles [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2279-2293. |
[10] | WU Da, JIANG Shujiao, WEI Qiang, YUAN Shenghua, YANG Gang, ZHANG Cheng. Research progress on efficient utilization technology of residue in energy transition [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2343-2353. |
[11] | JIANG Andi, DING Xuexing, WANG Shipeng, DING Junhua, LI Ning. Research progress on thermodynamic performance of supercritical CO2 dry gas seal [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2354-2369. |
[12] | GUI Xin, CHEN Huiyong, BAI Boyang, JIA Yongliang, MA Xiaoxun. Catalytic hydrogenation of pyrene over Mo-doped NiC/Al-MCM-41 [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2386-2395. |
[13] | DING Sijia, JIANG Shujiao, YANG Zhanlin, PENG Shaozhong, JIANG Qianmin. Design of heavy oil hydrodenitrogenation catalysts based on hydrogenation performance determined by structure of nitrogen compounds [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2436-2448. |
[14] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
[15] | HE Jin, LAI Yuwen, LI Yanchun, ZHOU Shilin, ZHOU Yong, GAO Congjie. DES changed the diffusion rate of amine monomer to prepare high-performance composite reverse osmosis membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1972-1980. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |