Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 320-327.DOI: 10.16085/j.issn.1000-6613.2023-1193
• Column: Chemical process intensification • Previous Articles
LI Yunqi1(), XIE Hanfei1, CUI Lirui1,2, LU Shanfu1(
)
Received:
2023-07-13
Revised:
2023-09-21
Online:
2024-02-05
Published:
2024-01-20
Contact:
LU Shanfu
通讯作者:
卢善富
作者简介:
李蕴琪(1985—),女,副教授,博士生导师,研究方向为燃料电池催化剂和膜电极优化设计。E-mail:yunqi_li@buaa.edu.cn。
基金资助:
CLC Number:
LI Yunqi, XIE Hanfei, CUI Lirui, LU Shanfu. Fabrication of Nafion membranes with patterned microwire arrays and fuel cell performances[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 320-327.
李蕴琪, 谢函霏, 崔丽瑞, 卢善富. 图案化微米线阵列Nafion膜制备及燃料电池性能[J]. 化工进展, 2024, 43(1): 320-327.
1 | CUI L R, ZHANG J, WANG H N, et al. The effects of different dimensional carbon additives on performance of PEMFC with low-Pt loading cathode catalytic layers[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15887-15895. |
2 | ZENYUK I, DAS P, WEBER A. Understanding impacts of catalyst-layer thickness on fuel-cell performance via mathematical modeling[J]. Journal of the Electrochemical Society, 2016, 163(7): F691-F703. |
3 | 洪晏忠, 邓波. 我国氢燃料电池汽车发展现状及前景分析[J]. 科技风, 2021(4): 5-6. |
HONG Yanzhong, DENG Bo. Development status and prospect analysis of hydrogen fuel cell vehicles in China[J]. Technology Wind, 2021(4): 5-6. | |
4 | WANG J Y, WANG H L, FAN Y. Techno-economic challenges of fuel cell commercialization[J]. Engineering, 2018, 4(3): 352-360. |
5 | PENG X, OMASTA T, RIGDON W, et al. Fabrication of high performing PEMFC catalyst-coated membranes with a low cost air-assisted cylindrical liquid jets spraying system[J]. Journal of the Electrochemical Society, 2016, 163(14): E407-E413. |
6 | 高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. |
GAO Weitao, LEI Yijie, ZHANG Xun, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. | |
7 | AVCIOGLU G, FICICILAR B, EROGLU I. Effective factors improving catalyst layers of PEM fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10779-10797. |
8 | LI M F, ZHAO Z P, CHENG T, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction[J]. Science, 2016, 354(6318): 1414-1419. |
9 | 黄龙, 徐海超, 荆碧, 等. 质子交换膜燃料电池铂基催化剂研究进展[J]. 电化学, 2022, 28(1): 16-32. |
HUANG Long, XU Haichao, JING Bi, et al. Progress of platinum-based catalysts in proton-exchange membrane fuel cells[J]. Journal of Electrochemistry, 2022, 28(1): 16-32. | |
10 | LIU M L, ZHAO Z P, DUAN X, et al. Nanoscale structure design for high-performance Pt-based ORR catalysts[J]. Advanced Materials, 2019, 31 (6): 1802234. |
11 | DIXON D, MELKE J, BOTROS M, et al. Increase of catalyst utilization in polymer electrolyte membrane fuel cells by shape-selected Pt nanoparticles[J]. International Journal of Hydrogen Energy, 2013, 38 (30): 13393-13398. |
12 | HUANG L, ZAMAN S, TIAN X L, et al. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells[J]. Accounts of Chemical Research, 2021, 54(2): 311-322. |
13 | HUANG X Q, ZHAO Z P, CAO L, et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction[J]. Science, 2015, 348(6240): 1230-1234. |
14 | ORFANIDI A, MADKIKAR P, EI-SAYDE H, et al. The key to high performance low Pt loaded electrodes[J]. Journal of the Electrochemical Society, 2017, 164(4): F418-F426. |
15 | 李丹, 张博雅, 刘柏鸿, 等. 质子交换膜燃料电池高稳定性低铂载量膜电极的研究进展[J]. 化工进展, 2021, 40(S2): 89-100. |
LI Dan, ZHANG Boya, LIU Bohong, et al. Research progress on low platinum load and high stable membrane electrode assembly of proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 89-100. | |
16 | CHEN M, WANG M, YANG Z Y, et al. A novel catalyst layer structure based surface-patterned Nafion® membrane for high-performance direct methanol fuel cell[J]. Electrochimica Acta, 2018, 263: 201-208. |
17 | 李政翰, 涂正凯. 质子交换膜燃料电池仿真模型研究进展[J]. 化工进展, 2022, 41(10): 5272-5296. |
LI Zhenghan, TU Zhengkai. Research progress of simulation models of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5272-5296. | |
18 | 王健, 丁炜, 魏子栋. 超低铂用量质子交换膜燃料电池[J]. 物理化学学报, 2021, 37(9): 79-101 |
WANG Jian, DING Wei, WEI Zidong. Performance of polymer electrolyte membrane fuel cells at ultra-low platinum loadings[J]. Acta Physico Chimica Sinica, 2021, 37(9): 79-101. | |
19 | LIU B, CREAGER S. Carbon xerogels as Pt catalyst supports for polymer electrolyte membrane fuel-cell applications[J]. Journal of Power Sources, 2010, 195 (7): 1812-1820. |
20 | YIN S B, MU S C, PAN M, et al. A highly stable TiB2-supported Pt catalyst for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2011, 196 (19): 7931-7936. |
21 | KE Y Z, YUAN W, ZHOU F K, et al. A critical review on surface-pattern engineering of Nafion membrane for fuel cell applications[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 110860. |
22 | CHI W S, JEON Y, PARK S J, et al. Fabrication of surface-patterned membranes by means of a ZnO nanorod templating method for polymer electrolyte membrane fuel-cell applications[J]. ChemPlusChem, 2014, 79(8): 1109-1115. |
23 | LEE C, KORT-KAMP W, YU H R, et al. Grooved electrodes for high-power-density fuel cells[J]. Nature Energy, 2023, 8(7): 685-694. |
24 | 刘克松, 江雷. 仿生结构及其功能材料研究进展[J]. 科学通报, 2009, 54(18): 2667-2681. |
LIU Kesong, JIANG Lei. Research progress on biomimetic structural and functional materials[J]. Chinese Science Bulletin, 2009, 54(18): 2667-2681. | |
25 | 王景明, 王珂, 郑咏梅, 等. 荷叶表面纳米结构与浸润性的关系[J]. 高等学校化学学报, 2010, 31(8): 1596-1599. |
WANG Jinming, WANG Ke, ZHEN Yongmei, et al. Effects of chemical composition and nano-structures on the wetting behaviour of lotus leaves[J]. Chemical journal of Chinese Universities, 2010, 31(8): 1596-1599. | |
26 | WEI Z X, SU K H, SUI S, et al. High performance polymer electrolyte membrane fuel cells (PEMFCs) with gradient Pt nanowire cathodes prepared by decal transfer method[J]. International Journal of Hydrogen Energy, 2015, 40(7): 3068-3074. |
27 | MALKO D, LOPES T, TICIANELLI E, et al. A catalyst layer optimisation approach using electrochemical impedance spectroscopy for PEM fuel cells operated with pyrolysed transition metal-N-C catalysts[J]. Journal of Power Sources, 2016, 323: 189-200. |
28 | YOSHINO S, SHINOHARA A, KODAMA K, et al. Fabrication of catalyst layer with ionomer nanofiber scaffolding for polymer electrolyte fuel cells[J]. Journal of Power Sources, 2020, 476: 228584. |
29 | TALUKDAR K, DELGADO S, LAGARTEIRA T, et al. Minimizing mass-transport loss in proton exchange membrane fuel cell by freeze-drying of cathode catalyst layers[J]. Journal of Power Sources, 2019, 427: 309-317. |
30 | K-H OH, KANG H S, M-J CHOO, et al. Interlocking membrane/catalyst layer interface for high mechanical robustness of hydrocarbon-membrane-based polymer electrolyte membrane fuel cells[J]. Advanced Materials, 2015, 27(19): 2974-2980. |
31 | 邢以晶, 刘芳, 张雅琳, 等. 质子交换膜燃料电池膜电极制备方法的研究进展[J]. 化工进展, 2021, 40(S1): 281-290. |
XING Yijin, LIU Fang, ZHANG Yalin, et al. Research progress on preparation methods of membrane electrode assemblies for xproton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 281-290. | |
32 | 马哲杰, 张文励, 赵炫凯, 等. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
Ma Zhejie, ZHANG Wenli, ZHAO Xuankai, et al. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalytic layer[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. | |
33 | KIM S M, KANG Y S, AHN C, et al. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2016, 317: 19-24. |
34 | AHN C Y, JANG S, CHO Y H, et al. Guided cracking of electrodes by stretching prism-patterned membrane electrode assemblies for high-performance fuel cells[J]. Scientific Reports, 2018, 8(1): 1257. |
[1] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[2] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[3] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[4] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[5] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[6] | YU Haiqiang, GUO Quanzhong, DU Keqin, WANG Chuan. Application of pulse electrodeposition PbO2 coating on stainless steel bipolar plate of PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 917-924. |
[7] | GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268. |
[8] | CHEN Zhekun, PAN Weitong, YAO Dingsong, DING Lu, WANG Fuchen. Microstructure and rheology of microporous layer ink for proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3808-3815. |
[9] | PAN Wenzheng, JI Zhiyong, WANG Jing, LI Shuming, HUANG Zhihui, GUO Xiaofu, LIU Jie, ZHAO Yingying, YUAN Junsheng. Research on the electricity production performance and degradation process of microbial fuel cell treating azo-dye saline wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3306-3313. |
[10] | GAO Weitao, LEI Yijie, ZHANG Xun, HU Xiaobo, SONG Pingping, ZHAO Qing, WANG Cheng, MAO Zongqiang. An overview of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. |
[11] | ZHANG Dong, ZHANG Rui, ZHANG Bin, AN Zhoujian, LEI Che. Research progress of combined cooling-heat-and-power systems based on PEMFC [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1608-1621. |
[12] | CHEN Shiyu, XU Zhicheng, YANG Jing, XU Hao, YAN Wei. Research progress of microbial fuel cell in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 951-963. |
[13] | FENG Zhanxiong, WANG Yun, MA Qiang, ZHANG Chuang, WANG Cheng. Preparation of Pt/C catalyst by continuous pipeline microwave technology and its oxygen reduction performance [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6377-6384. |
[14] | DU Xin, FAN Jinwei, GUO Lijun, WANG Jinlong. Simulation of fuel cell aging process with heterogeneous agglomerate model [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5755-5760. |
[15] | WANG Meng, LIU Lili, LI Na, HU Zhaoxia, CHEN Shouwen. Preparation and properties of sulfonate modification nano-diamonds doped sulfonated poly(aryl ether sulfone) proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5645-5652. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 250
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 349
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |