Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3374-3385.DOI: 10.16085/j.issn.1000-6613.2023-2103
• Resources and environmental engineering • Previous Articles
LYU Qingyan1(), GAO Hanwen1, XIE Kunyu1, FAN Dongqing1, HUANG Long1(), CHEN Zhiqiang2
Received:
2023-11-30
Revised:
2024-01-09
Online:
2024-07-02
Published:
2024-06-15
Contact:
HUANG Long
吕青檐1(), 高汉文1, 谢昆谕1, 范冬青1, 黄龙1(), 陈志强2
通讯作者:
黄龙
作者简介:
吕青檐(1996—),女,硕士研究生,研究方向为混合菌群合成生物可降解塑料。E-mail:2784501665@qq.com。
基金资助:
CLC Number:
LYU Qingyan, GAO Hanwen, XIE Kunyu, FAN Dongqing, HUANG Long, CHEN Zhiqiang. Current situation and challenges of mixed culture polyhydroxyalkanoate (PHA) production using waste organics[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3374-3385.
吕青檐, 高汉文, 谢昆谕, 范冬青, 黄龙, 陈志强. 废弃有机物用于混合菌群合成PHA的利用现状与挑战[J]. 化工进展, 2024, 43(6): 3374-3385.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2103
底物摄取过程 | 化学计量式(以Cmol计) |
---|---|
乙酸 | CH2O+ATP |
丙酸 | CH2O2/3+0.67ATP |
丁酸 | CH2O0.5+0.5ATP |
戊酸 | CH2O2/5+0.4ATP |
底物摄取过程 | 化学计量式(以Cmol计) |
---|---|
乙酸 | CH2O+ATP |
丙酸 | CH2O2/3+0.67ATP |
丁酸 | CH2O0.5+0.5ATP |
戊酸 | CH2O2/5+0.4ATP |
底物类型 | 有效底物组分 | 产PHA优势菌 | 合成PHA类型 | 底物转化 效率 | 最大PHA 合成能力 | PHA产量 | PHA转化率 | 参考文献 |
---|---|---|---|---|---|---|---|---|
废弃奶牛粪便 | 蛋白质、糖、 脂肪、粗纤维 (需发酵) | 混合菌群 (甲基杆菌科属、 动胶菌属) | PHB、PHV | — | 90.70% | — | 1.12Cmmol /Cmmol | [ |
废弃奶酪乳清 | 乳糖、脂肪、 蛋白质(需发酵) | 混合菌群 (未明确组成) | HB(70.00%)、HV(30.00%) | — | 60.00% | 7.80g/L | — | [ |
废弃奶酪乳清 | 乳糖、脂肪、 蛋白质(需发酵) | 混合菌群 (未明确组成) | HB(89.00%)、HV(11.00%) | 0.72gCOD /gCOD | 43.00% | — | 0.85Cmol/Cmol | [ |
废弃奶酪乳清 | 乳糖、脂肪、 蛋白质(需发酵) | 混合菌群 (未明确组成) | HB(60.00%)、HV(40.00%) | 0.60Cmmol /Cmmol | 81.40%±0.57% | 0.42mgCOD /mgCOD | 0.80Cmmol /Cmmol | [ |
废弃奶酪乳清 | 乳糖、脂肪、 蛋白质(需发酵) | 混合菌群 (钩虫贪铜菌) | 3HB(94.00%)、HV(6.00%) | 0.85g/g | 71.00% | — | 0.60g/g | [ |
废弃糖蜜 | 糖(需发酵) | 混合菌群(陶厄氏菌、固氮弓菌属) | PHBV | 0.70Cmol /Cmol | 57.50% | 0.76Cmol /Cmol | 0.65~0.71Cmol /Cmol | [ |
含糖废水 | 葡萄糖(需发酵) | 混合菌群(肠杆菌、假单胞菌) | PHBV | — | 56.00% | 5.20g/L | — | [ |
工业糖果发酵废水 | 糖(需发酵) | 混合菌群 (变形球菌) | 3HB | — | 59.10%±0.60% | 0.93Cmol /Cmol | — | [ |
工业糖果发酵废水 | 糖(需发酵) | 混合菌群(酸性 假单胞菌、球菌) | PHB、PHV | 0.64gCOD /gCOD | 70.00% | 0.37g/g | — | [ |
热水解杨树 | 木质素(需发酵) | 混合菌群 (球菌、芽孢杆菌) | PHBV | 530.30mg/g | — | 637.56mg/L | 375.04mg/g | [ |
碱性发酵pH10 条件下发酵污泥 | 蛋白质、脂肪、 多糖(需发酵) | 混合菌群 (未明确组成) | PHB(98.30% )、PHV(1.70%) | 61.80% | 60.30% | — | — | [ |
剩余活性污泥 | 蛋白质、脂肪、 多糖(需发酵) | 混合菌群 (未明确组成) | PHB、PHV | — | 51.00% | — | 0.52Cmol/Cmol | [ |
剩余活性污泥 | 蛋白质、脂肪、 多糖(需发酵) | 混合菌群(副球 菌属、潜水杆菌属、 微小菌属) | PHB、PHV | — | 42.84% | — | — | [ |
剩余活性污泥 | 蛋白质、脂肪、 多糖(需发酵) | 混合菌群(代尔夫特菌属、赖氨酸芽胞杆菌、短波单孢杆菌) | 3HB、3HV、 3H2MV | 35.17% | 42.34% | 1.30g/L | — | [ |
纸浆工业副产品(硬木亚硫酸盐废液物) | 木糖、乙酸 (直接利用) | 混合菌群(ɑ-变形 菌门、β-变形菌门、γ-变形菌门) | P(3HB) | — | 67.60% | 0.77g/g | — | [ |
工业废鱼油 | 油酸、亚油酸 (直接利用) | 混合菌群 (未明确组成) | PHB | — | 82.30% | 0.80Cmmol /Cmmol | — | [ |
粗甘油 | 甘油、游离脂肪酸、脂肪酸甲酯 (直接利用) | 混合菌群 (未明确组成) | PHB | — | 59.00% | 0.44g/g | — | [ |
粗甘油 | 甘油、游离脂肪酸、脂肪酸甲酯 (直接利用) | 混合菌群 | HB、HV | — | 27.02% | — | 1.75gCOD/gCOD | [ |
粗甘油 | 甘油、游离脂肪酸、脂肪酸甲酯 (直接利用) | 混合菌群(黄杆菌属、红球菌属、副球菌属) | HB、HV、HP | — | — | 0.42Cmol /Cmol | 0.24Cmol/Cmol | [ |
粗甘油 | 甘油(直接利用) | 混合菌群(硫杆菌属、副球菌属、索氏菌属) | PHB | — | 27.00% | — | 1.75mg/mg | [ |
粗甘油 | 甘油(直接利用) | 混合菌群 (未明确组成) | PHB | — | 21.80% | 373.70mg/L | 0.22g/g | [ |
甲烷 | 甲烷(直接利用) | 混合菌群 (甲基胞囊菌属) | PHB | — | 34.60%±2.50% | — | — | [ |
甲烷 | 甲烷(直接利用) | 混合菌群 (甲基胞囊菌属) | P3HB | — | 32.00% | — | — | [ |
甲烷 | 甲烷(直接利用) | 混合菌群(甲基囊菌) | PHB | — | 35.10%±0.40% | — | 0.22g/g | [ |
甲烷 | 甲烷(直接利用) | 混合菌群(甲基囊 孢菌、甲基杆菌) | PHB | — | 12.60% | — | — | [ |
甲烷 | 甲烷(直接利用) | 混合菌群(甲基杆菌、甲基单胞菌) | PHB | — | 44.00% | — | — | [ |
甲烷 | 甲烷(直接利用) | 混合菌群(甲基孢囊菌属、甲基杆菌属) | PHB | — | 13.60%±5.60% | — | — | [ |
底物类型 | 有效底物组分 | 产PHA优势菌 | 合成PHA类型 | 底物转化 效率 | 最大PHA 合成能力 | PHA产量 | PHA转化率 | 参考文献 |
---|---|---|---|---|---|---|---|---|
废弃奶牛粪便 | 蛋白质、糖、 脂肪、粗纤维 (需发酵) | 混合菌群 (甲基杆菌科属、 动胶菌属) | PHB、PHV | — | 90.70% | — | 1.12Cmmol /Cmmol | [ |
废弃奶酪乳清 | 乳糖、脂肪、 蛋白质(需发酵) | 混合菌群 (未明确组成) | HB(70.00%)、HV(30.00%) | — | 60.00% | 7.80g/L | — | [ |
废弃奶酪乳清 | 乳糖、脂肪、 蛋白质(需发酵) | 混合菌群 (未明确组成) | HB(89.00%)、HV(11.00%) | 0.72gCOD /gCOD | 43.00% | — | 0.85Cmol/Cmol | [ |
废弃奶酪乳清 | 乳糖、脂肪、 蛋白质(需发酵) | 混合菌群 (未明确组成) | HB(60.00%)、HV(40.00%) | 0.60Cmmol /Cmmol | 81.40%±0.57% | 0.42mgCOD /mgCOD | 0.80Cmmol /Cmmol | [ |
废弃奶酪乳清 | 乳糖、脂肪、 蛋白质(需发酵) | 混合菌群 (钩虫贪铜菌) | 3HB(94.00%)、HV(6.00%) | 0.85g/g | 71.00% | — | 0.60g/g | [ |
废弃糖蜜 | 糖(需发酵) | 混合菌群(陶厄氏菌、固氮弓菌属) | PHBV | 0.70Cmol /Cmol | 57.50% | 0.76Cmol /Cmol | 0.65~0.71Cmol /Cmol | [ |
含糖废水 | 葡萄糖(需发酵) | 混合菌群(肠杆菌、假单胞菌) | PHBV | — | 56.00% | 5.20g/L | — | [ |
工业糖果发酵废水 | 糖(需发酵) | 混合菌群 (变形球菌) | 3HB | — | 59.10%±0.60% | 0.93Cmol /Cmol | — | [ |
工业糖果发酵废水 | 糖(需发酵) | 混合菌群(酸性 假单胞菌、球菌) | PHB、PHV | 0.64gCOD /gCOD | 70.00% | 0.37g/g | — | [ |
热水解杨树 | 木质素(需发酵) | 混合菌群 (球菌、芽孢杆菌) | PHBV | 530.30mg/g | — | 637.56mg/L | 375.04mg/g | [ |
碱性发酵pH10 条件下发酵污泥 | 蛋白质、脂肪、 多糖(需发酵) | 混合菌群 (未明确组成) | PHB(98.30% )、PHV(1.70%) | 61.80% | 60.30% | — | — | [ |
剩余活性污泥 | 蛋白质、脂肪、 多糖(需发酵) | 混合菌群 (未明确组成) | PHB、PHV | — | 51.00% | — | 0.52Cmol/Cmol | [ |
剩余活性污泥 | 蛋白质、脂肪、 多糖(需发酵) | 混合菌群(副球 菌属、潜水杆菌属、 微小菌属) | PHB、PHV | — | 42.84% | — | — | [ |
剩余活性污泥 | 蛋白质、脂肪、 多糖(需发酵) | 混合菌群(代尔夫特菌属、赖氨酸芽胞杆菌、短波单孢杆菌) | 3HB、3HV、 3H2MV | 35.17% | 42.34% | 1.30g/L | — | [ |
纸浆工业副产品(硬木亚硫酸盐废液物) | 木糖、乙酸 (直接利用) | 混合菌群(ɑ-变形 菌门、β-变形菌门、γ-变形菌门) | P(3HB) | — | 67.60% | 0.77g/g | — | [ |
工业废鱼油 | 油酸、亚油酸 (直接利用) | 混合菌群 (未明确组成) | PHB | — | 82.30% | 0.80Cmmol /Cmmol | — | [ |
粗甘油 | 甘油、游离脂肪酸、脂肪酸甲酯 (直接利用) | 混合菌群 (未明确组成) | PHB | — | 59.00% | 0.44g/g | — | [ |
粗甘油 | 甘油、游离脂肪酸、脂肪酸甲酯 (直接利用) | 混合菌群 | HB、HV | — | 27.02% | — | 1.75gCOD/gCOD | [ |
粗甘油 | 甘油、游离脂肪酸、脂肪酸甲酯 (直接利用) | 混合菌群(黄杆菌属、红球菌属、副球菌属) | HB、HV、HP | — | — | 0.42Cmol /Cmol | 0.24Cmol/Cmol | [ |
粗甘油 | 甘油(直接利用) | 混合菌群(硫杆菌属、副球菌属、索氏菌属) | PHB | — | 27.00% | — | 1.75mg/mg | [ |
粗甘油 | 甘油(直接利用) | 混合菌群 (未明确组成) | PHB | — | 21.80% | 373.70mg/L | 0.22g/g | [ |
甲烷 | 甲烷(直接利用) | 混合菌群 (甲基胞囊菌属) | PHB | — | 34.60%±2.50% | — | — | [ |
甲烷 | 甲烷(直接利用) | 混合菌群 (甲基胞囊菌属) | P3HB | — | 32.00% | — | — | [ |
甲烷 | 甲烷(直接利用) | 混合菌群(甲基囊菌) | PHB | — | 35.10%±0.40% | — | 0.22g/g | [ |
甲烷 | 甲烷(直接利用) | 混合菌群(甲基囊 孢菌、甲基杆菌) | PHB | — | 12.60% | — | — | [ |
甲烷 | 甲烷(直接利用) | 混合菌群(甲基杆菌、甲基单胞菌) | PHB | — | 44.00% | — | — | [ |
甲烷 | 甲烷(直接利用) | 混合菌群(甲基孢囊菌属、甲基杆菌属) | PHB | — | 13.60%±5.60% | — | — | [ |
1 | SIROHI Ranjna, PRAKASH PANDEY Jai, KUMAR GAUR Vivek, et al. Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB)[J]. Bioresource Technology, 2020, 311: 123536. |
2 | SARAVANAN Koushika, UMESH Mridul, KATHIRVEL Preethi. Microbial polyhydroxyalkanoates (PHAs): A review on biosynthesis, properties, fermentation strategies and its prospective applications for sustainable future[J]. Journal of Polymers and the Environment, 2022, 30(12): 4903-4935. |
3 | GANESH SARATALE Rijuta, CHO Si Kyung, DATTATRAYA SARATALE Ganesh, et al. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams[J]. Bioresource Technology, 2021, 325: 124685. |
4 | SERAFIM Luisa S, LEMOS Paulo C, ALBUQUERQUE Maria G E, et al. Strategies for PHA production by mixed cultures and renewable waste materials[J]. Applied Microbiology and Biotechnology, 2008, 81(4): 615-628. |
5 | HAO Jiuxiao, WANG Xiujin, WANG Hui. Investigation of polyhydroxyalkanoates (PHAs) biosynthesis from mixed culture enriched by valerate-dominant hydrolysate[J]. Frontiers of Environmental Science & Engineering, 2016, 11(1): 5. |
6 | LIAO Qianru, GUO Liang, RAN Yihe, et al. Optimization of polyhydroxyalkanoates (PHA) synthesis with heat pretreated waste sludge[J]. Waste Management, 2018, 82:15-25. |
7 | Andrea FRA-VÁZQUEZ, SANTORIO Sergio, Tania PALMEIRO-SÁNCHEZ, et al. PHA accumulation of a mixed microbial culture co-exists with ammonia partial nitritation[J]. Chemical Engineering Journal, 2019, 360: 1255-1261. |
8 | GUTSCHMANN Björn, HUANG Boyang, SANTOLIN Lara, et al. Native feedstock options for the polyhydroxyalkanoate industry in Europe: A review[J]. Microbiological Research, 2022, 264: 127177. |
9 | 袁恺, 周卫强, 彭超, 等. 微生物发酵法生产聚羟基脂肪酸酯的研究进展[J]. 生物工程学报, 2021, 37(2): 384-394. |
YUAN Kai, ZHOU Weiqiang, PENG Chao, et al. Engineering progress in microbial production of polyhydroxyalkanoates[J]. Chinese Journal of Biotechnology, 2021, 37(2): 384-394. | |
10 | Ángel ESTÉVEZ-ALONSO, PEI Ruizhe, VAN LOOSDRECHT Mark C M, et al. Scaling-up microbial community-based polyhydroxyalkanoate production: Status and challenges[J]. Bioresource Technology, 2021, 327: 124790. |
11 | DE PAULA Fabrício Coutinho, KAKAZU Sérgio, DE PAULA Carolina Bilia Chimello, et al. Polyhydroxyalkanoate production from crude glycerol by newly isolated Pandoraea sp[J]. Journal of King Saud University: Science, 2017, 29(2): 166-173. |
12 | PAN Chaozhi, TAN Giin-Yu Amy, GE Liya, et al. Two-stage microbial conversion of crude glycerol to 1,3-propanediol and polyhydroxyalkanoates after pretreatment[J]. Journal of Environmental Management, 2019, 232: 615-624. |
13 | 李芳. 粗甘油合成聚羟基脂肪酸酯PHA的工艺和生物学研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
LI Fang. Research on PHA production using crude glycerol and biological process[D]. Harbin: Harbin Institute of Technology, 2019. | |
14 | PARDELHA Filipa, ALBUQUERQUE Maria G E, REIS Maria A M, et al. Flux balance analysis of mixed microbial cultures: Application to the production of polyhydroxyalkanoates from complex mixtures of volatile fatty acids[J]. Journal of Biotechnology, 2012, 162(2/3): 336-345. |
15 | YAN Xu, LIU Xu, YU Linping, et al. Biosynthesis of diverse α, ω-diol-derived polyhydroxyalkanoates by engineered Halomonas bluephagenesis[J]. Metabolic Engineering, 2022, 72: 275-288. |
16 | ZHU Chengjun, CHIU Steven, NAKAS James P, et al. Bioplastics from waste glycerol derived from biodiesel industry[J]. Journal of Applied Polymer Science, 2013, 130(1): 1-13. |
17 | DE MELO Rafaela Nery, DE SOUZA HASSEMER Guilherme, STEFFENS Juliana, et al. Recent updates to microbial production and recovery of polyhydroxyalkanoates[J]. 3 Biotech, 2023, 13(6): 204. |
18 | BEHERA Shivananda, PRIYADARSHANEE Monika, VANDANA, et al. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications[J]. Chemosphere, 2022, 294: 133723. |
19 | CIESIELSKI Slawomir, POKOJ Tomasz, KLIMIUK Ewa. Molecular insight into activated sludge producing polyhydroxyalkanoates under aerobic-anaerobic conditions[J]. Journal of Industrial Microbiology & Biotechnology, 2008, 35(8): 805-814. |
20 | DATTATRAYA SARATALE Ganesh, BHOSALE Rahul, SHOBANA Sutha, et al. A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production[J]. Bioresource Technology, 2020, 314: 123800. |
21 | 黄龙. 产PHA优势菌群富集机制与三段式混菌工艺优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
HUANG Long. Enrichment mechanism of PHA producing dominant bacteria and optimization of three-stage mixed culture process[D]. Harbin: Harbin Institute of Technology, 2018. | |
22 | CARDOSO Letícia Oliveira Bispo, KAROLSKI Bruno, GRACIOSO Louise Hase, et al. Enrichment of Methylosinus-dominant consortia from mangroves for polyhydroxybutyrate (PHB) production[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108490. |
23 | ZHANG Xu, LIN Yina, WU Qiong, et al. Synthetic biology and genome-editing tools for improving PHA metabolic engineering[J]. Trends in Biotechnology, 2020, 38(7): 689-700. |
24 | AMER Abdelrahman, KIM Younggy. Modeling the growth of diverse microorganisms during feast-famine enrichment[J]. Water Environment Research, 2022, 94(11): e10803. |
25 | 陈志强, 温沁雪. 混合菌群合成聚羟基烷酸酯技术[M]. 哈尔滨: 哈尔滨工业大学出版社,2022. |
CHEN Zhiqiang, WEN Qinxue. Mixed microbial culture polyhydroxyalkanoates production technology[M]. Harbin: Harbin Institute of Technology Press, 2022. | |
26 | BEUN J J, DIRCKS K, VAN LOOSDRECHT M C M, et al. Poly-beta-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures[J]. Water Research, 2002, 36(5):1167-1180. |
27 | KLEEREBEZEM Robbert, VAN LOOSDRECHT Mark C M. Mixed culture biotechnology for bioenergy production[J]. Current Opinion in Biotechnology, 2007, 18(3): 207-212. |
28 | WANG Xiaofei, OEHMEN Adrian, FREITAS Elisabete B, et al. The link of feast-phase dissolved oxygen (DO) with substrate competition and microbial selection in PHA production[J]. Water Research, 2017, 112: 269-278. |
29 | MARANG Leonie, JIANG Yang, VAN LOOSDRECHT Mark C M, et al. Butyrate as preferred substrate for polyhydroxybutyrate production[J]. Bioresource Technology, 2013, 142: 232-239. |
30 | KOURMENTZA Constantina, Jersson PLÁCIDO, VENETSANEAS Nikolaos, et al. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production[J]. Bioengineering, 2017, 4(4): 55. |
31 | DE DONNO NOVELLI Laura, SAYAVEDRA SARAH Moreno, RENE Eldon R. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives[J]. Bioresource Technology, 2021, 331: 124985. |
32 | 郭子瑞, 陈志强, 池日光, 等. 基于GA-BP神经网络的餐厨垃圾合成PHA工艺产量预测[J]. 环境工程, 2022, 40(4): 166-173. |
GUO Zirui, CHEN Zhiqiang, CHI Riguang, et al. Prediction of polyhydroxyalkanoate (PHA) production utilizing food waste based on ga-bp neural network method[J]. Environmental Engineering, 2022, 40(4): 166-173. | |
33 | KOLLER Martin, Stanislav OBRUČA. Biotechnological production of polyhydroxyalkanoates from glycerol: A review[J]. Biocatalysis and Agricultural Biotechnology, 2022, 42: 102333. |
34 | COATS Erik R, WATSON Benjamin S, BRINKMAN Cynthia K. Polyhydroxyalkanoate synthesis by mixed microbial consortia cultured on fermented dairy manure: Effect of aeration on process rates/yields and the associated microbial ecology[J]. Water Research, 2016, 106: 26-40. |
35 | Mónica CARVALHEIRA, HILLIOU Loic, OLIVEIRA Catarina S S, et al. Polyhydroxyalkanoates from industrial cheese whey: Production and characterization of polymers with differing hydroxyvalerate content[J]. Current Research in Biotechnology, 2022, 4: 211-220. |
36 | OLIVEIRA Catarina, SILVA Marisa, SILVA Carlos E, et al. Assessment of protein-rich cheese whey waste stream as a nutrients source for low-cost mixed microbial PHA production[J]. Applied Sciences, 2018, 8(10): 1817. |
37 | COLOMBO Bianca, PEPÈ SCIARRIA Tommy, REIS Maria, et al. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture[J]. Bioresource Technology, 2016, 218: 692-699. |
38 | DOMINGOS Joana M B, PUCCIO Salvatore, MARTINEZ Gonzalo A, et al. Cheese whey integrated valorisation: Production, concentration and exploitation of carboxylic acids for the production of polyhydroxyalkanoates by a fed-batch culture[J]. Chemical Engineering Journal, 2018, 336: 47-53. |
39 | OEHMEN Adrian, PINTO Fátima V, SILVA Vera, et al. The impact of pH control on the volumetric productivity of mixed culture PHA production from fermented molasses[J]. Engineering in Life Sciences, 2014, 14(2): 143-152. |
40 | AMULYA K, Venkateswar REDDY M, ROHIT M V, et al. Wastewater as renewable feedstock for bioplastics production: Understanding the role of reactor microenvironment and system pH[J]. Journal of Cleaner Production, 2016, 112: 4618-4627. |
41 | RANGEL Catarina, CARVALHO Gilda, OEHMEN Adrian, et al. Polyhydroxyalkanoates production from ethanol- and lactate-rich fermentate of confectionary industry effluents[J]. International Journal of Biological Macromolecules, 2022, 229: 713-723. |
42 | TAMIS Jelmer, Kätlin LUŽKOV, JIANG Yang, et al. Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater[J]. Journal of Biotechnology, 2014, 192: 161-169. |
43 | YIN Fen, LI Dongna, MA Xiaojun, et al. Pretreatment of lignocellulosic feedstock to produce fermentable sugars for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production using activated sludge[J]. Bioresource Technology, 2019, 290: 121773. |
44 | LIU Yuanjun, GUO Liang, LIAO Qianru, et al. Polyhydroxyalkanoate (PHA) production with acid or alkali pretreated sludge acidogenic liquid as carbon source: Substrate metabolism and monomer composition[J]. Process Safety and Environmental Protection, 2020, 142: 156-164. |
45 | TU Weiming, ZHANG Dandan, WANG Hui. Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by mixed microbial cultures: The link between phosphorus and PHA yields[J]. Waste Management, 2019, 96: 149-157. |
46 | 刘展华, 宋秀兰, 刘耀辉. 碳源类型对活性污泥合成PHA和微生物群落的影响[J]. 中国给水排水, 2023, 39(11): 1-7. |
LIU Zhanhua, SONG Xiulan, LIU Yaohui. Effect of different kinds of carbon source on PHA synthesis and microbial community of activated sludge[J]. China Water & Wastewater, 2023, 39(11): 1-7. | |
47 | 郝就笑. 污泥发酵产酸与戊酸型发酵液合成聚羟基烷酸酯的研究[D]. 北京: 清华大学, 2018. |
HAO Jiuxiao. Research on VFA production from sludge fermentation and application of valerate-dominant hydrolysate for polyhydroxyalkanoates synthesis[D]. Beijing: Tsinghua University, 2018. | |
48 | Diogo QUEIRÓS, ROSSETTI Simona, SERAFIM Luísa S. PHA production by mixed cultures: A way to valorize wastes from pulp industry[J]. Bioresource Technology, 2014, 157: 197-205. |
49 | ARGIZ Lucía, Rebeca GONZÁLEZ-CABALEIRO, DEL RÍO Ángeles VAL, et al. A novel strategy for triacylglycerides and polyhydroxyalkanoates production using waste lipids[J]. Science of the Total Environment, 2021, 763: 142944. |
50 | FRECHES André, LEMOS Paulo C. Microbial selection strategies for polyhydroxyalkanoates production from crude glycerol: Effect of OLR and cycle length[J]. New Biotechnology, 2017, 39: 22-28. |
51 | WEN Qinxue, LIU Baozhen, LI Fang, et al. Substrate strategy optimization for polyhydroxyalkanoates producing culture enrichment from crude glycerol[J]. Bioresource Technology, 2020, 311: 123516. |
52 | Anna BURNIOL-FIGOLS, VARRONE Cristiano, DAUGAARD Anders Egede, et al. Polyhydroxyalkanoates (PHA) production from fermented crude glycerol: Study on the conversion of 1, 3-propanediol to PHA in mixed microbial consortia[J]. Water Research, 2018, 128: 255-266. |
53 | 刘东, 张小婷, 张代钧, 等. 甘油基混合培养物合成PHA及其与OUR的关系[J]. 环境科学, 2016, 37(9): 3518-3523. |
LIU Dong, ZHANG Xiaoting, ZHANG Daijun, et al. Polyhydroxyalkanoate(PHA) synthesis by glycerol-based mixed culture and its relation with oxygen uptake rate(OUR)[J]. Environmental Science, 2016, 37(9): 3518-3523. | |
54 | Teresa GARCÍA-PÉREZ, LÓPEZ Juan C, PASSOS Fabiana, et al. Simultaneous methane abatement and PHB production by Methylocystis hirsuta in a novel gas-recycling bubble column bioreactor[J]. Chemical Engineering Journal, 2018, 334: 691-697. |
55 | MYUNG Jaewook, KIM Minkyu, PAN Ming, et al. Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs[J]. Bioresource Technology, 2016, 207: 302-307 |
56 | Rebeca PÉREZ, CANTERA Sara, BORDEL Sergio, et al. The effect of temperature during culture enrichment on methanotrophic polyhydroxyalkanoate production[J]. International Biodeterioration & Biodegradation, 2019, 140: 144-151. |
57 | LÓPEZ Juan C, QUIJANO Guillermo, Rebeca PÉREZ, et al. Assessing the influence of CH4 concentration during culture enrichment on the biodegradation kinetics and population structure[J]. Journal of Environmental Management, 2014, 146: 116-123. |
58 | PIEJA Allison J, ROSTKOWSKI Katherine H, CRIDDLE Craig S. Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria[J]. Microbial Ecology, 2011, 62(3): 564-573. |
59 | Rebeca PÉREZ, CASAL Jesús, Raúl MUÑOZ, et al. Polyhydroxyalkanoates production from methane emissions in Sphagnum mosses: Assessing the effect of temperature and phosphorus limitation[J]. Science of the Total Environment, 2019, 688: 684-690. |
60 | DUQUE Anouk F, OLIVEIRA Catarina S S, CARMO Inês T D, et al. Response of a three-stage process for PHA production by mixed microbial cultures to feedstock shift: Impact on polymer composition[J]. New Biotechnology, 2014, 31(4): 276-288. |
61 | YAO Yilin, LI Jingyi, XUE Hanhan, et al. Influences of naphthalene concentration on starch anaerobic digestion: Focusing on digestion performance, extracellular polymeric substances and function microbial community[J]. Sustainability, 2022, 14(24):16377. |
62 | Mikael SJÖLIN, THUVANDER Johan, WALLBERG Ola, et al. Purification of sucrose in sugar beet molasses by utilizing ceramic nanofiltration and ultrafiltration membranes[J]. Membranes, 2019, 10(1): 5. |
63 | TRIPATHI Abhishek Dutt, MISHRA Pradeep Kumar, DARANI Kianoush Khosravi, et al. Hydrothermal treatment of lignocellulose waste for the production of polyhydroxyalkanoates copolymer with potential application in food packaging[J]. Trends in Food Science & Technology, 2022, 123: 233-250. |
64 | ZHAO Xiaoying, VENOOR Varun, KOELLING Kurt, et al. Bio‐based blends from poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) and natural rubber for packaging applications[J]. Journal of Applied Polymer Science, 2019, 136(15): e47334. |
65 | GOVIL Tanvi, WANG Jia, SAMANTA Dipayan, et al. Lignocellulosic feedstock: A review of a sustainable platform for cleaner production of nature's plastics[J]. Journal of Cleaner Production, 2020, 270: 122521. |
66 | GOSWAMI Lalit, KAYALVIZHI Ramalingam, DIKSHIT Pritam Kumar, et al. A critical review on prospects of bio-refinery products from second and third generation biomasses[J]. Chemical Engineering Journal, 2022, 448: 137677. |
67 | UNREAN Pornkamol, NAPATHORN Suchada Chanprateep, Kang Lan TEE, et al. Lignin to polyhydroxyalkanoate bioprocessing by novel strain of Pseudomonas monteilii [J]. Biomass Conversion and Biorefinery, 2023, 13(6): 4651-4657. |
68 | IVANOV V, STABNIKOV V, AHMED Z, et al. Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste[J]. International Journal of Environmental Science and Technology, 2015, 12(2): 725-738. |
69 | HANSON Andrea J, GUHO Nicholas M, PASZCZYNSKI Andrzej J, et al. Community proteomics provides functional insight into polyhydroxyalkanoate production by a mixed microbial culture cultivated on fermented dairy manure[J]. Applied Microbiology and Biotechnology, 2016, 100(18): 7957-7976. |
70 | JIA Qianqian, WANG Hui, WANG Xiujin. Dynamic synthesis of polyhydroxyalkanoates by bacterial consortium from simulated excess sludge fermentation liquid[J]. Bioresource Technology, 2013, 140: 328-336. |
71 | LEE Wee Shen, CHUA Adeline Seak May, YEOH Hak Koon, et al. A review of the production and applications of waste-derived volatile fatty acids[J]. Chemical Engineering Journal, 2014, 235: 83-99. |
72 | CHIEN BONG Cassendra Phun, ALAM Muhd Nazrul Hisham Zainal, SAMSUDIN Sani Amril, et al. A review on the potential of polyhydroxyalkanoates production from oil-based substrates[J]. Journal of Environmental Management, 2021, 298: 113461. |
73 | AKIYAMA Minoru, TSUGE Takeharu, Yoshiharu DOI. Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation[J]. Polymer Degradation and Stability, 2003, 80(1): 183-194. |
74 | DA CRUZ PRADELLA José Geraldo, IENCZAK Jaciane Lutz, DELGADO Cecília Romero, et al. Carbon source pulsed feeding to attain high yield and high productivity in poly(3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator[J]. Biotechnology Letters, 2012, 34(6): 1003-1007. |
75 | WEN Qinxue, LIU Shaojiao, LIU Ying, et al. Effect of inoculum and organic loading on mixed culture polyhydroxyalkanoate production using crude glycerol as the substrate[J]. International Journal of Biological Macromolecules, 2021, 182: 1785-1792. |
76 | KARTHIKEYAN O P, CHIDAMBARAMPADMAVATHY K, Samuel CIRÉS, et al. Review of Sustainable Methane Mitigation and Biopolymer Production[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(15): 1579-1610. |
77 | HANSON R S, HANSON T E. Methanotrophic bacteria[J]. Microbiological Reviews, 1996, 60(2):439-471. |
78 | Ángel ESTÉVEZ-ALONSO, María ARIAS-BUENDÍA, PEI Ruizhe, et al. Calcium enhances polyhydroxyalkanoate production and promotes selective growth of the polyhydroxyalkanoate-storing biomass in municipal activated sludge[J]. Water Research, 2022, 226: 119259. |
79 | DU Chenyu, SABIROVA Julia, SOETAERT Wim, et al. Polyhydroxyalkanoates production from low-cost sustainable raw materials[J]. Current Chemical Biology, 2012, 6(1): 14-25. |
80 | 曲红, 郑少杰, 聂泽兵, 等. 碳磷比对厌氧/好氧/缺氧-序批式反应器工艺脱氮除磷性能的影响[J]. 环境污染与防治, 2022, 44(6):724-728. |
QU Hong, ZHENG Shaojie, NIE Zebing, et al. Effects of C/P on nitrogen and phosphorus removal performance by AOA-SBR process[J]. Environmental Pollution & Control, 2022, 44(6): 724-728. | |
81 | KAUR Rajwinder, TYAGI Rajeshwar Dayal, ZHANG Xiaolei. Review on pulp and paper activated sludge pretreatment, inhibitory effects and detoxification strategies for biovalorization[J]. Environmental Research, 2020, 182: 109094. |
82 | Subhasree RAY, KALIA Vipin Chandra. Biomedical applications of polyhydroxyalkanoates[J]. Indian Journal of Microbiology, 2017, 57(3): 261-269. |
83 | LI Junbao, LU Minsheng, GUO Xiaomiao, et al. Insights into the improvement of alkaline hydrogen peroxide (AHP) pretreatment on the enzymatic hydrolysis of corn stover: Chemical and microstructural analyses[J]. Bioresource Technology, 2018, 265:1-7. |
84 | 陈歌, 许春丽, 徐博, 等. 聚羟基脂肪酸酯作为农药载体的研究进展[J]. 农药学学报, 2019, 21(S1): 871-882. |
CHEN Ge, XU Chunli, XU Bo, et al. Research progress of polyhydroxyalkylates as pesticide carriers[J]. Chinese Journal of Pesticide Science, 2019, 21(S1): 871-882. | |
85 | 陈国强. 微生物聚羟基脂肪酸酯的应用新进展[J]. 中国材料进展, 2012, 31(2): 7-15. |
CHEN Guoqiang. Recent progress in application of microbial polyhydroxyalkanoates[J]. Materials China, 2012, 31(2): 7-15. | |
86 | YADAV Bhoomika, TALAN Anita, TYAGI R D, et al. Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: A review[J]. Bioresource Technology, 2021, 337: 125419. |
87 | VERMEER Chris M, ROSSI Emanuele, TAMIS Jelmer, et al. From waste to self-healing concrete: A proof-of-concept of a new application for polyhydroxyalkanoate[J]. Resources, Conservation and Recycling, 2021, 164: 105206. |
88 | JONKERS Henk M, THIJSSEN Arjan, MUYZER Gerard, et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering, 2010, 36(2): 230-235. |
89 | THOMAS Sabu, SHUMILOVA A A, KISELEV E G, et al. Thermal, mechanical and biodegradation studies of biofiller based poly-3-hydroxybutyrate biocomposites[J]. International Journal of Biological Macromolecules, 2020, 155: 1373-1384. |
90 | REDDING M R, WITT T, LOBSEY C R, et al. Screening two biodegradable polymers in enhanced efficiency fertiliser formulations reveals the need to prioritise performance goals[J]. Journal of Environmental Management, 2022, 304: 114264. |
91 | LU Hao, TIAN Hongyu, ZHANG Min, et al. Water polishing improved controlled-release characteristics and fertilizer efficiency of castor oil-based polyurethane coated diammonium phosphate[J]. Scientific Reports, 2020, 10: 5763. |
[1] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[2] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[3] | WANG Chenxiang, QIN Yongli, JIANG Yongrong, GE Shijia, ZHENG Guoquan, SUN Zhenju. Enrichment of PHAs-producing bacteria by granular sludge in ABR acidogenic sulfate-reducing phase [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6658-6665. |
[4] | FENG Yangyang, ZHAO Zhongcong, YANG Wenbo, HU Linqi, ZHANG Wenda, SHE Yuehui. Microbial natural synthetic metal nanoparticles and the application in heavy oil catalytic viscosity reduction [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2215-2226. |
[5] | MA Yueyuan, CHEN Jinchun, CHEN Guoqiang. Halophilic microorganisms as microbial chassis: applications and prospects [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1178-1186. |
[6] | Wenya ZHONG, Wenjia YU, Yiming GU, Jing GUO, Bo FAN, Zhiqiang CAI. Progress of ansamitocins by biosynthesis [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 990-997. |
[7] | CHENG Shen, ZHANG Songhong, YUN Junxian. Recent advances in microbial synthesis of α-ketoisocaproate [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4821-4829. |
[8] | NI Zheng, GUAN Jintao, SHEN Shaochuan, YUN Junxian. An overview of recent advances in microbial synthesis and separation of phenyllactic acid [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3627-3633. |
[9] | LIU Yingjie1,JIA Xiaoqiang1,2,3,WEN Jianping1,2,3,BAN Rui1. Recent Advances in polyhydroxyalkanoates production by mixed cultures [J]. Chemical Industry and Engineering Progree, 2014, 33(10): 2729-2734. |
[10] | HUANG Jinbiao1,SHANG Long’an2. Advance in biosynthesis of polyhydroxyalkanoate [J]. Chemical Industry and Engineering Progree, 2011, 30(9): 2041-. |
[11] | LI Jinjuan,ZHAO Lin,TAN Xin,HUANG Yu,LIU Tingyi. Synthesis and characterization of PHA produced by acclimated activated sludge from acidified starchy wastewater [J]. Chemical Industry and Engineering Progree, 2011, 30(7): 1618-. |
[12] | HUANG Jinbiao1,2,SHANG Long’an1. Biosynthesis and molecular structure characterization of polyhydroxyalkanoates containing benzoyl group [J]. Chemical Industry and Engineering Progree, 2011, 30(10): 2282-. |
[13] | TIAN Pinyuan,MI Yu,SHANG Long’an,FAN Daidi. New progress in research on polyhydroxyalkanoates [J]. Chemical Industry and Engineering Progree, 2009, 28(3): 468-. |
[14] | WANG Haisheng,ZHANG Xiaoxia,LU Yuan,RUAN Zhiyong,XING Xinhui,JIANG Ruibo. Recent research progress of bacterial violacein [J]. Chemical Industry and Engineering Progree, 2008, 27(3): 315-. |
[15] | NIU Haiyan,DU Guocheng,CHEN Jian. Characteristics of a mixed culture for degradation of poly(vinyl alcohol) and optimization of culture conditions [J]. Chemical Industry and Engineering Progree, 2008, 27(2): 274-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |