Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2811-2822.DOI: 10.16085/j.issn.1000-6613.2023-1851
• Carbon dioxide capture and utilization • Previous Articles
WU Xining(), ZHANG Ning, QIN Jiamin, XU Long(), WEI Chaoyang(), MA Xiaoxun
Received:
2023-10-20
Revised:
2023-12-14
Online:
2024-06-15
Published:
2024-05-15
Contact:
XU Long, WEI Chaoyang
武西宁(), 张宁, 秦佳敏, 徐龙(), 魏朝阳(), 马晓迅
通讯作者:
徐龙,魏朝阳
作者简介:
武西宁(2001—),女,硕士研究生,研究方向为二氧化碳捕集。E-mail:wuxining@stumail.nwu.edu.cn。
基金资助:
CLC Number:
WU Xining, ZHANG Ning, QIN Jiamin, XU Long, WEI Chaoyang, MA Xiaoxun. Performance of methanol-based nanofluids with enhanced CO2 absorption under low cooling demand[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2811-2822.
武西宁, 张宁, 秦佳敏, 徐龙, 魏朝阳, 马晓迅. 低冷量下强化CO2吸收的甲醇基纳米流体性能[J]. 化工进展, 2024, 43(5): 2811-2822.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1851
纳米流体 | a | b | c | d | e | R2 |
---|---|---|---|---|---|---|
40nm TiO2-甲醇 | 2.768 | 2.374 | 143.359 | -0.051 | 0.014 | 0.993 |
纳米流体 | a | b | c | d | e | R2 |
---|---|---|---|---|---|---|
40nm TiO2-甲醇 | 2.768 | 2.374 | 143.359 | -0.051 | 0.014 | 0.993 |
静置时间/h | 浊度/NTU | ||
---|---|---|---|
TiO2 | Al2O3 | SiO2 | |
0 | 653.6 | 531.3 | 18.4 |
3 | 645.2 | 520.8 | 17.9 |
12 | 619.5 | 476.1 | 16.7 |
24 | 589.4 | 453.5 | 16.1 |
静置时间/h | 浊度/NTU | ||
---|---|---|---|
TiO2 | Al2O3 | SiO2 | |
0 | 653.6 | 531.3 | 18.4 |
3 | 645.2 | 520.8 | 17.9 |
12 | 619.5 | 476.1 | 16.7 |
24 | 589.4 | 453.5 | 16.1 |
1 | DIMITROV Radoslav S. The Paris agreement on climate change: Behind closed doors[J]. Global Environmental Politics, 2016, 16(3): 1-11. |
2 | LIU Zhu, DENG Zhu, DAVIS Steven J, et al. Monitoring global carbon emissions in 2021[J]. Nature Reviews Earth & Environment, 2022, 3(4): 217-219. |
3 | 吴江, 任思源, 孙一景, 等. 基于“双碳”背景的CCUS技术研究与应用[J]. 华中科技大学学报(自然科学版), 2022, 50(07): 89-100. |
WU Jiang, REN Siyuan, SUN Yijing, et al. Research and application of CCUS technology based on “double carbon” background[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(7): 89-100. | |
4 | FU Lipei, REN Zhangkun, SI Wenzhe, et al. Research progress on CO2 capture and utilization technology[J]. Journal of CO2 Utilization, 2022, 66: 102260. |
5 | 王丹. 二氧化碳捕集、利用与封存技术全链分析与集成优化研究[D]. 北京: 中国科学院大学, 2020. |
WANG Dan. Full-chain analysis and integrated optimization of carbon dioxide capture, utilization and storage technology[D]. Beijing: University of Chinese Academy of Sciences, 2020. | |
6 | LEE Wonhyeok, KIM Seonggon, XU Ronghuan, et al. Combined heat and mass transfer performance enhancement by nanoemulsion absorbents during the CO2 absorption and regeneration processes[J]. International Journal of Heat and Mass Transfer, 2019, 141: 1196-1204. |
7 | GATTI Manuele, MARTELLI Emanuele, MARECHAL François, et al. Review, modeling, heat integration, and improved schemes of rectisol®-based processes for CO2 capture[J]. Applied Thermal Engineering, 2014, 70(2): 1123-1140. |
8 | CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[J]. Asme Fed, 1995, 231(1): 99-105. |
9 | KRISHNAMURTHY S, BHATTACHARYA P, PHELAN P E, et al. Enhanced mass transport in nanofluids[J]. Nano Letters, 2006, 6(3): 419-423. |
10 | LIANG Jiaxin, HAN Huiyu, LI Wenbo, et al. Experimental study on the absorption enhancement of CO2 by MDEA-MEA based nanofluids[J]. The Canadian Journal of Chemical Engineering, 2022, 100(11): 3335-3344. |
11 | LEE Jae Won, TORRES PINEDA Israel, LEE Jung Hun, et al. Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents[J]. Applied Energy, 2016, 178: 164-176. |
12 | PINEDA Israel Torres, KIM Dongmin, KANG Yong Tae. Mass transfer analysis for CO2 bubble absorption in methanol/Al2O3 nanoabsorbents[J]. International Journal of Heat and Mass Transfer, 2017, 114: 1295-1303. |
13 | 梁嘉欣. 纳米流体的制备及其强化醇胺吸收CO2的研究[D]. 西安: 西北大学, 2022. |
LIANG Jiaxin. Preparation of nanofluids and their enhanced CO2 absorption by alcoholamines[D]. Xi’an: Northwest University, 2022. | |
14 | DRZAZGA M, LEMANOWICZ M, DZIDO G, et al. Preparation of metal oxide-water nanofluids by the two-step method[J]. Chemical Engineering and Equipment, 2012, 51: 213-215. |
15 | NAGY Endre, Tivadar FECZKÓ, KOROKNAI Balázs. Enhancement of oxygen mass transfer rate in the presence of nanosized particles[J]. Chemical Engineering Science, 2007, 62(24): 7391-7398. |
16 | BATCHELOR G K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles[J]. Journal of Fluid Mechanics, 1977, 83(1): 97-117. |
17 | SEYF Hamid Reza, NIKAAEIN Behrang. Analysis of Brownian motion and particle size effects on the thermal behavior and cooling performance of microchannel heat sinks[J]. International Journal of Thermal Sciences, 2012, 58: 36-44. |
18 | ZHANG Yu, ZHAO Bo, JIANG Jiazong, et al. The use of TiO2 nanoparticles to enhance CO2 absorption[J]. International Journal of Greenhouse Gas Control, 2016, 50: 49-56. |
19 | LEE Jae Won, KIM Seonggon, TORRES PINEDA Israel, et al. Review of nanoabsorbents for capture enhancement of CO2 and its industrial applications with design criteria[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 110524. |
20 | PEYRAVI Arman, KESHAVARZ Peyman, MOWLA Darioush. Experimental investigation on the absorption enhancement of CO2 by various nanofluids in hollow fiber membrane contactors[J]. Energy & Fuels, 2015, 29(12): 8135-8142. |
21 | TORRES PINEDA Israel, LEE Jae Won, JUNG Inhwa, et al. CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber[J]. International Journal of Refrigeration, 2012, 35(5): 1402-1409. |
22 | DEHGHAN Peymaneh, AZARI Ahmad, AZIN Reza. Measurement and correlation for CO2 mass diffusivity in various metal oxide nanofluids[J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 103598. |
23 | JIANG Jiazong, ZHAO Bo, ZHUO Yuqun, et al. Experimental study of CO2 absorption in aqueous MEA and MDEA solutions enhanced by nanoparticles[J]. International Journal of Greenhouse Gas Control, 2014, 29: 135-141. |
24 | YU Wei, WANG Tao, PARK Ah-Hyung Alissa, et al. Review of liquid nano-absorbents for enhanced CO2 capture[J]. Nanoscale, 2019, 11(37): 17137-17156. |
25 | GALHOTRA Pragati, NAVEA Juan G, LARSEN Sarah C, et al. Carbon dioxide (C16O2 and C18O2) adsorption in zeolite Y materials: Effect of cation, adsorbed water and particle size[J]. Energy & Environmental Science, 2009, 2(4): 401-409. |
26 | 梁嘉欣, 冉艺璇, 武西宁, 等. 纳米流体强化吸收CO2研究进展[J]. 化工新型材料, 2022, 50(9): 60-64, 69. |
LIANG Jiaxin, RAN Yixuan, WU Xining, et al. Progress on enhancement of CO2 absorption by nanofluid[J]. New Chemical Materials, 2022, 50(9): 60-64, 69. | |
27 | RUCKENSTEIN E. A generalized penetration theory for unsteady convective mass transfer[J]. Chemical Engineering Science, 1968, 23(4): 363-371. |
28 | CHENG Shangyuan, LIU Youzhi, QI Guisheng. Progress in the enhancement of gas-liquid mass transfer by porous nanoparticle nanofluids[J]. Journal of Materials Science, 2019, 54(20): 13029-13044. |
29 | JUNG Jung-Yeul, LEE Jae Won, KANG Yong Tae. CO2 absorption characteristics of nanoparticle suspensions in methanol[J]. Journal of Mechanical Science and Technology, 2012, 26(8): 2285-2290. |
30 | KIM Jae Hyung, JUNG Chung Woo, KANG Yong Tae. Mass transfer enhancement during CO2 absorption process in methanol/Al2O3 nanofluids[J]. International Journal of Heat and Mass Transfer, 2014, 76: 484-491. |
31 | GHASEMI B, AMINOSSADATI S M. Brownian motion of nanoparticles in a triangular enclosure with natural convection[J]. International Journal of Thermal Sciences, 2010, 49(6): 931-940. |
32 | 唐忠利, 湛波, 张树杨, 等. CO2在纳米流体解吸过程中的微对流现象[J]. 化工学报, 2012, 63(6): 1691-1696. |
TANG Zhongli, ZHAN Bo, ZHANG Shuyang, et al. Microconvection phenomena accompanying CO2 desorption from nanofluids[J]. CIESC Journal, 2012, 63(6): 1691-1696. | |
33 | KIM Eung Surk, JUNG Jung-Yeul, KANG Yong Tae. The effect of surface area on pool boiling heat transfer coefficient and CHF of Al2O3/water nanofluids[J]. Journal of Mechanical Science and Technology, 2013, 27(10): 3177-3182. |
34 | DARVANJOOGHI Mohammad Hossein Karimi, ESFAHANY Mohsen Nasr, ESMAEILI-FARAJ Seyyed Hamid. Investigation of the effects of nanoparticle size on CO2 absorption by silica-water nanofluid[J]. Separation and Purification Technology, 2018, 195: 208-215. |
35 | 张帅. Cu-Al2O3纳米流体吸收解吸船舶尾气中的CO2的实验研究[D]. 重庆: 重庆交通大学, 2022. |
ZHANG Shuai. Experimental study on the absorption and desorption of CO2 in the exhaust gas of ships by Cu-Al2O3 nanofluids[D]. Chongqing: Chongqing Jiaotong University, 2022. | |
36 | 于伟. 纳米颗粒强化的二氧化碳吸收剂及新型再生工艺研究[D]. 杭州: 浙江大学, 2019. |
YU Wei. Post-combustion CO2 capture using liquid nano-absorbents and novel solvent regeneration process[D]. Hangzhou: Zhejiang University, 2019. | |
37 | IQBAL Anum, MAHMOUD Mohamed S, SAYED Enas Taha, et al. Evaluation of the nanofluid-assisted desalination through solar stills in the last decade[J]. Journal of Environmental Management, 2021, 277: 111415. |
38 | 贾萌川, 张忠孝, 江砚池, 等. 纳米颗粒强化TETA溶液富液解吸CO2的实验研究[J]. 化学工程, 2019, 47(10): 37-41, 78. |
JIA Mengchuan, ZHANG Zhongxiao, JIANG Yanchi, et al. Desorption of CO2 performance enhancement by nanoparticles in TETA rich solution[J]. Chemical Engineering (China), 2019, 47(10): 37-41, 78. | |
39 | CHOI Ik Dong, LEE Jae Won, KANG Yong Tae. CO2 capture/separation control by SiO2 nanoparticles and surfactants[J]. Separation Science and Technology, 2015, 50(5): 772-780. |
[1] | LI Kai, WEI Helin, ZUO Xiahua, YANG Weimin, YAN Hua, AN Ying. Experimental study on the preparation and stability of water-based carbon black-collagen nanofluids [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1944-1952. |
[2] | SUN Xian, LIU Jun, WANG Xiaohui, SUN Changyu, CHEN Guangjin. Review of experimental and numerical simulation research on the development of natural gas hydrate reservoir with underlying gas [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2091-2103. |
[3] | ZHOU Yihuan, XIE Qiang, ZHOU Hongyang, LIANG Dingcheng, LIU Jinchang. Modeling of porous carbon materials based on molecular simulation: State-of-the art [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1535-1551. |
[4] | DONG Xiaohan, TIAN Yue, SU Yi. Study on the preparation of composite adsorbent with titanium-containing blast furnace slag and chromium adsorption performance [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1552-1564. |
[5] | YAN Zihan, WANG Dongdong, YIN Huimin, LIU Wenrui, LU Chunxi. Measuring and analysis methods for the mixing process of jet and gas-solid two-phase flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 713-721. |
[6] | SU Qian, DENG Xiangtian, LIU Zhenxing. Model optimization of phase fraction in oil-gas-water three-phase flow using ultrasonic testing technique [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 791-799. |
[7] | XIE Guangshuo, ZHANG Siliang, HE Song, XIAO Juan, WANG Simin. Global sensitivity analysis for particulate fouling performance based on metamodel of optimal prognosis [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 328-337. |
[8] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[9] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[10] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[11] | ZHANG Dailing, DING Yumei, ZUO Xiahua, LI Haowei, YANG Weimin, YAN Hua, AN Ying. Photothermal characteristics of waste toner nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4791-4798. |
[12] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[13] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[14] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[15] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |