Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 2219-2225.DOI: 10.16085/j.issn.1000-6613.2023-0686
• Resources and environmental engineering • Previous Articles
GUO Meng1,2(), GUO Meixin1,2, WEI Sijia1,2, ZHAO Yujiao1,2, JIA Xuan1,2()
Received:
2023-04-26
Revised:
2023-05-30
Online:
2024-05-13
Published:
2024-04-15
Contact:
JIA Xuan
郭萌1,2(), 郭美欣1,2, 魏思佳1,2, 赵玉娇1,2, 贾璇1,2()
通讯作者:
贾璇
作者简介:
郭萌(1999—),女,硕士研究生,研究方向为有机废弃物高值化。E-mail:754346758@qq.com。
基金资助:
CLC Number:
GUO Meng, GUO Meixin, WEI Sijia, ZHAO Yujiao, JIA Xuan. Effect of pH on MEC desulfurization performance and microbial mechanism of action[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2219-2225.
郭萌, 郭美欣, 魏思佳, 赵玉娇, 贾璇. 初始pH调控对MEC脱硫性能的影响及其微生物作用机制[J]. 化工进展, 2024, 43(4): 2219-2225.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0686
项目 | Shannon | Simpson | Ace | Chao | 覆盖率/% |
---|---|---|---|---|---|
接种污泥 | 3.91 | 0.05 | 551.94 | 542.71 | 99.81 |
阳极生物膜 | |||||
pH=7 | 2.82 | 0.15 | 575.03 | 521.63 | 99.75 |
pH=8 | 3.28 | 0.08 | 502.02 | 452.53 | 99.72 |
pH=9 | 3.56 | 0.06 | 461.42 | 464.33 | 99.69 |
阳极溶液 | |||||
pH=7 | 2.68 | 0.12 | 269.98 | 264.09 | 99.84 |
pH=8 | 3.06 | 0.10 | 375.12 | 314.68 | 99.81 |
pH=9 | 2.84 | 0.14 | 295.14 | 286.67 | 99.88 |
项目 | Shannon | Simpson | Ace | Chao | 覆盖率/% |
---|---|---|---|---|---|
接种污泥 | 3.91 | 0.05 | 551.94 | 542.71 | 99.81 |
阳极生物膜 | |||||
pH=7 | 2.82 | 0.15 | 575.03 | 521.63 | 99.75 |
pH=8 | 3.28 | 0.08 | 502.02 | 452.53 | 99.72 |
pH=9 | 3.56 | 0.06 | 461.42 | 464.33 | 99.69 |
阳极溶液 | |||||
pH=7 | 2.68 | 0.12 | 269.98 | 264.09 | 99.84 |
pH=8 | 3.06 | 0.10 | 375.12 | 314.68 | 99.81 |
pH=9 | 2.84 | 0.14 | 295.14 | 286.67 | 99.88 |
1 | VILLADSEN Sebastian NIS BAY, AHRENSBERG KAAB Malene, PLETH NIELSEN Lars, et al. New electroscrubbing process for desulfurization[J]. Separation and Purification Technology, 2021, 278: 119552. |
2 | XUE Shengrong, SONG Jinghui, WANG Xiaojiao, et al. A systematic comparison of biogas development and related policies between China and Europe and corresponding insights[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109474. |
3 | 付永猛, 夏亚龙, 雷成军, 等. 乳业废水沼气利用与碳减排的工程探索[J]. 低碳世界, 2022, 12(1): 46-48, 76. |
FU Yongmeng, XIA Yalong, LEI Chengjun, et al. Engineering exploration on biogas utilization and carbon emission reduction of dairy wastewater[J]. Low Carbon World, 2022, 12(1): 46-48, 76. | |
4 | 楼毕觉. 微氧连续导入厌氧发酵系统实现H2S原位脱除的研究[D]. 杭州: 浙江工业大学, 2020. |
LOU Bijue. In-situ removal of H2S by continuous introduction of micro-oxygen into anaerobic fermentation system[D]. Hangzhou: Zhejiang University of Technology, 2020. | |
5 | 闫灏. 基于碱化学吸收法的沼气化学与生物组合脱硫技术研究[D]. 北京: 北京化工大学, 2020. |
YAN Hao. Desulfurization of biogas through alkali chemiscal absorption combined and biological methods[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
6 | 欧阳力. 生物滴滤塔对沼气中硫化氢的去除效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. |
OUYANG Li. Research on the removalefficiency of hydrogen sulfide from biogas in the biotrickling filter[D]. Harbin: Harbin Institute of Technology, 2011. | |
7 | 姜茹. 沼气中硫化氢的脱除技术研究[D]. 南京: 南京大学, 2011. |
JIANG Ru. Study on removal technology of H2S in biogas[D]. Nanjing: Nanjing University, 2011. | |
8 | 崔磊. 电化学法脱除溶液中硫离子的研究[D]. 成都: 西南石油大学, 2012. |
CUI Lei. Study on removal of sulfur ions from solution by electrochemical method[D]. Chengdu: Southwest Petroleum University, 2012. | |
9 | SHEN Hongyan, ZHANG Zhitao, CHEN Zheng, et al. A novel bioelectrochemical strategy for efficient treatment of saline-alkaline and oligotrophic sulfate wastewater mediated by bacterial electron shuttling[J]. Journal of Water Process Engineering, 2023, 51: 103449. |
10 | DING Aqiang, YANG Yu, SUN Guodong, et al. Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC)[J]. Chemical Engineering Journal, 2016, 283: 260-265. |
11 | SULONEN Mira L K, BAEZA Juan Antonio, GABRIEL David, et al. Optimisation of the operational parameters for a comprehensive bioelectrochemical treatment of acid mine drainage[J]. Journal of Hazardous Materials, 2021, 409: 124944. |
12 | YUAN Ye, CHENG Haoyi, CHEN Fan, et al. Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor[J]. Environment International, 2020, 136: 105503. |
13 | NI Gaofeng, HARNAWAN Pebrianto, SEIDEL Laura, et al. Haloalkaliphilic microorganisms assist sulfide removal in a microbial electrolysis cell[J]. Journal of Hazardous Materials, 2019, 363: 197-204. |
14 | DONG Zhishuai, ZHAO Yu, FAN Lei, et al. Simultaneous sulfide removal and hydrogen production in a microbial electrolysis cell[J]. International Journal of Electrochemical Science, 2017, 12(11): 10553-10566. |
15 | DYKSTRA Christy M, PAVLOSTATHIS Spyros G. Hydrogen sulfide affects the performance of a methanogenic bioelectrochemical system used for biogas upgrading[J]. Water Research, 2021, 200: 117268. |
16 | POZO Guillermo, LU Yang, PONGY Sebastien, et al. Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells[J]. Bioelectrochemistry, 2017, 118: 62-69. |
17 | ZEPPILLI Marco, PAIANO Paola, TORRES Cesar, et al. A critical evaluation of the pH split and associated effects in bioelectrochemical processes[J]. Chemical Engineering Journal, 2021, 422: 130155. |
18 | KOOMSON Desmond Ato, HUANG Jingyu, LI Guang, et al. Comparative studies of recirculatory microbial desalination cell-microbial electrolysis cell coupled systems[J]. Membranes, 2021, 11(9): 661. |
19 | 许坤德, 李建昌, 邵琼丽, 等. 初始pH值对MEC阳极膜的产氢性能和微生物群落的影响[J]. 化学研究与应用, 2020, 32(12): 2224-2230. |
XU Kunde, LI Jianchang, SHAO Qiongli, et al. Effect of initial pH on the performance and microbial community of MEC anode biofilms[J]. Chemical Research and Application, 2020, 32(12): 2224-2230. | |
20 | PATIL Sunil A, HARNISCH Falk, KOCH Christin, et al. Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: The role of pH on biofilm formation, performance and composition[J]. Bioresource Technology, 2011, 102(20): 9683-9690. |
21 | YANG Yuli, QIN Mohan, YANG Xiaoli, et al. Enhancing hydrogen production in microbial electrolysis cells by in situ hydrogen oxidation for self-buffering pH through periodic polarity reversal[J]. Journal of Power Sources, 2017, 347: 21-28. |
22 | ZHEN Guangyin, LU Xueqin, KUMAR Gopalakrishnan, et al. Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: Current situation, challenges and future perspectives[J]. Progress in Energy and Combustion Science, 2017, 63: 119-145. |
23 | Joo-Youn NAM, LOGAN Bruce E. Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2012, 37(24): 18622-18628. |
24 | WANG Yongzhong, ZHANG Lei, XU Tengfei, et al. Influence of initial anolyte pH and temperature on hydrogen production through simultaneous saccharification and fermentation of lignocellulose in microbial electrolysis cell[J]. International Journal of Hydrogen Energy, 2017, 42(36): 22663-22670. |
25 | NGUYEN Phan Khanh Thinh, KIM Jihyeon, Gautam DAS, et al. Optimization of simultaneous dark fermentation and microbial electrolysis cell for hydrogen production from macroalgae using response surface methodology[J]. Biochemical Engineering Journal, 2021, 171: 108029. |
26 | LUO Shuai, LIU Fubin, FU Boya, et al. Onset investigation on dynamic change of biohythane generation and microbial structure in dual-chamber versus single-chamber microbial electrolysis cells[J]. Water Research, 2021, 201: 117326. |
27 | 赵玉娇, 朱雨森, 郭美欣, 等. 脱硫MEC的硫价态变化与微生物群落演替规律[J]. 环境工程学报, 2022, 16(1): 264-271. |
ZHAO Yujiao, ZHU Yusen, GUO Meixin, et al. Sulfur valence variety and microbial community succession of desulphurization MEC[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 264-271. | |
28 | WANG Bo, LIU Wenzong, ZHANG Yifeng, et al. Bioenergy recovery from wastewater accelerated by solar power: Intermittent electro-driving regulation and capacitive storage in biomass[J]. Water Research, 2020, 175: 115696. |
29 | 国家环境保护总局. 水质 硫化物的测定 亚甲基蓝分光光度法: [S]. 北京: 中国标准出版社, 1996. |
State Environmental Protection Administration of the People's Republic of China. Water quality-Determination of sulfide-Methylene blue spectrophotometric method: [S]. Beijing: Standards Press of China, 1996. | |
30 | 中华人民共和国环境保护部. 水质 化学需氧量的测定 快速消解分光光度法: [S]. 北京: 中国环境科学出版社, 2008. |
Ministry of Environmental Protection of the People's Republic of China. Water quality-Determination of the chemical oxygen demand-Fast digestion-Spectrophotometric method: [S]. Beijing: China Environmental Science Press, 2008. | |
31 | YU Jiangnan, HUANG Zhenxing, WU Peng, et al. Performance and microbial characterization of two-stage caproate fermentation from fruit and vegetable waste via anaerobic microbial consortia[J]. Bioresource Technology, 2019, 284: 398-405. |
32 | HE Kuanchang, LI Wei, TANG Longxiang, et al. Suppressing methane production to boost high-purity hydrogen production in microbial electrolysis cells[J]. Environmental Science & Technology, 2022, 56(17): 11931-11951. |
33 | Enric BLÁZQUEZ, GABRIEL David, BAEZA Juan Antonio, et al. Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery[J]. Water Research, 2016, 105: 395-405. |
34 | CHENG Shaoan, LOGAN Bruce E. Sustainable and efficient biohydrogen production via electrohydrogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18871-18873. |
35 | ZHANG Shuang, GUAN Weijie, SUN Haishu, et al. Intermittent energization improves microbial electrolysis cell-assisted thermophilic anaerobic co-digestion of food waste and spent mushroom substance[J]. Bioresource Technology, 2023, 370: 128577. |
36 | PANG Yao, GU Tianfeng, ZHANG Guijiao, et al. Experimental study on volatile sulfur compound inhibition using a single-chamber membrane-free microbial electrolysis cell[J]. Environmental Science and Pollution Research, 2020, 27(24): 30571-30582. |
37 | LUO Haiping, BAI Jiamin, HE Jiajia, et al. Sulfate reduction and elemental sulfur recovery using photoelectric microbial electrolysis cell[J]. Science of the Total Environment, 2020, 728: 138685. |
38 | ZHENG Yue, XIAO Yong, YANG Zhaohui, et al. The bacterial communities of bioelectrochemical systems associated with the sulfate removal under different pHs[J]. Process Biochemistry, 2014, 49(8): 1345-1351. |
39 | YANG Nuan, ZHAN Guoqiang, WU Tingting, et al. Effect of air-exposed biocathode on the performance of a Thauera-dominated membraneless single-chamber microbial fuel cell (SCMFC)[J]. Journal of Environmental Sciences, 2018, 66: 216-224. |
40 | YANG Guiqin, ZHANG Jun, KWON Soon-Wo, et al. Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63: 873-878. |
41 | ZHEN Guangyin, ZHENG Shaojuan, HAN Yule, et al. Semi-continuous anolyte circulation to strengthen CO2 bioelectromethanosynthesis with complex organic matters as the e-/H+ donor for simultaneous biowaste refinery[J]. Chemical Engineering Journal, 2022, 430: 133123. |
[1] | YANG Dongxiao, XIONG Qizhao, WANG Yi, CHEN Yang, LI Libo, LI Jinping. Progress in the preparation of hierarchically porous MOF and applications in adsorption and separation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1882-1896. |
[2] | SUN Xian, LIU Jun, WANG Xiaohui, SUN Changyu, CHEN Guangjin. Review of experimental and numerical simulation research on the development of natural gas hydrate reservoir with underlying gas [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2091-2103. |
[3] | HAI Yan, ZHOU Xin, LI Yan. Rapid start-up performance of mainstream Anammox in a single-stage fixed-bed biofilm reactor [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2201-2209. |
[4] | GAO Kang, ZHANG Xian, CHEN Shuaijun, WU Ximing, SHEN Jun, WANG Yugao, NIU Yanxia. Establishment of separation method for polysulfide ions in wet desulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2210-2218. |
[5] | WANG Kai, YE Dingding, ZHU Xun, YANG Yang, CHEN Rong, LIAO Qiang. Performance of electrochemical reduction of CO2 by superaerophilic copper foam electrode with nanowires [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1232-1240. |
[6] | GU Xingpeng, MA Hongqin, LIU Jiahao. Modification of Rainey nickel with phosphorus quantum dots and its catalytic hydrodesulfurization performances [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1293-1301. |
[7] | XU Zewen, WANG Ming, WANG Qiang, HOU Yingfei. Recent advances in amine-rich membrane for CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1374-1386. |
[8] | CHEN Xiaozhen, LIU Li, YANG Chengmin, ZHENG Bumei, YIN Xiaoying, SUN Jin, YAO Yunhai, DUAN Weiyu. Research progress of alumina-supported hydrodesulfurization catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 948-961. |
[9] | ZHANG Ruikai, ZHANG Huishu, ZHENG Longyun, ZENG Aiwu. Effect of gas partial pressure on Rayleigh convection mass transfer characteristics during CO2 absorption [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 913-924. |
[10] | YAO Fuchun, BI Yingying, TANG Chen, DU Minghui, LI Zeying, ZHANG Yaozong, SUN Xiaoming. Analysis of the mass transfer mechanism in a hollow fiber membrane ozone contact reactor [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1089-1097. |
[11] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[12] | TIAN Shihong, GUO Lei, LI Na, YUWEN Chao, XU Lei, GUO Shenghui, JU Shaohua. Scientific basis and development trend of microwave heating enhanced flash evaporation process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 135-144. |
[13] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[14] | LI Yunqi, XIE Hanfei, CUI Lirui, LU Shanfu. Fabrication of Nafion membranes with patterned microwire arrays and fuel cell performances [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 320-327. |
[15] | YUAN Liang, CONG Haifeng, LI Xingang. Research progress on gas-liquid flow and mass transfer characteristics in microchannels [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 34-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |