Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2294-2310.DOI: 10.16085/j.issn.1000-6613.2023-2256
• Clean and efficient utilization of fossil energy • Previous Articles
ZHOU Anning1,2(), JIANG Yuhan1, LIU Moxuan1,2, ZHAO Wei1,2, LI Zhen1,2
Received:
2023-12-25
Revised:
2024-02-28
Online:
2024-06-15
Published:
2024-05-15
Contact:
ZHOU Anning
周安宁1,2(), 江雨寒1, 刘墨宣1,2, 赵伟1,2, 李振1,2
通讯作者:
周安宁
作者简介:
周安宁(1962—),教授,博士生导师,研究方向为能源化工、功能纳米材料、二氧化碳捕集与转化、电解煤浆制氢等。 E-mail:psu564@139.com。
基金资助:
CLC Number:
ZHOU Anning, JIANG Yuhan, LIU Moxuan, ZHAO Wei, LI Zhen. Research progress in hydrogen production from electrolytic coal slurry: Effects of coal rank and minerals, and the evolution of coal structure[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2294-2310.
周安宁, 江雨寒, 刘墨宣, 赵伟, 李振. 电解煤浆制氢过程中煤阶及矿物的影响与煤结构演化研究进展[J]. 化工进展, 2024, 43(5): 2294-2310.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2256
1 | BUTTLER Alexander, SPLIETHOFF Hartmut. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
2 | SILVA VERAS Tatiane DA, Thiago Simonato Mozer, DA COSTA RUBIM MESSEDER DOS SANTOS Danielle, et al. Hydrogen: Trends, production and characterization of the main process worldwide[J]. International Journal of Hydrogen Energy, 2017, 42: 2018-2033. |
3 | URSUA Alfredo, GANDIA Luis M, SANCHIS Pablo. Hydrogen production from water electrolysis: Current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2): 410-426. |
4 | 王雅文, 陈延伟, 赵惠平, 等. 基于CFD的液氢泄漏扩散防护方式特性研究[J]. 兵器装备工程学报, 2021, 42(6): 140-146. |
WANG Yawen, CHEN Yanwei, ZHAO Huiping, et al. Research on characteristics of liquid hydrogen leakage diffusion and protection methods based on CFD[J]. Journal of Ordnance Equipment Engineering, 2021, 42(6): 140-146. | |
5 | MOSTAFAEIPOUR Ali, KHAYYAMI Mohammad, SEDAGHAT Ahmad, et al. Evaluating the wind energy potential for hydrogen production: A case study[J]. International Journal of Hydrogen Energy, 2016, 41(15): 6200-6210. |
6 | MOHSIN M, RASHEED A K, SAIDUR R. Economic viability and production capacity of wind generated renewable hydrogen[J]. International Journal of Hydrogen Energy, 2018, 43(5): 2621-2630. |
7 | SHANER Matthew R, ATWATER Harry A, LEWIS Nathan S, et al. A comparative technoeconomic analysis of renewable hydrogen production using solar energy[J]. Energy & Environmental Science, 2016, 9(7): 2354-2371. |
8 | WANG Mingyong, WANG Zhi, GONG Xuzhong, et al. The intensification technologies to water electrolysis for hydrogen production—A review[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 573-588. |
9 | HUANG Yuming, ZHOU Wei, XIE Liang, et al. Edge and defect sites in porous activated coke enable highly efficient carbon-assisted water electrolysis for energy-saving hydrogen production[J]. Renewable Energy, 2022, 195: 283-292. |
10 | YU Ping, ZHENG Ruheng, MA Hongze, et al. Novel Pt-Ni electrocatalyst for coal electrolysis for hydrogen production[J]. Journal of the Electrochemical Society, 2022, 169(4): 044514. |
11 | Xiang LYU, HU Junyi. Assessment of lignite upgrade and hydrogen evolution via electrolysis[J]. Energy Conversion and Management, 2022, 253: 115181. |
12 | YING Zhi, GENG Zhen, ZHENG Xiaoyuan, et al. Optimization of anode performance in the ethanol electrochemical reforming for clean hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(1): 119-133. |
13 | JU Hyung Kuk, GIDDEY Sarbjit, BADWAL Sukhvinder P S, et al. Methanol-water co-electrolysis for sustainable hydrogen production with PtRu/C-SnO2 electro-catalyst[J]. Ionics, 2018, 24(8): 2367-2378. |
14 | JU HyungKuk, GIDDEY Sarbjit, BADWAL Sukhvinder P S, et al. Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation [J]. Electrochimica Acta, 2016, 212: 744-757. |
15 | YING Zhi, GENG Zhen, ZHENG Xiaoyuan, et al. Enhancing biochar oxidation reaction with the mediator of Fe2+/Fe3+ or NO2 -/NO3 - for efficient hydrogen production through biochar-assisted water electrolysis[J]. Energy Conversion and Management, 2021, 244(7): 114523. |
16 | PAGLIARO Maria Vincenza, BELLINI Marco, BEVILACQUA Manuela, et al. Carbon supported Rh nanoparticles for the production of hydrogen and chemicals by the electroreforming of biomass-derived alcohols[J]. RSC Advances, 2017, 7(23): 13971-13978. |
17 | XING Zhou, JIN Huilong, MA Zichuan, et al. Biochar sacrificial anode assisted water electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(86): 36482-36492. |
18 | MECH K, ŻABIŃSKI P, KOWALIK R, et al. Electrodeposition of Co-Pd alloys from ammonia solutions and their catalytic activity for hydrogen evolution reaction[J]. Journal of Applied Electrochemistry, 2014, 44(1): 97-103. |
19 | GOSHOME Kiyotaka, YAMADA Takahiro, MIYAOKA Hiroki, et al. High compressed hydrogen production via direct electrolysis of liquid ammonia[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14529-14534. |
20 | COUGHLIN Robert W, FAROOQUE M. Hydrogen production from coal, water and electrons[J]. Nature, 1979, 279: 301-303 |
21 | 戴衡, 赵永丰. 固体燃料-水电解制氢的研究[J]. 燃料化学学报, 1984, 12(4): 289-296. |
DAI Heng, ZHAO Yongfeng. Preparation of hydrogen by electrolysis of solid fuel-water system[J]. Journal of Fuel Chemistry and Technology, 1984, 12(4): 289-296. | |
22 | 蔡海涌, 戴衡, 赵永丰. 油页岩电化学氧化的研究[J]. 燃料化学学报,1988, 16(1): 1-9. |
CAI Haiyong, DAI Heng, ZHAO Yongfeng. Study on electrochemical oxidation of oil shales[J]. Journal of Fuel Chemistry and Technology, 1988, 16(1): 1-9. | |
23 | 蔡海涌, 戴衡, 赵永丰. 电化学氧化油页岩反应机理的研究[J]. 燃料化学学报,1989, 17(2): 112-117. |
CAI Haiyong, DAI Heng, ZHAO Yongfeng. Study of electrochemical oxidation mechanism of oil shale[J]. Journal of Fuel Chemistry and Technology, 1989, 17(2): 112-117. | |
24 | JU HyungKuk, GIDDEY Sarbjit, BADWAL Sukhvinder P S. Role of iron species as mediator in a PEM based carbon-water co-electrolysis for cost-effective hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9144-9152. |
25 | JU HyungKuk, BADWAL Sukhvinder, GIDDEY Sarbjit. A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production[J]. Applied Energy, 2018, 231: 502-533. |
26 | GONG Xuzhong, WAGN Minyong, WANG Zhi, et al. Roles of inherent mineral matters for lignite water slurry electrolysis in H2SO4 system[J]. Energy Conversion and Management, 2013, 75: 431-437. |
27 | JIN Xin, BOTTE Gerardine G. Understanding the kinetics of coal electrolysis at intermediate temperatures[J]. Journal of Power Sources, 2010, 195(15): 4935-4942. |
28 | JIN Xin, BOTTE Gerardine G. Feasibility of hydrogen production from coal electrolysis at intermediate temperatures[J]. Journal of Power Sources, 2007, 171(2): 826-834. |
29 | CHEN Cong, BAI Qingcheng, LIU Jianzhong, et al. Characteristics and anode reaction of organic wastewater-assisted coal electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(41): 20894-20903. |
30 | Soonho AHN, TATARCHUK Bruce J, KERBY Mike C, et al. Selective electrochemical oxidation of coal in aqueous alkaline electrolyte[J]. Journal of the Electrochemical Society, 1995, 142(3): 782-787. |
31 | LALVANI Shashi, MILAN Pata, COUGHLIN ROBERT W. Electrochemical oxidation of lignite in basic media[J]. Fuel, 1986, 65(1): 122-128. |
32 | POMFRET A, GIBSON C, BARTLE K D, et al. On a possible role for electrochemical oxidation in coal liquefaction[J]. Fuel Processing Technology, 1985, 10(3): 239-247. |
33 | YU Ping, MA Junchao, ZHANG Rong, et al. Novel Pd-Co electrocatalyst supported on carbon fibers with enhanced electrocatalytic activity for coal electrolysis to produce hydrogen[J]. ACS Applied Energy Materials, 2018, 1(2): 267-272. |
34 | YIN Renhe, ZHAO Yonggang, LU Shiyin, et al. Electrocatalytic oxidation of coal on Ti-supported metal oxides coupled with liquid catalysts for H2 production[J]. Electrochimica Acta, 2009, 55(1): 46-51. |
35 | YU Ping, PENG Ren, JIANG Hao, et al. Carbon fiber supported Pt-Co electrocatalyst for coal electrolysis for hydrogen production[J]. Journal of the Electrochemical Society, 2019, 166(13): 395-400. |
36 | 贾杰. 煤浆氧化电解制氢的研究[D]. 上海: 上海交通大学, 2013. |
JIA Jie. Research of coal slurry electrolysis for hydrogen production[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
37 | LIU Jianzhong, CHEN Cong, WU Hongli, et al. Kinetics and oxidation pathways of Fe3+-catalyzed carbon-assisted water electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(62): 20432-20447. |
38 | YU Ping, JIANG Hao, PENG Ren, et al. Novel Pd-Cr electrocatalyst with low Pd content for coal electrolysis for hydrogen production[J]. Journal of Power Sources, 2021, 483: 229175. |
39 | 向康. Fe3+辅助煤浆氧化制氢工艺研究[D]. 上海: 上海交通大学, 2017. |
XIANG Kang. Hydrogen production from oxidation of coal slurries assisted by ferric ions[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
40 | GONG Xuzhong, WU Ying, WANG Zhi, et al. Changes of total organic carbon and kinetics of ultrasonic-assisted coal water slurry electrolysis in NaOH system[J]. Fuel Processing Technology, 2014, 119: 166-172. |
41 | KUZNETSOV P N, KUZNETSOVA L I, OBUKHOV Y V, et al. Studies on the effect of irradiation by accelerated electrons on the hydrogenation reactivity of brown coal[J]. Fuel, 2001, 80(15): 2203-2206. |
42 | ABOUSHABANA Moustafa, DE TACCONI Norma R, RAJESHWAR Krishnan. Chemical pre-treatment of coal and carbon black: Implications for electrolytic hydrogen generation and electrochemical/thermal reactivity[J]. Journal of the Electrochemical Society, 2012, 159(6): B695-B701. |
43 | 朱凌岳, 王宝辉, 吴红军. 电解水煤浆制氢技术研究进展[J]. 化工进展, 2016, 35(10): 3129-3135. |
ZHU Lingyue, WANG Baohui, WU Hongjun. Review on electrochemical splitting of coal water slurry for hydrogen[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3129-3135. | |
44 | PATIL Prashanth, DE ABREU Yolanda, BOTTE Gerardine G. Electrooxidation of coal slurries on different electrode materials[J]. Journal of Power Sources, 2006, 158(1): 368-377. |
45 | WANG Chao, ZHAO Yonggang, ZHOU Wei, et al. Electro-oxidation of coal on NiO and/or Co3O4 modified TiO2/Pt electrodes[J]. Electrochimica Acta, 2011, 56(18): 6299-6304. |
46 | CHEN Li, NAKAMOTO Rei, KUDO Shinji, et al. Biochar-assisted water electrolysis[J]. Energy & Fuels, 2019, 33(11): 11246-11252. |
47 | GIDDEY S, KULKARNI A, BADWAL S P S. Low emission hydrogen generation through carbon assisted electrolysis[J]. International Journal of Hydrogen Energy, 2015, 40(1): 70-74. |
48 | COUGHLIN R W, FAROOQUE M. Consideration of electrodes and electrolytes for electrochemical gasification of coal by anodic oxidation[J]. Journal of Applied Electrochemistry, 1980, 10(6): 729-740. |
49 | COUGHLIN Robert W, FAROOQUE Mohammad. Electrochemical gasification of coal-simultaneous production of hydrogen and carbon dioxide by a single reaction involving coal, water, and electrons[J]. Industrial & Engineering Chemistry Process Design and Development, 1980, 19(2): 211-219. |
50 | COUGHLIN Robert W, FAROOQUE Mohammed. Thermodynamic, kinetic, and mass balance aspects of coal-depolarized water electrolysis[J]. Industrial & Engineering Chemistry Process Design and Development, 1982, 21(4): 559-564. |
51 | DE ABREU Yolanda, PATIL Prashanth, MARQUEZ Andres I, et al. Characterization of electrooxidized Pittsburgh No. 8 coal[J]. Fuel, 2007, 86(4): 573-584. |
52 | CLARKE R L, FOLLER P C, WASSON A R. The electrochemical production of hydrogen using a carbonaceous fuel as an anode depolarizer[J]. Journal of Applied Electrochemistry, 1988, 18(4): 546-554. |
53 | TOMAT Renato, SALMASO Romeo, ZECCHIN Sandro. Electrochemistry of carbonaceous materials[J]. Fuel, 1992, 71(4): 459-462. |
54 | DHOOGE Patrick M, STILWELL David E, PARK Su-Moon. Electrochemical studies of coal slurry oxidation mechanisms[J]. Journal of the Electrochemical Society, 1982, 129(8): 1719. |
55 | DHOOGE Patrick M, PARK Su-Moon. Electrochemistry of coal slurries Ⅲ. FTIR studies of electrolysis of coal[J]. Journal of the Electrochemical Society, 1983, 130(7): 1539-1542. |
56 | PARK Su-Moon. Electrochemistry of carbonaceous materials and coal[J]. Journal of the Electrochemical Society, 1984, 131(9): 363C-373C. |
57 | ANTHONY K E, LINGE H G. Oxidation of coal slurries in acidified ferric sulfate[J]. Journal of the Electrochemical Society, 1983, 130(11): 2217-2219. |
58 | THOMAS G, CHETTIAR M, BIRSS V I. Electrochemical oxidation of acidic Alberta coal slurries[J]. Journal of Applied Electrochemistry, 1990, 20(6): 941-950. |
59 | HESENOV Arif, Hatice KıNıK, Gökçen PULI, et al. Electrolysis of coal slurries to produce hydrogen gas: Relationship between CO2 and H2 formation[J]. International Journal of Hydrogen Energy, 2011, 36(9): 5361-5368. |
60 | YU Tao, Shiyin LYU, ZHOU Wei, et al. Catalytic effect of K3Fe(CN)6 on hydrogen production from coal electro-oxidation[J]. Electrochimica Acta, 2012, 83: 485-489. |
61 | LIU Huaiyou, Jingkang LYU, ZHAO Yonggang, et al. Study on effect and catalytic mechanism of the catalysts for coal oxidation in alkaline medium[J]. Chinese Journal of Chemistry, 2011, 29(10): 2014-2018. |
62 | DHOOGE Patrick M, PARK Su-Moon, JEONG K M. Electrocatalytic oxidation of demineralized oil shale[J]. Journal of the Electrochemical Society, 1985, 132(5): 1158-1160. |
63 | GONG Xuzhong, WANG Mingyong, LIU Yang, et al. Variation with time of cell voltage for coal slurry electrolysis in sulfuric acid[J]. Energy, 2014, 65: 233-239. |
64 | GE Lan, GONG Xuzhong, WANG Zhi, et al. Insight of anode reaction for CWS (coal water slurry) electrolysis for hydrogen production[J]. Energy, 2016, 96: 372-382. |
65 | 袁润. 碱性介质中大庆油页岩电化学氧化研究[D]. 大连: 大连理工大学, 2015. |
YUAN Run. Electrochemical oxidation of Daqing oil shale in alkaline medium[D]. Dalian: Dalian University of Technology, 2015. | |
66 | 白汝展, 李娜, 范剑明, 等. 低阶煤电化学氧化制腐植酸的研究进展[J]. 南方能源建设, 2022, 9(3): 140-147. |
BAI Ruzhan, LI Na, FAN Jianming, et al. Research progress on electro-chemical oxidation of low-rank coal to humic acid[J]. Southern Energy Construction, 2022, 9(3): 140-147. | |
67 | 张轩轩. 碱性介质中神木烟煤电化学氧化的研究[D]. 大连: 大连理工大学, 2022. |
ZHANG Xuanxuan. Electrochemical oxidation of Shenmu bituminous coal in alkaline medium[D]. Dalian: Dalian University of Technology, 2022. | |
68 | 印仁和, 张磊, 姬学彬, 等. 电解煤浆制取氢气的工艺研究[J]. 现代化工, 2007, 27(6): 27-30, 32. |
YIN Renhe, ZHANG Lei, JI Xuebin, et al. Study of producing hydrogen by electrolysis of coal slurries[J]. Modern Chemical Industry, 2007, 27(6): 27-30, 32. | |
69 | MURPHY O, BOCKRIS J, LATER D. Products found in the anodic oxidation of coal[J]. International Journal of Hydrogen Energy, 1985, 10(7/8): 453-474. |
70 | 苏天雄. 浅谈我国低阶煤资源分布及其利用途径[J]. 广东化工, 2012, 39(6): 133-134. |
SU Tianxiong. Briefly on the distribution and utilization of low-rank coals resources in China[J]. Guangdong Chemical Industry, 2012, 39(6): 133-134. | |
71 | CHEN Shuai, ZHOU Wei, DING Yani, et al. Coal-assisted water electrolysis for hydrogen production: Evolution of carbon structure in different-rank coal[J]. Energy & Fuels, 2021, 35(4): 3512-3520. |
72 | HESENOV Arif, Bahar MERYEMOĞLU, Okan IÇTEN. Electrolysis of coal slurries to produce hydrogen gas: Effects of different factors on hydrogen yield[J]. International Journal of Hydrogen Energy, 2011, 36(19): 12249-12258. |
73 | IGLESIAS M J, DE LA PUENTE G, FUENTE E, et al. Compositional and structural changes during aerial oxidation of coal and their relations with technological properties[J]. Vibrational Spectroscopy, 1998, 17(1): 41-52. |
74 | AHMED M A, VANDENBERGHE R E, DE GRAVE E, et al. Characterisation of Spanish coal by means of Mössbauer spectroscopy[J]. Fuel, 1999, 78(4): 453-457. |
75 | FAN Yuqiang, GUAN Jun, HE Demin, et al. The influence of inherent minerals on the constant-current electrolysis process of coal-water slurry[J]. Energy, 2023, 285(3): 128766. |
76 | WANG Lijie, SUN Fei, GAO Jihui, et al. Adjusting the porosity of coal-based activated carbons based on a catalytic physical activation process for gas and liquid adsorption[J]. Energy & Fuels, 2018, 32(2): 1255-1264. |
77 | BAI Yonghui, WANG Yulong, ZHU Shenghua, et al. Synergistic effect between CO2 and H2O on reactivity during coal chars gasification[J]. Fuel, 2014, 126: 1-7. |
78 | TAYLOR Norman, GIBSON Christopher, BARTLE Keith D, et al. Electrochemical oxidation of coals: Voltammetry and mass spectrometry[J]. Fuel, 1985, 64(3): 415-419. |
79 | OKADA G, GURUSWAMY V, O’M BOCKRIS J. On the electrolysis of coal slurries[J]. Journal of the Electrochemical Society, 1981, 128(10): 2097. |
80 | KOU Kaikai, ZHOU Wei, CHEN Shuai, et al. Investigate the role of different inherent minerals in PEM based coal assisted water electrolysis cell[J]. Journal of the Electrochemical Society, 2019, 166(13): F949. |
81 | Martti J AHO, PIRKONEN Pentti M. Effects of pressure, gas temperature and CO2 and O2 partial pressures on the conversion of coal-nitrogen to NO, N2O and NO2 [J]. Fuel, 1995, 74(11): 1677-1681. |
82 | YU Liya E, HILDEMANN Lynn M, NIKSA Stephen. Characteristics of nitrogen-containing aromatic compounds in coal tars during secondary pyrolysis[J]. Fuel, 1999, 78(3): 377-385 |
83 | ZHAO Wei, YAO Liping, LIN Juan, et al. Electrolytic reduction of Nantong coal and model compounds with oxygenic functional groups in an aqueous NaCl solution[J]. Journal of China University of Mining and Technology, 2008, 18(1): 112-115. |
84 | CHEN Yanyan, MASTALERZ Maria, SCHIMMELMANN Arndt. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J]. International Journal of Coal Geology, 2012, 104: 22-33. |
85 | CHEN Cong, LIU Jianzhong, CHENG Jun, et al. Oxidation mechanism for coal-assisted water electrolysis for hydrogen production: Evolution of different structures in coal molecules with reaction depth[J]. Fuel, 2022, 321: 123910. |
86 | CHEN Shuai, ZHOU Wei, DING Yani, et al. Fe3+-mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygen-containing functional groups in coal[J]. Energy, 2021, 220: 119677. |
87 | 易平贵, 刘俊峰, 赵红钢, 等. 煤及其模型化合物电解氧化脱硫的热力学分析[J]. 煤炭转化, 1997, (4): 27-33. |
YI Pinggui, LIU Junfeng, ZHAO Honggang, et al. Thermodynamic analysis for desulfurization of coal and its model compounds by electrolytic oxidation[J]. Coal Conversion, 1997, (4): 27-33. | |
88 | KATSUKI Kusakabe, HIROSHI Nishida, SHIGEHARU Morooka, et al. Kinetic investigations for hybrid process of water electrolysis and chemical coal desulphurization[J]. Fuel, 1987, 66(2): 271-275. |
89 | FAROOQUE Mohammad, COUGHLIN Robert W. Electrochemical gasification of coal (investigation of operating conditions and variables)[J]. Fuel, 1979, 58(10): 705-712. |
90 | 寇凯凯. 煤辅助电解水制氢中矿物质及羧基官能团的影响机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
KOU Kaikai. Mechanism study of minerals and carboxyl functional groups effects on coal assisted water electrolysis[D]. Harbin: Harbin Institute of Technology, 2019. | |
91 | 赵伟, 杨志远, 李振, 等. 电化学处理对神木煤显微组分表面结构及可浮性的影响研究[J]. 燃料化学学报, 2017, 45(4): 400-407. |
ZHAO Wei, YANG Zhiyuan, LI Zhen, et al. Influence of electrochemical treatment on surface structure and flotability of Shenmu coal macerals[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 400-407. | |
92 | 赵伟, 李振, 杨志远, 等. 煤岩显微组分的电浮选分离及其电化学凝聚特征研究[J]. 中国矿业大学学报, 2018, 47(5): 1104-1112. |
ZHAO Wei, LI Zhen, YANG Zhiyuan, et al. Electroflotation separation of coal macerals and its electro-coagulation characteristics[J]. Journal of China University of Mining & Technology, 2018, 47(5): 1104-1112. | |
93 | 朱红, 王淀佐, 李虎林, 等. 电化学法对细粒煤表面改性机理的研究[J]. 煤炭学报, 2000, 25(3): 307-311. |
ZHU Hong, WANG Dianzuo, LI Hulin, et al. Study on the mechanism of fine coal by electrochemical surface modification[J]. Journal of China Coal Society, 2000, 25(3): 307-311. | |
94 | 杨玉芬, 朱红, 陈清如. 电化学法强化高硫煤浮选脱硫试验研究[J]. 煤炭转化, 2003, 26(2): 60-63. |
YANG Yufen, ZHU Hong, CHEN Qingru. Experimental research on enhancing desulfurization of high sulfur coal in flotation by electrochemical methods[J]. Coal Conversion, 2003, 26(2): 60-63. | |
95 | GUO Bingfeng, ZHOU Wei, LIU Shuai, et al. Effect of γ-ray irradiation on the structure and electrochemical liquefaction of Shenhua coal[J]. Fuel, 2015, 143: 236-243. |
96 | WANG Chao, ZHOU Wei, YIN Renhe. Electro hydrogenation of coal in a Pb/DMF-EtOH system: Structure change of coal observed by organic solvent extraction[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 262-269. |
97 | 赵伟, 李振, 周安宁, 等. 铝电极电浮选阴极的气泡特征及其影响因素研究[J]. 矿产保护与利用, 2018(3): 87-92. |
ZHAO Wei, LI Zhen, ZHOU Anning, et al. Bubble characteristics and its influence factors in electroflotation with aluminum cathode[J]. Conservation and Utilization of Mineral Resources, 2018(3): 87-92. | |
98 | 周安宁, 张怀青, 李振, 等. 低阶烟煤煤岩显微组分分选及其分质利用研究进展[J]. 洁净煤技术, 2022, 28(7): 1-22. |
ZHOU Anning, ZHANG Huaiqing, LI Zhen, et al. Advances in coal macerals separation and quality-based utilization of low-rank bituminous coal[J]. Clean Coal Technology, 2022, 28(7): 1-22. | |
99 | 张洲朋, 赵伟, 周安宁, 等. 多孔电极的制备及其在煤岩显微组分电浮选分离中的应用[J]. 中国矿业大学学报, 2023, 52(1): 188-198. |
ZHANG Zhoupeng, ZHAO Wei, ZHOU Anning, et al. Preparation of porous electrode and its application in electroflotation separation of coal macerals[J]. Journal of China University of Mining & Technology, 2023, 52(1): 188-198. | |
100 | LIU Shuai, ZHOU Wei, YU Tao, et al. Preparation of layered nanoporous Ti/TiO2/Ni-W-B electrode for electrocatalytic reduction of coal[J]. Fuel, 2014, 134: 151-158. |
101 | GUO Bingfeng, LIU Yanlan, CHAI Ruijie, et al. Combination of electron beam irradiation and electro-reduction—A novel method for direct coal liquefaction[J]. Journal of Fuel Chemistry and Technology, 2014, 42(5): 513-518. |
102 | 汤芳, 周尉, 曹为民, 等. 二元溶剂[Bmim]Cl+NMP对褐煤的溶胀及电解液化的影响[J]. 复旦学报(自然科学版), 2016, 55(6): 725-731. |
TANG Fang, ZHOU Wei, CAO Weimin, et al. Swelling of brown coal in binary solvent[Bmim]Cl+NMP and its effect on coal electrolysis liquefaction[J]. Journal of Fudan University (Natural Science), 2016, 55(6): 725-731. |
[1] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[2] |
DING Jia, WU Wenqi, LI Pengcheng.
Two-electron water oxidation reaction assisted electrochemical oxidation with boron doped diamond to inhibit ClO |
[3] | GUO Meng, GUO Meixin, WEI Sijia, ZHAO Yujiao, JIA Xuan. Effect of pH on MEC desulfurization performance and microbial mechanism of action [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2219-2225. |
[4] | WU Jianyang, SHEN Lanyao, YU Yongli, WANG Runa, JIANG Ning, YANG Xinhe, QIU Jingyi, ZHOU Henghui. Preparation and performance optimization of high-nickel cathode materials in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1387-1394. |
[5] | HU Zhihao, ZHANG Haojing, ZHOU Ye, WU Rui. Visualization observation of bubble behavior and performance impact analysis in efficient nickel based ordered porous electrodes [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 680-687. |
[6] | YU Songmin, JIN Hongbo, YANG Minghu, YU Haifeng, JIANG Hao. Synthesis and modification of F-doped olivine LiFe0.5Mn0.5PO4 cathode materials for Li-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 302-309. |
[7] | XIA Yinping, LI Zhoupeng, WANG Qianqian. Strategy toward positive electrode design for high-loading lithium-sulfur battery [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 364-375. |
[8] | WANG Shang, YAO Yao, WANG Jia, DONG Didi, CHANG Ganggang. Hierarchical porous carbon supported CoP derived from CoZn-MOF and its hydrogen evolution properties [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 447-454. |
[9] | YANG Chenggong, HUANG Rong, WANG Dong’e, TIAN Zhijian. Electrocatalytic hydrogen evolution performance of nitrogen-doped molybdenum disulfide nanocatalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 465-472. |
[10] | WANG Bo, ZHANG Chang’an, ZHAO Limin, YUAN Jun, SONG Yongyi. Industrial wastewater treatment technology based on boron-doped diamond electrodes:A review [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 501-513. |
[11] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[12] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[13] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[14] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[15] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |