Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 310-319.DOI: 10.16085/j.issn.1000-6613.2023-1286

• Column: Chemical process intensification • Previous Articles    

Optimization of methanol distillation process based on chemical mechanism and industrial digital twinning modeling

WANG Xiong1(), YANG Zhenning2, LI Yue1, SHEN Weifeng1()   

  1. 1.School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
    2.Chongqing Changfeng Chemical Industry Co. , Ltd. , Chongqing 400021, China
  • Received:2023-07-25 Revised:2023-10-20 Online:2024-02-05 Published:2024-01-20
  • Contact: SHEN Weifeng

基于化工机理与工业数据孪生建模的甲醇精馏过程优化

王雄1(), 杨振宁2, 李越1, 申威峰1()   

  1. 1.重庆大学化学化工学院,重庆 400044
    2.重庆长风化学工业有限公司,重庆 400021
  • 通讯作者: 申威峰
  • 作者简介:王雄(2000—),男,硕士研究生,研究方向为化工数据建模与优化。E-mail:202218021090@stu.cqu.edu.cn
  • 基金资助:
    国家自然科学基金优秀青年科学基金(21222802);国家自然科学基金面上项目(22278044);重庆市自然科学基金杰出青年项目(CSTB2022NSCQ-JQX0021);重庆市留创计划重点项目(cx2023002)

Abstract:

In the production of the chemical industry, the data from the distributed control system (DCS) is crucial for reflecting the production status of the process. However, due to measurement errors, it often fails to meet the requirements for accurate process modeling and optimization. Conventional process modeling and optimization studies do not fully consider the deviations caused by industrial production and design data. In this work, we proposed a twin modeling framework based on industrial production data of methanol distillation and chemical mechanisms, combined with industrial experience, to guide more accurate optimization of industrial processes. We established material and energy conservation constraints and assigned weights to measurement variables based on the measurement range of instruments. Using nonlinear programming algorithms and chemical mechanism constraints, we calibrated and solved for the calibrated values of the measurement variables. We also proposed a confidence score model for process variables based on the calibrated values and industrial experience to evaluate the confidence of the measurement variables. By constructing a methanol distillation process model which was closer to industrial reality based on the calibrated measurement variables, we achieved more accurate process optimization. The twin modeling approach combining chemical mechanisms and industrial data proposed in this work has significant scientific and practical value for the construction of digital twin systems and intelligent chemical plants.

Key words: data-driven, confidence analysis, data reconciliation, process optimization, methanol distillation, digital twin

摘要:

在化学工业生产中,分布式控制系统(distributed control system,DCS)数据作为反映过程生产状况的关键信息,通常由于测量误差影响而不能满足过程精准建模与优化的要求。常规过程建模与优化研究一般无法充分考虑工业实际生产与设计数据产生的偏差。为此,本工作在结合化工机理、DCS工业数据及工业经验的基础上,从底层逻辑出发,提出一种基于甲醇精馏工业生产数据与化工机理孪生建模框架来指导工业过程更精准的优化。将仪表的测量范围作为权重赋予测量变量,使用非线性规划算法基于化工机理约束对测量变量进行校正并求解校正值。结合校正值和工业经验提出过程变量的置信分数模型,实现对测量变量的置信评价。基于校正后的测量变量构建更贴近工业实际的甲醇双效精馏过程模型并实现对其更精准的过程工艺优化。该工作提出的化工机理与工业数据孪生建模思想,对构建数字化工孪生系统和智能化工厂的数据甄别、工艺优化等过程具有重要的科学意义和实际应用价值。

关键词: 数据驱动, 置信分析, 数据协同, 过程优化, 甲醇精馏, 数字孪生

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd