1 |
SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3(4): 267-278.
|
2 |
YANG Hao, FU Cuimei, SUN Yijian, et al. Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient[J]. Carbon, 2020, 158: 102-109.
|
3 |
ZHAO Ming, FU Yu, XU Ning, et al. High performance LiMnPO4/C prepared by a crystallite size control method[J]. Journal of Materials Chemistry A, 2014, 2(36): 15070-15077.
|
4 |
DONG Youzhong, WANG Long, ZHANG Shouliang, et al. Two-phase interface in LiMnPO4 nanoplates[J]. Journal of Power Sources, 2012, 215: 116-121.
|
5 |
DENG Yuanfu, YANG Chunxiang, ZOU Kaixiang, et al. Recent advances of Mn-rich LiFe1- y Mn y PO4(0.5≤y≤1.0) cathode materials for high energy density lithium ion batteries[J]. Advanced Energy Materials, 2017, 7(13): 1601958.
|
6 |
HU C L, YI H H, WANG F X, et al. Boron doping at P-site to improve electrochemical performance of LiMnPO4 as cathode for lithium ion battery[J]. Journal of Power Sources, 2014, 255: 355-359.
|
7 |
ZHANG Shu, MA Jun, HU Zhenglin, et al. Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials[J]. Chemistry of Materials, 2019, 31(16): 6033-6065.
|
8 |
YANG Liangtao, XIA Yonggao, QIN Laifen, et al. Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery[J]. Journal of Power Sources, 2016, 304: 293-300.
|
9 |
YANG Li, DENG Wentao, XU Wei, et al. Olivine LiMn x Fe1- x PO4 cathode materials for lithium ion batteries: Restricted factors of rate performances[J]. Journal of Materials Chemistry A, 2021, 9(25): 14214-14232.
|
10 |
KUBO K, FUJIWARA M, YAMADA S, et al. Synthesis and electrochemical properties for LiNiO2 substituted by other elements[J]. Journal of Power Sources, 1997, 68(2): 553-557.
|
11 |
PAN Maosen, LIN Xuehao, ZHOU Zhentao. Electrochemical performance of LiFePO4/C doped with F synthesized by carbothermal reduction method using NH4F as dopant[J]. Journal of Solid State Electrochemistry, 2012, 16(4): 1615-1621.
|
12 |
XIONG Wenting, HU Wei, LI Huili. First-principles calculations of the atomic structure and electronic structure of F-doped Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium-ion batteries[J]. Journal of Electronic Materials, 2022, 51(7): 3944-3949.
|
13 |
HOU Yukun, PAN Guiling, SUN Yanyun, et al. LiMn0.8Fe0.2PO4/carbon nanospheres@graphene nanoribbons prepared by the biomineralization process as the cathode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16500-16510.
|
14 |
DENG Ziwei, WANG Qi, PENG Dachun, et al. Fast precipitation-induced LiFe0.5Mn0.5PO4/C nanorods with a fine size and large exposure of the (010) faces for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 794: 178-185.
|
15 |
ZHANG Yin, ALARCO J A, NERKAR J Y, et al. Improving the rate capability of LiFePO4 electrode by controlling particle size distribution[J]. Journal of the Electrochemical Society, 2019, 166(16): A4128-A4135.
|
16 |
DING Dong, MAEYOSHI Y, KUBOTA M, et al. Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4 composite cathode for high-performance lithium batteries[J]. Journal of Power Sources, 2020, 449: 227553.
|
17 |
WEN Fang, Tu'an LYU, GAO Ping, et al. Graphene-embedded LiMn0.8Fe0.2PO4 composites with promoted electrochemical performance for lithium ion batteries[J]. Electrochimica Acta, 2018, 276: 134-141.
|
18 |
YAN Xiao, SUN Deye, WANG Yanqing, et al. Enhanced electrochemical performance of LiMn0.75Fe0.25PO4 nanoplates from multiple interface modification by using fluorine-doped carbon coating[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4637-4644.
|
19 |
LIU Shaojun, ZHENG Jingang, ZHANG Bo, et al. Engineering manganese-rich phospho-olivine cathode materials with exposed crystal {010} facets for practical Li-ion batteries[J]. Chemical Engineering Journal, 2023, 454: 139986.
|
20 |
XIA Qingbo, LIU Tao, XU Jingjing, et al. High performance porous LiMnPO4 nanoflakes: Synthesis from a novel nanosheet precursor[J]. Journal of Materials Chemistry A, 2015, 3(12): 6301-6305.
|
21 |
LU Fei, ZHOU Yichun, LIU Jun, et al. Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route[J]. Electrochimica Acta, 2011, 56(24): 8833-8838.
|
22 |
RADHAMANI A V, KARTHIK C, UBIC R, et al. Suppression of antisite defects in fluorine-doped LiFePO4 [J]. Scripta Materialia, 2013, 69(1): 96-99.
|
23 |
MENG Yanshuang, LI Yuzhu, XIA Jun, et al. F-doped LiFePO4@N/B/F-doped carbon as high performance cathode materials for Li-ion batteries[J]. Applied Surface Science, 2019, 476: 761-768.
|
24 |
KIM Sung-Beom, KIM Hyeona, PARK Deok-Hye, et al. Li-ion diffusivity and electrochemical performance of Ni-rich cathode material doped with fluoride ions[J]. Journal of Power Sources, 2021, 506: 230219.
|
25 |
MA Shiyu, YAO Hongchang, LI Zhongjun, et al. Tuning the nucleation and decomposition of Li2O2 by fluorine-doped carbon vesicles towards high performance Li-O2 batteries[J]. Journal of Energy Chemistry, 2022, 70: 614-622.
|
26 |
MILOVIĆ M, JUGOVIĆ D, CVJETIĆANIN N, et al. Crystal structure analysis and first principle investigation of F doping in LiFePO4 [J]. Journal of Power Sources, 2013, 241: 70-79.
|
27 |
LI Zhenfei, REN Xin, TIAN Weichao, et al. LiMn0.6Fe0.4PO4/CA cathode materials with carbon aerogel as additive synthesized by wet ball-milling combined with spray drying[J]. Journal of the Electrochemical Society, 2020, 167(9): 090516.
|
28 |
GAO Chao, ZHOU Jian, LIU Guizhen, et al. Synthesis of F-doped LiFePO4/C cathode materials for high performance lithium-ion batteries using co-precipitation method with hydrofluoric acid source[J]. Journal of Alloys and Compounds, 2017, 727: 501-513.
|
29 |
ZHANG Xiang, HOU Mengyan, TAMIRATE A G, et al. Carbon coated nano-sized LiMn0.8Fe0.2PO4 porous microsphere cathode material for Li-ion batteries[J]. Journal of Power Sources, 2020, 448: 227438.
|
30 |
JUGOVIĆ D, MITRIĆ M, MILOVIĆ M, et al. The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder[J]. Ceramics International, 2017, 43(3): 3224-3230.
|
31 |
PLEUKSACHAT S, KRABAO P, PONGHA S, et al. Dynamic phase transition behavior of a LiMn0.5Fe0.5PO4 olivine cathode material for lithium-ion batteries revealed through in-situ X-ray techniques[J]. Journal of Energy Chemistry, 2022, 71: 452-459.
|
32 |
LUO Chun, JIANG Yao, ZHANG Xinxin, et al. Misfit strains inducing voltage decay in LiMn y Fe1- y PO4/C[J]. Journal of Energy Chemistry, 2022, 68: 206-212.
|
33 |
JIANG Qianqian, YU Haifeng, HU Yanjie, et al. Exposed surface engineering of high-voltage LiNi0.5Co0.2Mn0.3O2 cathode materials enables high-rate and durable Li-ion batteries[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23099-23105.
|
34 |
DENG Zongnan, JIANG Hao, HU Yanjie, et al. 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries[J]. Advanced Materials, 2017, 29(10): 1603020.
|
35 |
MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11: 1550.
|
36 |
XIE Xiaoming, ZHANG Baichao, HU Guorong, et al. A new route for green synthesis of LiFe0.25Mn0.75PO4/C@rGO material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2021, 853: 157106.
|
37 |
DONG Youzhong, ZHAO Yanming, DUAN He, et al. Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings[J]. Electrochimica Acta, 2014, 132: 244-250.
|