Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (6): 2819-2827.DOI: 10.16085/j.issn.1000-6613.2022-1432
• Chemical processes and equipment • Previous Articles Next Articles
ZHOU Lei1(), SUN Xiaoyan1(), TAO Shaohui1, CHEN Yushi2, XIANG Shuguang1
Received:
2022-08-01
Revised:
2022-09-27
Online:
2023-06-29
Published:
2023-06-25
Contact:
SUN Xiaoyan
周磊1(), 孙晓岩1(), 陶少辉1, 陈玉石2, 项曙光1
通讯作者:
孙晓岩
作者简介:
周磊(1997—),男,硕士研究生,研究方向为过程系统工程。E-mail:1046387795@qq.com。
基金资助:
CLC Number:
ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827.
周磊, 孙晓岩, 陶少辉, 陈玉石, 项曙光. 基于分离因数法的简捷炼油塔模型开发及应用[J]. 化工进展, 2023, 42(6): 2819-2827.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1432
蒸馏曲线百分比/% | 温度/℃ |
---|---|
0 | 0.38 |
5 | 47.72 |
10 | 92.68 |
30 | 214.38 |
50 | 334.89 |
70 | 476.51 |
90 | 671.08 |
95 | 773.09 |
100 | 863.71 |
蒸馏曲线百分比/% | 温度/℃ |
---|---|
0 | 0.38 |
5 | 47.72 |
10 | 92.68 |
30 | 214.38 |
50 | 334.89 |
70 | 476.51 |
90 | 671.08 |
95 | 773.09 |
100 | 863.71 |
序号 | 组分 | 质量分数 | 序号 | 组分 | 质量分数 |
---|---|---|---|---|---|
1 | H2 | 0.000092 | 8 | C2H6 | 0.0322 |
2 | N2 | 0.0103 | 9 | C3H8 | 0.289 |
3 | O2 | 0.000575 | 10 | NC4 | 0.486 |
4 | CO | 0.000402 | 11 | IC4 | 0.149 |
5 | CO2 | 0.00628 | 12 | NC5 | 0.0058 |
6 | H2S | 0.0139 | 13 | C2H4 | 0.000048 |
7 | CH4 | 0.00611 | 14 | C3H6 | 0.000031 |
序号 | 组分 | 质量分数 | 序号 | 组分 | 质量分数 |
---|---|---|---|---|---|
1 | H2 | 0.000092 | 8 | C2H6 | 0.0322 |
2 | N2 | 0.0103 | 9 | C3H8 | 0.289 |
3 | O2 | 0.000575 | 10 | NC4 | 0.486 |
4 | CO | 0.000402 | 11 | IC4 | 0.149 |
5 | CO2 | 0.00628 | 12 | NC5 | 0.0058 |
6 | H2S | 0.0139 | 13 | C2H4 | 0.000048 |
7 | CH4 | 0.00611 | 14 | C3H6 | 0.000031 |
产品名称 | 采出类型 | 切割温度/℃ | 顶部 分离因数 | 底部 分离因数 | 流股压力 /MPa |
---|---|---|---|---|---|
初顶气 | 气相 | — | — | — | 0.095 |
初顶油 | 顶油 | 5.24 | 5 | 10 | 0.11 |
初底油 | 底油 | 180.03 | 5 | 4 | 0.134 |
产品名称 | 采出类型 | 切割温度/℃ | 顶部 分离因数 | 底部 分离因数 | 流股压力 /MPa |
---|---|---|---|---|---|
初顶气 | 气相 | — | — | — | 0.095 |
初顶油 | 顶油 | 5.24 | 5 | 10 | 0.11 |
初底油 | 底油 | 180.03 | 5 | 4 | 0.134 |
产品名称 | 采出类型 | 切割温度/℃ | 顶部分离 因数 | 底部分离 因数 | 流股压力/MPa |
---|---|---|---|---|---|
常顶气 | 气相 | — | — | — | 0.03 |
常顶油 | 顶油 | -1.39 | 5 | 10 | 0.1 |
常一线 | 侧线1 | 159.97 | 35 | 10 | 0.11 |
常二线 | 侧线2 | 239.32 | 15 | 10 | 0.11 |
常三线 | 侧线3 | 282.92 | 30 | 29 | 0.12 |
常四线 | 侧线4 | 401.69 | 35 | 8 | 0.12 |
常底油 | 底油 | 434.11 | 22 | 10 | 0.12 |
产品名称 | 采出类型 | 切割温度/℃ | 顶部分离 因数 | 底部分离 因数 | 流股压力/MPa |
---|---|---|---|---|---|
常顶气 | 气相 | — | — | — | 0.03 |
常顶油 | 顶油 | -1.39 | 5 | 10 | 0.1 |
常一线 | 侧线1 | 159.97 | 35 | 10 | 0.11 |
常二线 | 侧线2 | 239.32 | 15 | 10 | 0.11 |
常三线 | 侧线3 | 282.92 | 30 | 29 | 0.12 |
常四线 | 侧线4 | 401.69 | 35 | 8 | 0.12 |
常底油 | 底油 | 434.11 | 22 | 10 | 0.12 |
产品名称 | 实际值/t·h-1 | 模型值/t·h-1 | 相对偏差/% |
---|---|---|---|
常一线流量 | 110.00 | 108.44 | 1.42 |
常二线流量 | 78.00 | 77.41 | 0.75 |
常三线流量 | 122.00 | 120.66 | 1.10 |
常四线流量 | 32.00 | 31.85 | 0.46 |
产品名称 | 实际值/t·h-1 | 模型值/t·h-1 | 相对偏差/% |
---|---|---|---|
常一线流量 | 110.00 | 108.44 | 1.42 |
常二线流量 | 78.00 | 77.41 | 0.75 |
常三线流量 | 122.00 | 120.66 | 1.10 |
常四线流量 | 32.00 | 31.85 | 0.46 |
产品名称 | 采出类型 | 收率/% | 顶部分离 因数 | 底部分离 因数 | 流股压力/MPa |
---|---|---|---|---|---|
减顶气 | 气相 | — | — | — | -0.0992 |
减顶油 | 顶油 | 2.02 | 5 | 10 | -0.0992 |
减一线 | 侧线1 | 3.78 | 30 | 10 | -0.0991 |
减二线 | 侧线2 | 17.58 | 37 | 4 | -0.0987 |
减三线 | 侧线3 | 31.43 | 30 | 90 | -0.0984 |
减底油 | 底油 | 45.08 | 55 | 30 | -0.0981 |
产品名称 | 采出类型 | 收率/% | 顶部分离 因数 | 底部分离 因数 | 流股压力/MPa |
---|---|---|---|---|---|
减顶气 | 气相 | — | — | — | -0.0992 |
减顶油 | 顶油 | 2.02 | 5 | 10 | -0.0992 |
减一线 | 侧线1 | 3.78 | 30 | 10 | -0.0991 |
减二线 | 侧线2 | 17.58 | 37 | 4 | -0.0987 |
减三线 | 侧线3 | 31.43 | 30 | 90 | -0.0984 |
减底油 | 底油 | 45.08 | 55 | 30 | -0.0981 |
产品名称 | 实际值/t·h-1 | 模型值/t·h-1 | 相对偏差/% |
---|---|---|---|
减一线流量 | 23.50 | 23.53 | -0.12 |
减二线流量 | 110.00 | 109.57 | 0.39 |
减三线流量 | 195.00 | 195.91 | -0.47 |
减底流量 | 280.00 | 280.98 | -0.35 |
产品名称 | 实际值/t·h-1 | 模型值/t·h-1 | 相对偏差/% |
---|---|---|---|
减一线流量 | 23.50 | 23.53 | -0.12 |
减二线流量 | 110.00 | 109.57 | 0.39 |
减三线流量 | 195.00 | 195.91 | -0.47 |
减底流量 | 280.00 | 280.98 | -0.35 |
项目名称 | 选用模式 | 计算时间/s | 迭代次数 |
---|---|---|---|
初馏塔 | 切割温度 | 0.078 | — |
常压塔 | 切割温度 | 0.093 | — |
减压塔 | 收率 | 0.094 | 27 |
项目名称 | 选用模式 | 计算时间/s | 迭代次数 |
---|---|---|---|
初馏塔 | 切割温度 | 0.078 | — |
常压塔 | 切割温度 | 0.093 | — |
减压塔 | 收率 | 0.094 | 27 |
1 | 黄德先, 江永亨, 金以慧. 炼油工业过程控制的研究现状、问题与展望[J]. 自动化学报, 2017, 43(6): 902-916. |
HUANG Dexian, JIANG Yongheng, JIN Yihui. Present research situation, major bottlenecks, and prospect of refinery industry process control[J]. Acta Automatica Sinica, 2017, 43(6): 902-916. | |
2 | ZHANG Nan, SMITH Robin, BULATOV Igor, et al. Sustaining high energy efficiency in existing processes with advanced process integration technology[J]. Applied Energy, 2013, 101: 26-32. |
3 | 刘广杰, 孙晓岩, 毕荣山, 等. 复杂炼油塔模拟的改进联立方程内外层算法[J]. 化工学报, 2020, 71(5): 2118-2127. |
LIU Guangjie, SUN Xiaoyan, BI Rongshan, et al. Improved equation oriented inside-out method of complex crude distillation column simulation[J]. CIESC Journal, 2020, 71(5): 2118-2127. | |
4 | SMITH Robin, OCHOA-ESTOPIER Lluvia M, JOBSON M. The use of reduced models in the optimization of energy integrated processes[J]. Chemical Engineering Transactions, 2013, 35: 139-144. |
5 | KHOR Cheng Seong, VARVAREZOS Dimitrios. Petroleum refinery optimization[J]. Optimization and Engineering, 2017, 18(4): 943-989. |
6 | YANG Y, BARTON P I. Integrated crude selection and refinery optimization under uncertainty[J]. AIChE Journal, 2016, 62(4): 1038-1053. |
7 | Ariel URIBE-RODRIGUEZ, CASTRO Pedro M, GONZALO Guillén Gosálbez, et al. Global optimization of large-scale MIQCQPs via cluster decomposition: Application to short-term planning of an integrated refinery-petrochemical complex[J]. Computers & Chemical Engineering, 2020, 140: 106883. |
8 | JI X C, HUANG S M, GROSSMANN I. Integrated operational and financial hedging for risk management in crude oil procurement[J]. Industrial & Engineering Chemistry Research, 2015, 54(37): 9191-9201. |
9 | KALLRATH Josef. Planning and scheduling in the process industry[J]. OR Spectrum, 2002, 24(3): 219-250. |
10 | KETABCHI Elham, MECHLERI Evgenia, Harvey ARELLANO-GARCIA. Increasing operational efficiency through the integration of an oil refinery and an ethylene production plant[J]. Chemical Engineering Research and Design, 2019, 152: 85-94. |
11 | ZHAO Hao, RONG Gang, FENG Yiping. Effective solution approach for integrated optimization models of refinery production and utility system[J]. Industrial & Engineering Chemistry Research, 2015, 54(37): 9238-9250. |
12 | LI Jie, XIAO Xin, BOUKOUVALA Fani, et al. Data-driven mathematical modeling and global optimization framework for entire petrochemical planning operations[J]. AIChE Journal, 2016, 62(9): 3020-3040. |
13 | BROOKS R W, WALSEM F D V, DRURY J. Choosing cutpoints to optimize product yields[J]. Hydrocarbon Processing, 1999, 78(11): 53-56, 58, 60. |
14 | PINTO J M, JOLY M, MORO L F L. Planning and scheduling models for refinery operations[J]. Computers & Chemical Engineering, 2000, 24(9/10): 2259-2276. |
15 | NEIRO Sérgio M S, PINTO José M. A general modeling framework for the operational planning of petroleum supply chains[J]. Computers & Chemical Engineering, 2004, 28(6/7): 871-896. |
16 | GUERRA O J, ROUX G A C L. Improvements in petroleum refinery planning: 2. case studies[J]. Industrial & Engineering Chemistry Research, 2011, 50(23): 13419-13426. |
17 | GUERRA O J, ROUX G A C L. Improvements in petroleum refinery planning: 1. Formulation of process models[J]. Industrial & Engineering Chemistry Research, 2011, 50(23): 13403-13418. |
18 | ZHANG J, ZHU X X, TOWLER G P. A simultaneous optimization strategy for overall integration in refinery planning[J]. Industrial & Engineering Chemistry Research, 2001, 40(12): 2640-2653. |
19 | LI Wenkai, HUI Chiwai, LI Anxue. Integrating CDU, FCC and product blending models into refinery planning[J]. Computers & Chemical Engineering, 2005, 29(9): 2010-2028. |
20 | MENEZES Brenno C, KELLY Jeffrey D, GROSSMANN Ignacio E. Improved swing-cut modeling for planning and scheduling of oil-refinery distillation units[J]. Industrial & Engineering Chemistry Research, 2013, 52(51): 18324-18333. |
21 | ALATTAS Abdulrahman M, GROSSMANN Ignacio E, Ignasi PALOU-RIVERA. Integration of nonlinear crude distillation unit models in refinery planning optimization[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6860-6870. |
22 | MAHALEC Vladimir, SANCHEZ Yoel. Inferential monitoring and optimization of crude separation units via hybrid models[J]. Computers & Chemical Engineering, 2012, 45: 15-26. |
23 | FU G, SANCHEZ Y, MAHALEC V. Hybrid model for optimization of crude oil distillation units[J]. AIChE Journal, 2016, 62: 1065-1078. |
24 | LI Fupei, QIAN Feng, YANG Minglei, et al. Product tri-section based crude distillation unit model for refinery production planning and refinery optimization[J]. AIChE Journal, 2021, 67(2): e17115. |
25 | FU G, MAHALEC V. Comparison of methods for computing crude distillation product properties in production planning and scheduling[J]. Industrial & Engineering Chemistry Research, 2015, 54(45): 11371-11382. |
26 | 陈志奎. SHORTCUT——石油蒸馏塔简捷模拟块[J]. 石油炼制与化工, 1986, 17(10): 1-6. |
CHEN Zhikui. SHORTCUT—Simple simulation block of petroleum distillation column[J]. Petroleum Processing and Petrochemicals, 1986, 17(10): 1-6. | |
27 | GEDDES R L. A general index of fractional distillation power for hydrocarbon mixtures[J]. AIChE Journal, 1958, 4(4): 389-392. |
28 | GILBERT R J H, LEATHER J, ELLIS J F G. The application of the Geddes fractionation index to crude distillation units[J]. AIChE Journal, 1966, 12(3): 432-437. |
29 | Plus Aspen. Getting started modeling processes with solids[R]. Cambridge: Aspen Technology, Inc, 2006. |
30 | 张海娟, 唐全红. 基于CrudeManager的常减压装置模拟研究[J]. 计算机与应用化学, 2013, 30(8): 887-890. |
ZHANG Haijuan, TANG Quanhong. Research on simulation of atmospheric and vacuum distillation unit basis of CrudeManager[J]. Computers and Applied Chemistry, 2013, 30(8): 887-890. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[3] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[4] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[7] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[8] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[9] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[10] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[11] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[12] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[13] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[14] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[15] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |