Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2803-2810.DOI: 10.16085/j.issn.1000-6613.2024-0015
• Carbon dioxide capture and utilization • Previous Articles
FENG Bangman1(), YUE Chengguang1, WANG Mei-Yan1,2(), WANG Yue1, MA Xinbin1
Received:
2024-01-04
Revised:
2024-02-17
Online:
2024-06-15
Published:
2024-05-15
Contact:
WANG Mei-Yan
冯帮满1(), 岳成光1, 王美岩1,2(), 王悦1, 马新宾1
通讯作者:
王美岩
作者简介:
冯帮满(2000—),男,硕士研究生,研究方向为CO2高值转化。E-mail:fengbangman0312@tju.edu.cn。
基金资助:
CLC Number:
FENG Bangman, YUE Chengguang, WANG Mei-Yan, WANG Yue, MA Xinbin. Fabrication of heterogeneous tannic acid-zirconium mesoporous material and the catalytic performance on cycloaddition of CO2 with epoxide[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2803-2810.
冯帮满, 岳成光, 王美岩, 王悦, 马新宾. 非均相单宁酸-锆介孔材料制备及其CO2环加成反应催化性能[J]. 化工进展, 2024, 43(5): 2803-2810.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0015
样品 | BET比表面积/m²·g-1 | 孔体积/cm³·g-1 | 平均孔径/nm | Zr质量分数④/% |
---|---|---|---|---|
TA-Zr-1 | 95 | 0.496① | 21.7 | 17.2 |
TA-Zr-2 | 210 | 0.616① | 10.2 | 25.4 |
TA-Zr-3 | 79 | 0.286① | 13.9 | 37.5 |
TA-Zr-2-FD | 256 | 0.681① | 11.0 | 24.8 |
UiO-66 | 867 | 0.327② | 1.9③ | 32.9 |
样品 | BET比表面积/m²·g-1 | 孔体积/cm³·g-1 | 平均孔径/nm | Zr质量分数④/% |
---|---|---|---|---|
TA-Zr-1 | 95 | 0.496① | 21.7 | 17.2 |
TA-Zr-2 | 210 | 0.616① | 10.2 | 25.4 |
TA-Zr-3 | 79 | 0.286① | 13.9 | 37.5 |
TA-Zr-2-FD | 256 | 0.681① | 11.0 | 24.8 |
UiO-66 | 867 | 0.327② | 1.9③ | 32.9 |
序号 | 催化剂/助催化剂 | 反应条件 | 产率 /% | 参考 文献 |
---|---|---|---|---|
1① | ZrO2 | 150℃/5MPa/24h | 62.0 | [ |
2② | CA/TBAB | 25℃/1MPa/36h | 97.0 | [ |
3③ | CoTPP-PiP(Br) | 60℃/1MPa/24h | 95.0 | [ |
4④ | ER-7 | 100℃/2MPa/24h | 99.0 | [ |
5⑤ | Schiffbase ligands-Co complex | 120℃/0.1MPa/72h | 84.0 | [ |
6⑥ | Co-Phen-POP/TBAB | 25℃/1MPa/48h | 81.0 | [ |
7⑦ | CoPc/g-C3N4 | 130℃/3MPa/24h | 72.0 | [ |
8⑧ | u-g-C3N4-480 | 130℃/2MPa/24h | 99.0 | [ |
9⑨ | [OSSO]-Cr/TBAC | 45℃/1MPa/24h | 60.0 | [ |
10⑩ | MIL-101/TBAB | 25℃/1MPa/24h | 82.0 | [ |
11⑪ | SiO2@ZIF-67/TBAB | 80℃/2MPa/24h | 97.0 | [ |
12 | TA-Zr-2-FD/TBAI | 25℃/1MPa/24h | 97.6 | 本工作 |
序号 | 催化剂/助催化剂 | 反应条件 | 产率 /% | 参考 文献 |
---|---|---|---|---|
1① | ZrO2 | 150℃/5MPa/24h | 62.0 | [ |
2② | CA/TBAB | 25℃/1MPa/36h | 97.0 | [ |
3③ | CoTPP-PiP(Br) | 60℃/1MPa/24h | 95.0 | [ |
4④ | ER-7 | 100℃/2MPa/24h | 99.0 | [ |
5⑤ | Schiffbase ligands-Co complex | 120℃/0.1MPa/72h | 84.0 | [ |
6⑥ | Co-Phen-POP/TBAB | 25℃/1MPa/48h | 81.0 | [ |
7⑦ | CoPc/g-C3N4 | 130℃/3MPa/24h | 72.0 | [ |
8⑧ | u-g-C3N4-480 | 130℃/2MPa/24h | 99.0 | [ |
9⑨ | [OSSO]-Cr/TBAC | 45℃/1MPa/24h | 60.0 | [ |
10⑩ | MIL-101/TBAB | 25℃/1MPa/24h | 82.0 | [ |
11⑪ | SiO2@ZIF-67/TBAB | 80℃/2MPa/24h | 97.0 | [ |
12 | TA-Zr-2-FD/TBAI | 25℃/1MPa/24h | 97.6 | 本工作 |
1 | ZHOU Zhihao, SUN Zhenkun, DUAN Lunbo. Chemical looping: A flexible platform technology for CH4 conversion coupled with CO2 utilization[J]. Current Opinion in Green and Sustainable Chemistry, 2023, 39: 100721. |
2 | 张广宇, 赵健, 孙峰, 等. CO2催化转化制碳酸丙烯酯研究进展:催化剂设计、性能与反应机理[J]. 化工进展, 2022, 41(S1): 177-189. |
ZHANG Guangyu, ZHAO Jian, SUN Feng, et al. Research progress in catalytic conversion of CO2 to propylene carbonate: Catalyst design, performance and reaction mechanism[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 177-189. | |
3 | 郭立颖, 马秀云, 王立岩, 等. 氯化1-氨基聚醚-3-甲基咪唑离子液体的制备与催化性能[J]. 化工进展, 2017, 36(2): 581-587. |
GUO Liying, MA Xiuyun, WANG Liyan, et al. Preparation and catalytic properties of chloride 1-amino polyether-3-methyl imidazole ionic liquid[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 581-587. | |
4 | CAI Sheng, ZHU Dongliang, ZOU Yan, et al. Porous polymers bearing functional quaternary ammonium salts as efficient solid catalysts for the fixation of CO2 into cyclic carbonates[J]. Nanoscale Research Letters, 2016, 11(1): 321. |
5 | XIE Yaqiang, SUN Qing, FU Yawen, et al. Sponge-like quaternary ammonium-based poly(ionic liquid)s for high CO2 capture and efficient cycloaddition under mild conditions[J]. Journal of Materials Chemistry A, 2017, 5(48): 25594-25600. |
6 | KIM Doyun, SUBRAMANIAN Saravanan, THIRION Damien, et al. Quaternary ammonium salt grafted nanoporous covalent organic polymer for atmospheric CO2 fixation and cyclic carbonate formation[J]. Catalysis Today, 2020, 356: 527-534. |
7 | AOYAGI Naoto, FURUSHO Yoshio, ENDO Takeshi. Effective synthesis of cyclic carbonates from carbon dioxide and epoxides by phosphonium iodides as catalysts in alcoholic solvents[J]. Tetrahedron Letters, 2013, 54(51): 7031-7034. |
8 | REN Yiping, SHIM Jae-Jin. Efficient synthesis of cyclic carbonates by MgⅡ/phosphine-catalyzed coupling reactions of carbon dioxide and epoxides[J]. ChemCatChem, 2013, 5(6): 1344-1349. |
9 | WANG Jinyuan, LIANG Yatao, ZHOU Dagang, et al. New crown ether complex cation ionic liquids with N-heterocycle anions: Preparation and application in CO2 fixation[J]. Organic Chemistry Frontiers, 2018, 5(5): 741-748. |
10 | JIANG Xu, GOU Faliang, CHEN Fengjuan, et al. Cycloaddition of epoxides and CO2 catalyzed by bisimidazole-functionalized porphyrin cobalt(Ⅲ) complexes[J]. Green Chemistry, 2016, 18(12): 3567-3576. |
11 | FU Hongchen, YOU Fei, LI Hongru, et al. CO2 capture and in situ catalytic transformation[J]. Frontiers in Chemistry, 2019, 7: 525. |
12 | CHEN Gang, ZHANG Jianling, CHENG Xiuyan, et al. Metal ionic liquids for the rapid chemical fixation of CO2 under ambient conditions[J]. ChemCatChem, 2020, 12(7): 1963-1967. |
13 | SODPIBAN Ounjit, PHUNGPANYA Chalida, DEL GOBBO Silvano, et al. Rational engineering of single-component heterogeneous catalysts based on abundant metal centers for the mild conversion of pure and impure CO2 to cyclic carbonates[J]. Chemical Engineering Journal, 2021, 422: 129930. |
14 | WANG Jinquan, ZHANG Yugen. Boronic acids as hydrogen bond donor catalysts for efficient conversion of CO2 into organic carbonate in water[J]. ACS Catalysis, 2016, 6(8): 4871-4876. |
15 | WANG Jinquan, DONG Kun, CHENG Weiguo, et al. Insights into quaternary ammonium salts-catalyzed fixation carbon dioxide with epoxides[J]. Catalysis Science & Technology, 2012, 2(7): 1480-1484. |
16 | KIM Jun, KIM Se-Na, JANG Hoi-Gu, et al. CO2 cycloaddition of styrene oxide over MOF catalysts[J]. Applied Catalysis A: General, 2013, 453: 175-180. |
17 | XU A H, CHEN Z J, JIN L J, et al. Quaternary ammonium salt functionalized MIL-101-NH2 (Cr) as a bifunctional catalyst for the cycloaddition of CO2 with epoxides to produce cyclic carbonates[J]. Applied Catalysis A: General, 2021, 624: 118307. |
18 | Sergio SOPEÑA, FIORANI Giulia, Carmen MARTÍN, et al. Highly efficient organocatalyzed conversion of oxiranes and CO2 into organic carbonates[J]. ChemSusChem, 2015, 8(19): 3248-3254. |
19 | SUN Jian, CHENG Weiguo, YANG Zifeng, et al. Superbase/cellulose: An environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates[J]. Green Chemistry, 2014, 16(6): 3071-3078. |
20 | ALVES M, GRIGNARD B, GENNEN S, et al. Organocatalytic promoted coupling of carbon dioxide with epoxides: A rational investigation of the cocatalytic activity of various hydrogen bond donors[J]. Catalysis Science & Technology, 2015, 5(9): 4636-4643. |
21 | CLAVER Carmen, YEAMIN Md BIN, REGUERO Mar, et al. Recent advances in the use of catalysts based on natural products for the conversion of CO2 into cyclic carbonates[J]. Green Chemistry, 2020, 22(22): 7665-7706. |
22 | GUO Junling, PING Yuan, EJIMA Hirotaka, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks[J]. Angewandte Chemie (International Ed in English), 2014, 53(22): 5546-5551. |
23 | RAHIM Md Arifur, KRISTUFEK Samantha L, PAN Shuaijun, et al. Phenolic building blocks for the assembly of functional materials[J]. Angewandte Chemie (International Ed in English), 2019, 58(7): 1904-1927. |
24 | CHAND Santanu, Shyam Chand PAL, MONDAL Manas, et al. Three-dimensional Co( Ⅱ )-metal-organic frameworks with varying porosities and open metal sites toward multipurpose heterogeneous catalysis under mild conditions[J]. Crystal Growth & Design, 2019, 19(9): 5343-5353. |
25 | MAINA James W, Cristina POZO-GONZALO, KONG Lingxue, et al. Metal organic framework based catalysts for CO2 conversion[J]. Materials Horizons, 2017, 4(3): 345-361. |
26 | Hassan BEYZAVI M, STEPHENSON Casey J, LIU Yangyang, et al. Metal-organic framework-based catalysts: Chemical fixation of CO2 with epoxides leading to cyclic organic carbonates[J]. Frontiers in Energy Research, 2015, 2: 63. |
27 | XU Guangzhi, LIU Chen, HU Aiyun, et al. A novel synthesis of zirconium tannate with high stability: New insight into the structure of the catalyst for hydrogenation[J]. Applied Catalysis A: General, 2020, 602: 117666. |
28 | LENG Yan, SHI Langchen, DU Shengyu, et al. A tannin-derived zirconium-containing porous hybrid for efficient Meerwein-Ponndorf-Verley reduction under mild conditions[J]. Green Chemistry, 2020, 22(1): 180-186. |
29 | 刘军. 真空冷冻干燥法制备无机功能纳米粉体的研究[D]. 沈阳: 东北大学, 2006. |
LIU Jun. Study on synthesis of functionally inorganic nanopowder by vacuum freeze-drying[D].Shenyang: Northeastern University, 2006. | |
30 | VÁZQUEZ Maricela Santana, ESTEVEZ O, ASCENCIO-AGUIRRE F, et al. Tannic acid assisted synthesis of flake-like hydroxyapatite nanostructures at room temperature[J]. Applied Physics A, 2016, 122(9): 868. |
31 | KURISINGAL Jintu Francis, RACHURI Yadagiri, GU Yunjang, et al. Binary metal-organic frameworks: Catalysts for the efficient solvent-free CO2 fixation reaction via cyclic carbonates synthesis[J]. Applied Catalysis A: General, 2019, 571: 1-11. |
32 | GAO Jie, YUE Chengguang, WANG Hao, et al. CeO2-ZrO2 solid solution catalyzed and moderate acidic-basic sites dominated cycloaddition of CO2 with epoxides: Halogen-free synthesis of cyclic carbonates[J]. Catalysts, 2022, 12(6): 632. |
33 | AELENEI Neculai, POPA Marcel Ionel, NOVAC Ovidiu, et al. Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release[J]. Journal of Materials Science Materials in Medicine, 2009, 20(5): 1095-1102. |
34 | DUTTA Anamika, DOLUI Swapan K. Tannic acid assisted one step synthesis route for stable colloidal dispersion of nickel nanostructures[J]. Applied Surface Science, 2011, 257(15): 6889-6896. |
35 | ZHANG Ruina, LI Lin, LIU Junxin. Synthesis and characterization of ferric tannate as a novel porous adsorptive-catalyst for nitrogen removal from wastewater[J]. RSC Advances, 2015, 5(51): 40785-40791. |
36 | ZHOU Shenghui, DAI Fanglin, CHEN Yian, et al. Sustainable hydrothermal self-assembly of hafnium-lignosulfonate nanohybrids for highly efficient reductive upgrading of 5-hydroxymethylfurfural[J]. Green Chemistry, 2019, 21(6): 1421-1431. |
37 | GENG Huimin, ZHONG Qizhi, LI Jianhua, et al. Metal ion-directed functional metal-phenolic materials[J]. Chemical Reviews, 2022, 122(13): 11432-11473. |
38 | MATTOS Bruno D, ZHU Ya, TARDY Blaise L, et al. Versatile assembly of metal-phenolic network foams enabled by tannin-cellulose nanofibers[J]. Advanced Materials, 2023, 35(12): e2209685. |
39 | TANG Bo, DAI Weili, SUN Xiaoming, et al. Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides[J]. Green Chemistry, 2015, 17(3): 1744-1755. |
40 | SONG Jinliang, ZHOU Baowen, ZHOU Huacong, et al. Porous zirconium-phytic acid hybrid: A highly efficient catalyst for meerwein-ponndorf-verley reductions[J]. Angewandte Chemie (International Ed in English), 2015, 54(32): 9399-9403. |
41 | WANG Hengrui, JIANG Yue, MA Zhewen, et al. Hypereplastic, robust, fire-safe multifunctional MXene aerogels with unprecedented electromagnetic interference shielding efficiency[J]. Advanced Functional Materials, 2023, 33(49): 2306884. |
42 | LEE Jonghwi, CHENG Yu. Critical freezing rate in freeze drying nanocrystal dispersions[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2006, 111(1/2): 185-192. |
43 | WANG Zixian, YAN Ting, GUO Li, et al. Synthesis of TBAB-based deep eutectic solvents as the catalyst in the coupling reaction between CO2 and epoxides under ambient temperature[J]. ChemistrySelect, 2022, 7(36): e202202091. |
44 | CHEN Yaju, LUO Rongchang, REN Qinggang, et al. Click-based porous ionic polymers with intercalated high-density metalloporphyrin for sustainable CO2 transformation[J]. Industrial & Engineering Chemistry Research, 2020, 59(46): 20269-20277. |
45 | LU Chenjie, ZHANG Yaoyao, ZHU Xiaofeng, et al. Simultaneous activation of carbon dioxide and epoxides to produce cyclic carbonates by cross-linked epoxy resin organocatalysts[J]. ChemCatChem, 2023, 15(10): e202300360. |
46 | KHATTAK Zafar A K, YOUNUS Hussein A, AHMAD Nazir, et al. Highly active dinuclear cobalt complexes for solvent-free cycloaddition of CO2 to epoxides at ambient pressure[J]. Chemical Communications, 2019, 55(57): 8274-8277. |
47 | ZHANG Xiaofeng, DING Junhao, QIU Bo, et al. Ultralow co loading phenanthroline-based porous organic polymer as a high-efficient heterogeneous catalyst for the fixation of CO2 to cyclic carbonates at ambient conditions[J]. ChemCatChem, 2021, 13(11): 2664-2673. |
48 | ZHANG Ting, WANG Xuefeng, HUANG Xueli, et al. Bifunctional catalyst of a metallophthalocyanine-carbon nitride hybrid for chemical fixation of CO2 to cyclic carbonate[J]. RSC Advances, 2016, 6(4): 2810-2818. |
49 | SU Qian, SUN Jian, WANG Jinquan, et al. Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates[J]. Catalysis Science & Technology, 2014, 4(6): 1556-1562. |
50 | DELLA MONICA Francesco, PARADISO Veronica, GRASSI Alfonso, et al. A novel[OSSO]-type chromium(Ⅲ) complex as a versatile catalyst for copolymerization of carbon dioxide with epoxides[J]. Chemistry-A European Journal, 2020, 26(24): 5347-5353. |
51 | ZALOMAEVA Olga V, CHIBIRYAEV Andrey M, KOVALENKO Konstantin A, et al. Cyclic carbonates synthesis from epoxides and CO2 over metal-organic framework Cr-MIL-101[J]. Journal of Catalysis, 2013, 298: 179-185. |
52 | TSAI Chen-Yen, CHEN Yi-Hsuan, LEE Szetsen, et al. Uniform core-shell microspheres of SiO2@MOF for CO2 cycloaddition reactions[J]. Inorganic Chemistry, 2022, 61(6): 2724-2732. |
[1] | LIU Fangwang, HAN Yi, ZHANG Jiajia, BU Honghong, WANG Xingpeng, YU Chuanfeng, LIU Mengshuai. Research advance of heterogeneous catalytic system for the coupling between CO2 and epoxide into propylene carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1252-1265. |
[2] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[3] | LUO Zhibin, LONG Ran, WANG Xiaobo, PEI Aiguo, XIONG Yujie. Thermal-enhanced photocatalytic carbon dioxide reduction [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5156-5165. |
[4] | CHEN Yaju, REN Qinggang, ZHOU Xiantai, JI Hongbing. Recent advances in porous organic polymers for the synthesis of cyclic carbonates from carbon dioxide [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3564-3583. |
[5] | ZHAO Zhaoyang, LUO Xiaoyan, PEI Baoyou, XIANG Xiaoyan, LI Jiaran, MA Ruixun, ZHANG Ziheng, LIN Jinqing. Research progress on CO2 cycloaddition catalyzed by porous hyper-crosslinked polymers immobilized ionic liquids [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1438-1448. |
[6] | WU Bingfeng, YANG Lina, LI Jian, BAI Jin. Application of biomass templates in the preparation of mesoporous materials [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2686-2693. |
[7] | YANG Mei, ZHONG Xianghong, CHEN Qun. Recent progress of the synthesis of cyclic carbonates from CO2 and epoxides catalyzed by ionic liquids [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3300-3308. |
[8] | FAN Fangjun, ZHANG Zhiguo, XING Huabing, YANG Qiwei, BAO Zongbi, YANG Yiwen, REN Qilong. Progress in synthesis of cyclic carbonates under supercritical carbon dioxide [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2924-2933. |
[9] | PAN Deng, WANG Yaming, JIANG Lihong. Progress in surfactant synthesis of non-silica mesoporous materials [J]. Chemical Industry and Engineering Progree, 2016, 35(08): 2500-2506. |
[10] | LI Chunxi,XIONG Jiali,MENG Hong,LU Yingzhou. From ILs to PILs:Synthesis and structure tuning of poly ionic liquids mesoporous materials [J]. Chemical Industry and Engineering Progree, 2014, 33(08): 1941-1950. |
[11] | REN Ruipeng 1,CHEN Hu1,CHEN Jian2,Lü Yongkang1. Study on catalytic oxidations catalysts in removal of NO from flue gas [J]. Chemical Industry and Engineering Progree, 2014, 33(06): 1453-1458. |
[12] | LI Xiangzhen,WANG Xiaozhong,LIU Yu,CHEN Wei,HUANG Lu. Research progress in the synthesis of mesoporous Al-SBA-15 material [J]. Chemical Industry and Engineering Progree, 2013, 32(07): 1555-1563. |
[13] | KANG Yu,ZHANG Mingsen,WANG Hongtao,XIE Lunjia,JIANG Jianzhun,. Supported metallocene onto multi-morphological mesoporous materials for polymerization of ethylene [J]. Chemical Industry and Engineering Progree, 2012, 31(05): 1032-1038. |
[14] | REN Wenling,CHEN Shanyun,ZHANG Yongchun,LI Guimin. Preparation of Zn/SBA-15 and its desulfurization property on H2S [J]. Chemical Industry and Engineering Progree, 2011, 30(10): 2304-. |
[15] | WANG Xiaohui1,TANG Mei1,JIA Jinping2,SUN Tonghua2. Potential application of mesoporous silica modified with zinc oxide for [J]. Chemical Industry and Engineering Progree, 2010, 29(9): 1760-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |