Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2823-2833.DOI: 10.16085/j.issn.1000-6613.2023-1698
• Carbon dioxide capture and utilization • Previous Articles
LI Xinze1,2(), ZOU Weijie1, SUN Chen1, FU Xuan1,2, CHEN Qian3, YUAN Liang4, WANG Zicheng5, XING Xiaokai1,2(
), XIONG Xiaoqin1,2, GUO Lianghui1,2
Received:
2023-09-26
Revised:
2023-10-29
Online:
2024-06-15
Published:
2024-05-15
Contact:
XING Xiaokai
李欣泽1,2(), 邹炜杰1, 孙晨1, 付璇1,2, 陈潜3, 袁亮4, 王梓丞5, 邢晓凯1,2(
), 熊小琴1,2, 郭良辉1,2
通讯作者:
邢晓凯
作者简介:
李欣泽(1987—),男,博士,高级工程师,研究方向为超临界CO2长距离输送管道运行安全保障关键技术。E-mail:lixinze@cupk.edu.cn。
基金资助:
CLC Number:
LI Xinze, ZOU Weijie, SUN Chen, FU Xuan, CHEN Qian, YUAN Liang, WANG Zicheng, XING Xiaokai, XIONG Xiaoqin, GUO Lianghui. Prediction of safe shutdown time of a supercritical CO2 pipeline in Xinjiang oilfield[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2823-2833.
李欣泽, 邹炜杰, 孙晨, 付璇, 陈潜, 袁亮, 王梓丞, 邢晓凯, 熊小琴, 郭良辉. 新疆油田某超临界CO2管道安全停输时间预测[J]. 化工进展, 2024, 43(5): 2823-2833.
组分 | 体积分数/% |
---|---|
CO2 | 99.5 |
N2 | 0.18 |
CH4 | 0.15 |
H2S | 0.001 |
C2+ | 0.15 |
CO | 0.001 |
O2 | 0.001 |
NO x | 0.005 |
SO x | 0.005 |
H2 | 0.001 |
Ar | 0 |
H2O | 0.006 |
组分 | 体积分数/% |
---|---|
CO2 | 99.5 |
N2 | 0.18 |
CH4 | 0.15 |
H2S | 0.001 |
C2+ | 0.15 |
CO | 0.001 |
O2 | 0.001 |
NO x | 0.005 |
SO x | 0.005 |
H2 | 0.001 |
Ar | 0 |
H2O | 0.006 |
参数 | 数值 |
---|---|
质量流量/kg·s-1 | 34.7 |
首站出站压力/MPa | 12 |
首站出站温度/℃ | 35 |
长度/km | 100 |
土壤温度/℃ | 冬季2,夏季22 |
绝对粗糙度/mm | 0.05 |
总传热系数/W·m-2·K-1 | 1.2 |
管外径/mm | 273.3 |
壁厚/mm | 8 |
参数 | 数值 |
---|---|
质量流量/kg·s-1 | 34.7 |
首站出站压力/MPa | 12 |
首站出站温度/℃ | 35 |
长度/km | 100 |
土壤温度/℃ | 冬季2,夏季22 |
绝对粗糙度/mm | 0.05 |
总传热系数/W·m-2·K-1 | 1.2 |
管外径/mm | 273.3 |
壁厚/mm | 8 |
参数 | 范围 |
---|---|
输量/104t·a-1 | 200,250,300 |
管径/mm | 273.3,323.9,355.6 |
首站出站温度/℃ | 40,45,48 |
土壤环境温度/℃ | 2,22 |
末站进站压力/MPa | 9.0,10.8,12.0 |
管长/km | 15,30,50,100,150,200 |
总传热系数/W·m-2·K-1 | 1.2,2.3 |
参数 | 范围 |
---|---|
输量/104t·a-1 | 200,250,300 |
管径/mm | 273.3,323.9,355.6 |
首站出站温度/℃ | 40,45,48 |
土壤环境温度/℃ | 2,22 |
末站进站压力/MPa | 9.0,10.8,12.0 |
管长/km | 15,30,50,100,150,200 |
总传热系数/W·m-2·K-1 | 1.2,2.3 |
系列 | 管径/mm | 输量/104t·a-1 | 工况数量/组 |
---|---|---|---|
1 | 273.3 | 200 | 216 |
2 | 323.9 | 200 | 216 |
3 | 355.6 | 200 | 216 |
4 | 273.3 | 250 | 216 |
5 | 323.9 | 250 | 216 |
6 | 355.6 | 250 | 216 |
7 | 323.9 | 300 | 216 |
8 | 355.6 | 300 | 216 |
数据样品总数合计 | 1728 |
系列 | 管径/mm | 输量/104t·a-1 | 工况数量/组 |
---|---|---|---|
1 | 273.3 | 200 | 216 |
2 | 323.9 | 200 | 216 |
3 | 355.6 | 200 | 216 |
4 | 273.3 | 250 | 216 |
5 | 323.9 | 250 | 216 |
6 | 355.6 | 250 | 216 |
7 | 323.9 | 300 | 216 |
8 | 355.6 | 300 | 216 |
数据样品总数合计 | 1728 |
工况 | 输量/104t·a-1 | 管长/km | 管径/mm | 首站出站温度/℃ | 土壤温度/℃ | 总传热系数/W·m-2·K-1 | 末站进站压力/MPa | 停输时间/h |
---|---|---|---|---|---|---|---|---|
1 | 200 | 30 | 273.3 | 40 | 2 | 1.2 | 9 | 6.0 |
2 | 200 | 30 | 323.9 | 40 | 2 | 1.2 | 9 | 9.8 |
3 | 200 | 30 | 355.6 | 40 | 2 | 1.2 | 9 | 11.3 |
4 | 250 | 30 | 273.3 | 40 | 2 | 1.2 | 9 | 12.9 |
5 | 250 | 30 | 323.9 | 40 | 2 | 1.2 | 9 | 14.2 |
6 | 250 | 30 | 355.6 | 40 | 2 | 1.2 | 9 | 15.3 |
7 | 300 | 30 | 323.9 | 40 | 2 | 1.2 | 9 | 16.7 |
8 | 300 | 30 | 355.6 | 40 | 2 | 1.2 | 9 | 18.1 |
工况 | 输量/104t·a-1 | 管长/km | 管径/mm | 首站出站温度/℃ | 土壤温度/℃ | 总传热系数/W·m-2·K-1 | 末站进站压力/MPa | 停输时间/h |
---|---|---|---|---|---|---|---|---|
1 | 200 | 30 | 273.3 | 40 | 2 | 1.2 | 9 | 6.0 |
2 | 200 | 30 | 323.9 | 40 | 2 | 1.2 | 9 | 9.8 |
3 | 200 | 30 | 355.6 | 40 | 2 | 1.2 | 9 | 11.3 |
4 | 250 | 30 | 273.3 | 40 | 2 | 1.2 | 9 | 12.9 |
5 | 250 | 30 | 323.9 | 40 | 2 | 1.2 | 9 | 14.2 |
6 | 250 | 30 | 355.6 | 40 | 2 | 1.2 | 9 | 15.3 |
7 | 300 | 30 | 323.9 | 40 | 2 | 1.2 | 9 | 16.7 |
8 | 300 | 30 | 355.6 | 40 | 2 | 1.2 | 9 | 18.1 |
参数 | 灰色关联度 |
---|---|
输量 | 0.72 |
管径 | 0.67 |
首站出站温度 | 0.70 |
土壤温度 | 0.85 |
总传热系数 | 0.7 |
末站进站压力 | 0.79 |
管长 | 0.83 |
参数 | 灰色关联度 |
---|---|
输量 | 0.72 |
管径 | 0.67 |
首站出站温度 | 0.70 |
土壤温度 | 0.85 |
总传热系数 | 0.7 |
末站进站压力 | 0.79 |
管长 | 0.83 |
1 | 戴厚良, 苏义脑, 刘吉臻, 等. 碳中和目标下我国能源发展战略思考[J]. 北京石油管理干部学院学报, 2022, 29(2): 12-19. |
DAI Houliang, SU Yinao, LIU Jizhen, et al. Thinking of China’s energy development strategy under carbon neutrality goal[J]. Journal of Beijing Petroleum Managers Training Institute, 2022, 29(2): 12-19. | |
2 | 杨友麒.“双碳”形势下能源化工企业绿色低碳转型进展[J]. 现代化工, 2023, 43(1): 1-12. |
YANG Youqi. Progress of energy and chemical companies in transition towards green low carbon under peak carbon dioxide emission and carbon neutrality[J]. Modern Chemical Industry, 2023, 43(1): 1-12. | |
3 | ONYEBUCHI V E, KOLIOS A, HANAK D P, et al. A systematic review of key challenges of CO2 transport via pipelines[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2563-2583. |
4 | 张强, 杨玉锋, 张学鹏, 等. 超临界二氧化碳管道完整性管理技术发展现状与挑战[J]. 油气储运, 2023, 42(2): 152-160. |
ZHANG Qiang, YANG Yufeng, ZHANG Xuepeng, et al. Technology status and challenge of integrity management of supercritical carbon dioxide pipeline[J]. Oil & Gas Storage and Transportation, 2023, 42(2): 152-160. | |
5 | 赵青, 李玉星. 杂质对管道输送CO2相特性的影响规律[J]. 油气储运, 2014, 33(7): 734-739, 743. |
ZHAO Qing, LI Yuxing. Impact of impurities on the phase behavior of CO2 in pipeline transportation[J]. Oil & Gas Storage and Transportation, 2014, 33(7): 734-739, 743. | |
6 | 刘敏, 滕霖, 李玉星, 等. 适用于超临界CO2管道输送的水力模型及特性研究[J]. 油气田地面工程, 2016, 35(6): 14-17. |
LIU Min, TENG Lin, LI Yuxing, et al. Study on hydraulic model and characteristics for supercritical CO2 pipelines[J]. Oil-Gas Field Surface Engineering, 2016, 35(6): 14-17. | |
7 | MCCOY Sean T, RUBIN Edward S. The effect of high oil prices on EOR project economics[J]. Energy Procedia, 2009, 1(1): 4143-4150. |
8 | MOHITPOUR M, GOLSHAN H, MURRAY A. Pipeline design & construction: A practical approach[M]. 3rd ed. New York: ASME Press, 2007. |
9 | MAHGEREFTEH H, DENTON G, RYKOV Y. Pressurised CO2 pipeline rupture[C]//Cleveland: Proceedings of the Institution of Chemical Engineers Symposium Series, 2008: 869-879. |
10 | MUNKEJORD Svend Tollak, JAKOBSEN Jana P, AUSTEGARD Anders, et al. Thermo- and fluid-dynamical modelling of two-phase multi-component carbon dioxide mixtures[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 589-596. |
11 | LILJEMARK Stefan, ARVIDSSON Kenneth, CANN Michael T P MC, et al. Dynamic simulation of a carbon dioxide transfer pipeline for analysis of normal operation and failure modes[J]. Energy Procedia, 2011, 4: 3040-3047. |
12 | BROWN Solomon, MARTYNOV Sergey, MAHGEREFTEH Haroun, et al. CO2 QUEST: Techno-economic assessment of CO2 quality effect on its storage and transport[J]. Energy Procedia, 2014, 63: 2622-2629. |
13 | MARTYNOV S, SOLOMON, F B, HAROUN M, et al. Modelling choked flow for CO2 from the dense phase to below the triple point[J]. International Journal of Greenhouse Gas Control. 2016, 19: 552-558. |
14 | MUNKEJORD Svend Tollak, BERNSTONE Christian, CLAUSEN Sigmund, et al. Combining thermodynamic and fluid flow modelling for CO2 flow assurance[J]. Energy Procedia, 2013, 37: 2904-2913. |
15 | 刘敏. 超临界二氧化碳管道输送瞬变特性研究[D]. 青岛: 中国石油大学(华东), 2015. |
LIU Min. The transient characteristics of supercritical carbon dioxide pipelines[D]. Qingdao: China University of Petroleum (Huadong), 2015. | |
16 | 陈兵, 房启超, 白世星. 含杂质超临界CO2输送管道的停输影响因素[J]. 天然气化工(C1化学与化工), 2020, 45(3): 84-89. |
CHEN Bing, FANG Qichao, BAI Shixing. Research on the factors influencing the shutdown of the transport pipeline of supercritical CO2 containing impurities[J]. Natural Gas Chemical Industry, 2020, 45(3): 84-89. | |
17 | 陈兵, 徐梦林, 房启超, 等. 超临界含杂质CO2管网停输再启动对水合物生成的影响[J]. 石油与天然气化工, 2022, 51(4): 43-50. |
CHEN Bing, XU Menglin, FANG Qichao, et al. Effect of supercritical impurity-containing CO2 pipe network shutdown and restarting conditions on hydrate generation[J]. Chemical Engineering of Oil & Gas, 2022, 51(4): 43-50. | |
18 | 赵青, 李玉星, 李秋扬. 超临界CO2管道停输过程中安全控制研究[J]. 石油机械, 2015, 43(2): 110-114. |
ZHAO Qing, LI Yuxing, LI Qiuyang. Research on safety control for shutdown of supercritical CO2 pipeline[J]. China Petroleum Machinery, 2015, 43(2): 110-114. | |
19 | 王全德. 长距离超临界CO2管道输送仿真应用研究[D]. 西安: 西安石油大学, 2020. |
WANG Quande. Research on simulation application of long distance supercritical CO2 pipeline transportation[D]. Xi’an: Xi’an Shiyou University, 2020. | |
20 | 高飞, 辛建旭, 郭志强, 等. 含杂质CO2物性变化规律及其机理研究[J]. 石油化工高等学校学报, 2022, 35(4): 18-25. |
GAO Fei, XIN Jianxu, GUO Zhiqiang, et al. Study on physical property changes and their mechanism of carbon dioxide containing impurities[J]. Journal of Petrochemical Universities, 2022, 35(4): 18-25. | |
21 | 赵青, 李玉星. 管道输送CO2准临界特性及安全控制[J]. 油气储运, 2014, 33(4): 354-358. |
ZHAO Qing, LI Yuxing. Quasi-critical characteristics and safety control of CO2 pipeline transportation[J]. Oil & Gas Storage and Transportation, 2014, 33(4): 354-358. | |
22 | 中华人民共和国工业和信息化部. 二氧化碳输送管道工程设计标准: [S]. 北京: 中国石化出版社, 2018. |
Ministry of Industry and Information Technology of the People’s Republic of China. Specification for engineering of carbon dioxide pipeline transportation: [S]. Beijing: China Petrochemical Press, 2018. | |
23 | 黄亚川, 蒋国萍. 基于灰色交叉影响的油库改造工程安全风险因素识别[J]. 能源与环保, 2023, 45(8): 45-50, 55. |
HUANG Yachuan, JIANG Guoping. Identification of safety risk factors in oil depot renovation project based on grey cross influence[J]. China Energy and Environmental Protection, 2023, 45(8): 45-50, 55. | |
24 | 张强, 程万洲, 杨玉锋, 等. 多层次灰色综合评价法在管道风险评价中的应用[J]. 地质科技情报, 2016, 35(2): 126-128. |
ZHANG Qiang, CHENG Wanzhou, YANG Yufeng, et al. Application of multihierarchy synthetic grey comprehensive evaluation in pipeline risk assessment[J]. Geological Science and Technology Information, 2016, 35(2): 126-128. | |
25 | 赵选民, 薛康. 灰色关联分析法在油气开采成本影响因素分析中的应用[J]. 西安石油大学学报(社会科学版), 2011, 20(6): 5-9. |
ZHAO Xuanmin, XUE Kang. An application of grey correlation analysis to the study about the influencing factors of oil-gas production cost[J]. Journal of Xi’an Shiyou University (Social Science Edition), 2011, 20(6): 5-9. | |
26 | 李建华, 亓东民, 俞树荣, 等. 基于灰色理论的长输管道风险分析[J]. 石油机械, 2006, 34(11): 24-26, 78. |
LI Jianhua, QI Dongmin, YU Shurong, et al. Risk analysis of oil and gas pipelines based on grey theory[J]. China Petroleum Machinery, 2006, 34(11): 24-26, 78. | |
27 | 段安鹏. 基于量纲分析法分析民用飞机燃油系统管路结冰特性[J]. 民用飞机设计与研究, 2020(3): 67-72. |
DUAN Anpeng. Study on pipeline icing characteristics of civil aircraft fuel system based on dimensional analysis[J]. Civil Aircraft Design & Research, 2020(3): 67-72. | |
28 | 周刚. 基于量纲分析的含蜡热油管道总传热系数预测模型[J]. 西安石油大学学报(自然科学版), 2020, 35(1): 84-88, 109. |
ZHOU Gang. A model for total heat transfer coefficient of hot waxy oil pipeline based on dimension analysis[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2020, 35(1): 84-88, 109. | |
29 | 孙宝玺, 王硕, 郭洋, 等. 基于量纲分析法的节制闸过流公式应用[J]. 北京水务, 2023(2): 14-17. |
SUN Baoxi, WANG Shuo, GUO Yang, et al. Application of overflow equation in check-gate based on dimensional analysis[J]. Beijing Water, 2023(2): 14-17. |
[1] | JIANG Andi, DING Xuexing, WANG Shipeng, DING Junhua, LI Ning. Research progress on thermodynamic performance of supercritical CO2 dry gas seal [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2354-2369. |
[2] | ZHANG Yuhong, LI Xuanyu, FENG Chunjian, MA Chunxun, ZHANG Chen, ZHOU Yangyang, BI Haisheng. Research progress on failure prediction and prevention technology of non-metallic pipes in oil and gas fields [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1118-1132. |
[3] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[4] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[5] | ZHAO Jingbin, WANG Yanfu, WANG Tao, MA Weikai, WANG Chen. Vulnerability assessment of storage tanks based on Monte Carlo simulation and dynamic event tree [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2751-2759. |
[6] | ZHANG Jianwei, XU Rui, ZHANG Zhongchuang, DONG Xin, FENG Ying. Mixing characteristics of concentration field in impingement flow reactor based on convolutional neural network [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 658-668. |
[7] | WANG Yuqing, DUAN Yufeng, WANG Rui, LIU Xiaoshuo, SHEN Zhen. Experimental and kinetics analysis of ethanol-hydrated calcium-based adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6053-6063. |
[8] | YANG Xin, XU Hong, HU Weixun, LIU Hongzuo, LONG Quanzhi, ZHU Liye. Regeneration of waste lubricant oil by supercritical carbon dioxide extraction [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5399-5405. |
[9] | LI Wei, RUAN Chenglong, WANG Xiaoming, LI Yajie, LIANG Chenglong. Integrated modelling method for tank-batch finished gasoline blending formulations [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4701-4712. |
[10] | FENG Ying, ZHAO Mengjie, CUI Qian, XIE Yuju, ZHANG Jianwei, DONG Xin. Research progress of molecular simulation technology in the development and application of chitosan functional materials [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4241-4253. |
[11] | YANG Lei, SONG Jinling, TANG Chuyang, YU Shiyao, YANG Xinyu. Products prediction of carbon-based solid waste pyrolysis based on FUSION model [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3966-3973. |
[12] | YU Han, WANG Hong, ZHU Xun, DING Yudong, CHEN Rong, LIAO Qiang. Prediction model of electrospray deposition radius [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2864-2870. |
[13] | JIANG Ning, ZHANG Yuanyi, FAN Wei, ZHAO Shichao, XU Xinjie, XU Yingjie. Cleaning decision of heat exchanger network based on intelligent prediction and mechanism [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1781-1792. |
[14] | LI Xintong, CHEN Zhibing, WEI Zhiqiang, LI Sutong, CHEN Xu, SONG Kai. Convolution neural network with attention mechanism of input data for quality prediction of fluorine chemical products [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 593-600. |
[15] | JIA Wenlong, SONG Shuoshuo, LI Changjun, WU Xia, YANG Fan, ZHANG Yuanrui. Progress of oily sludge extraction by supercritical CO2 [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6573-6585. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 288
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 190
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |