Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 310-319.DOI: 10.16085/j.issn.1000-6613.2023-1286
• Column: Chemical process intensification • Previous Articles
WANG Xiong1(), YANG Zhenning2, LI Yue1, SHEN Weifeng1()
Received:
2023-07-25
Revised:
2023-10-20
Online:
2024-02-05
Published:
2024-01-20
Contact:
SHEN Weifeng
通讯作者:
申威峰
作者简介:
王雄(2000—),男,硕士研究生,研究方向为化工数据建模与优化。E-mail:202218021090@stu.cqu.edu.cn。
基金资助:
CLC Number:
WANG Xiong, YANG Zhenning, LI Yue, SHEN Weifeng. Optimization of methanol distillation process based on chemical mechanism and industrial digital twinning modeling[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 310-319.
王雄, 杨振宁, 李越, 申威峰. 基于化工机理与工业数据孪生建模的甲醇精馏过程优化[J]. 化工进展, 2024, 43(1): 310-319.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1286
组成 | 质量分数/% |
---|---|
CH3OH | 90.54 |
H2O | 9.334 |
C2H5OH | 0.081 |
C4H10O | 0.045 |
组成 | 质量分数/% |
---|---|
CH3OH | 90.54 |
H2O | 9.334 |
C2H5OH | 0.081 |
C4H10O | 0.045 |
参数 | 加压塔 | 常压塔 | 回收塔 |
---|---|---|---|
进料流量/kg·h-1 | 12640.99 | 7458.99 | 1647.99 |
进料压力/kPa | 900 | 561 | 500 |
进料温度/℃ | 82.87 | 120.12 | 90.11 |
塔顶压力/kPa | 560 | 57 | 120 |
塔顶温度/℃ | 115.42 | 41 | 68.84 |
塔底压力/kPa | 581 | 132 | 150 |
塔底温度/℃ | 121.35 | 90.497 | 111.4 |
理论板数 | 72 | 70 | 78 |
进料位置 | 65 | 55 | 47 |
塔顶回流量/kg·h-1 | 13473.3 | 10846 | 3536 |
参数 | 加压塔 | 常压塔 | 回收塔 |
---|---|---|---|
进料流量/kg·h-1 | 12640.99 | 7458.99 | 1647.99 |
进料压力/kPa | 900 | 561 | 500 |
进料温度/℃ | 82.87 | 120.12 | 90.11 |
塔顶压力/kPa | 560 | 57 | 120 |
塔顶温度/℃ | 115.42 | 41 | 68.84 |
塔底压力/kPa | 581 | 132 | 150 |
塔底温度/℃ | 121.35 | 90.497 | 111.4 |
理论板数 | 72 | 70 | 78 |
进料位置 | 65 | 55 | 47 |
塔顶回流量/kg·h-1 | 13473.3 | 10846 | 3536 |
组分 | f4质量分率 | 组分 | f5质量分率 | ||
---|---|---|---|---|---|
设计数据 | 模拟数据 | 设计数据 | 模拟数据 | ||
CH3OH | 0.99999 | 0.999966 | CH3OH | 0.99998 | 0.99992 |
H2O | 0.000003 | 0.000002 | H2O | 0 | 0.00001 |
C2H5OH | 0.000007 | 0.000032 | C2H5OH | 0.00002 | 0.00007 |
组分 | f4质量分率 | 组分 | f5质量分率 | ||
---|---|---|---|---|---|
设计数据 | 模拟数据 | 设计数据 | 模拟数据 | ||
CH3OH | 0.99999 | 0.999966 | CH3OH | 0.99998 | 0.99992 |
H2O | 0.000003 | 0.000002 | H2O | 0 | 0.00001 |
C2H5OH | 0.000007 | 0.000032 | C2H5OH | 0.00002 | 0.00007 |
变量 | DCS仪表 | 描述 | 汽化潜热/kJ·kg-1 |
---|---|---|---|
H1 | FI_4007.PV | 至E0405低压蒸汽流量 | 2752.88 |
H2 | FI_4012.PV | 至E0409低压蒸汽流量 | 2752.88 |
变量 | DCS仪表 | 描述 | 汽化潜热/kJ·kg-1 |
---|---|---|---|
H1 | FI_4007.PV | 至E0405低压蒸汽流量 | 2752.88 |
H2 | FI_4012.PV | 至E0409低压蒸汽流量 | 2752.88 |
变量 | DCS仪表 | 描述 | 质量等压热容/kJ·kg-1·K-1 |
---|---|---|---|
FI_4005.PV | T0402甲醇液流量 | 3.111 | |
FI_4018.PV | E0407甲醇液流量 | 2.918 | |
FI_4011.PV | T0403精甲醇产品流量 | 2.474 | |
FI_4023.PV | E0411甲醇液流量 | 2.627 | |
FI_4014.PV | P0407A/B含醇水流量 | 4.147 | |
FI_4025.PV | T0404采出杂醇油流量 | 5.658 | |
FI_4006.PV | T0402回流量 | 3.018 | |
FI_4008.PV | T0403回流量 | 2.396 | |
FI_4013.PV | T0404回流量 | 3.012 |
变量 | DCS仪表 | 描述 | 质量等压热容/kJ·kg-1·K-1 |
---|---|---|---|
FI_4005.PV | T0402甲醇液流量 | 3.111 | |
FI_4018.PV | E0407甲醇液流量 | 2.918 | |
FI_4011.PV | T0403精甲醇产品流量 | 2.474 | |
FI_4023.PV | E0411甲醇液流量 | 2.627 | |
FI_4014.PV | P0407A/B含醇水流量 | 4.147 | |
FI_4025.PV | T0404采出杂醇油流量 | 5.658 | |
FI_4006.PV | T0402回流量 | 3.018 | |
FI_4008.PV | T0403回流量 | 2.396 | |
FI_4013.PV | T0404回流量 | 3.012 |
变量 | 描述 | DCS测量值/kg·h-1 | 校正值/kg·h-1 | 相对误差/% |
---|---|---|---|---|
f1 | 至E0405低压蒸汽流量 | 10038.199 | 9862.606 | 1.75 |
f2 | 至E0409低压蒸汽流量 | 2134.483 | 1705.557 | 20.10 |
f3 | 至T0402甲醇液流量 | 12939.601 | 11486.436 | 11.23 |
f4 | 自E0407甲醇液流量 | 4961.233 | 5049.447 | -1.78 |
f5 | 自T0403精甲醇产品流量 | 5712.498 | 5275.642 | 7.65 |
f6 | 自E0411甲醇液流量 | 66.816 | 64.845 | 2.95 |
f7 | 自P0407A/B含醇水流量 | 465.631 | 833.960 | -79.10① |
f8 | T0404侧线采出杂醇油流 | 48.562 | 48.655 | 0.19 |
f9 | T0402回流量 | 13334.351 | 13193.590 | 1.06 |
f10 | T0403回流量 | 13087.428 | 13062.239 | 0.19 |
f11 | T0404回流量 | 3889.730 | 4285.911 | -10.19 |
f12 | 至V0407A/B甲醇液流量 | 10014.640 | 9917.230 | 0.97 |
变量 | 描述 | DCS测量值/kg·h-1 | 校正值/kg·h-1 | 相对误差/% |
---|---|---|---|---|
f1 | 至E0405低压蒸汽流量 | 10038.199 | 9862.606 | 1.75 |
f2 | 至E0409低压蒸汽流量 | 2134.483 | 1705.557 | 20.10 |
f3 | 至T0402甲醇液流量 | 12939.601 | 11486.436 | 11.23 |
f4 | 自E0407甲醇液流量 | 4961.233 | 5049.447 | -1.78 |
f5 | 自T0403精甲醇产品流量 | 5712.498 | 5275.642 | 7.65 |
f6 | 自E0411甲醇液流量 | 66.816 | 64.845 | 2.95 |
f7 | 自P0407A/B含醇水流量 | 465.631 | 833.960 | -79.10① |
f8 | T0404侧线采出杂醇油流 | 48.562 | 48.655 | 0.19 |
f9 | T0402回流量 | 13334.351 | 13193.590 | 1.06 |
f10 | T0403回流量 | 13087.428 | 13062.239 | 0.19 |
f11 | T0404回流量 | 3889.730 | 4285.911 | -10.19 |
f12 | 至V0407A/B甲醇液流量 | 10014.640 | 9917.230 | 0.97 |
变量 | 描述 | DCS测量值/℃ | 校正值/℃ | 相对误差/% |
---|---|---|---|---|
t1 | 自V0402甲醇液温度 | 104.311 | 106.718 | -2.31 |
t2 | T0403回流液温度 | 33.986 | 34.039 | -0.16 |
t3 | T0404回流液温度 | 66.158 | 66.023 | 0.20 |
t4 | T0404塔釜温度 | 109.540 | 110.570 | -0.94 |
t5 | 自V0408杂醇油温度 | 39.284 | 39.196 | 0.22 |
t6 | 至V0402甲醇液温度 | 97.365 | 110.971 | -13.97① |
t7 | T040塔顶气温度 | 64.564 | 64.741 | 0.27 |
t8 | 自E0408甲醇液温度 | 38.533 | 38.531 | 0.01 |
t9 | T0404塔顶气温度 | 67.805 | 66.557 | 1.84 |
t10 | 自E0410温度 | 63.558 | 63.800 | -0.38 |
变量 | 描述 | DCS测量值/℃ | 校正值/℃ | 相对误差/% |
---|---|---|---|---|
t1 | 自V0402甲醇液温度 | 104.311 | 106.718 | -2.31 |
t2 | T0403回流液温度 | 33.986 | 34.039 | -0.16 |
t3 | T0404回流液温度 | 66.158 | 66.023 | 0.20 |
t4 | T0404塔釜温度 | 109.540 | 110.570 | -0.94 |
t5 | 自V0408杂醇油温度 | 39.284 | 39.196 | 0.22 |
t6 | 至V0402甲醇液温度 | 97.365 | 110.971 | -13.97① |
t7 | T040塔顶气温度 | 64.564 | 64.741 | 0.27 |
t8 | 自E0408甲醇液温度 | 38.533 | 38.531 | 0.01 |
t9 | T0404塔顶气温度 | 67.805 | 66.557 | 1.84 |
t10 | 自E0410温度 | 63.558 | 63.800 | -0.38 |
参数 | 优化前 | 优化后 |
---|---|---|
加压塔塔顶CH3OH质量分率 | 0.999996 | 0.999978 |
常压塔塔顶CH3OH质量分率 | 0.99995 | 0.999975 |
低压蒸汽流量f1/kg·h-1 | 10038.20 | 9862.61 |
低压蒸汽的潜热H1/kJ·kg-1 | 2752.88 | 2752.88 |
加压塔精甲醇流量f4/kg·h-1 | 4868.35 | 4935.5 |
常压塔精甲醇流量f5/kg·h-1 | 5042.71 | 5027.87 |
精甲醇价格 | 2.7 | |
水电价格C水电/CNY·kg-1 | 0.27 | |
运行时间/d | 300 | |
经济收益/104CNY·a-1 | 19267.1 | 19368.8 |
加压塔塔釜的热负荷/kW | 7676.10 | 7541.83 |
换热器E0406热负荷/kW | 4742.99 | 4453.62 |
公用工程费用/104CNY·a-1 | 1951.43 | 1917.29 |
参数 | 优化前 | 优化后 |
---|---|---|
加压塔塔顶CH3OH质量分率 | 0.999996 | 0.999978 |
常压塔塔顶CH3OH质量分率 | 0.99995 | 0.999975 |
低压蒸汽流量f1/kg·h-1 | 10038.20 | 9862.61 |
低压蒸汽的潜热H1/kJ·kg-1 | 2752.88 | 2752.88 |
加压塔精甲醇流量f4/kg·h-1 | 4868.35 | 4935.5 |
常压塔精甲醇流量f5/kg·h-1 | 5042.71 | 5027.87 |
精甲醇价格 | 2.7 | |
水电价格C水电/CNY·kg-1 | 0.27 | |
运行时间/d | 300 | |
经济收益/104CNY·a-1 | 19267.1 | 19368.8 |
加压塔塔釜的热负荷/kW | 7676.10 | 7541.83 |
换热器E0406热负荷/kW | 4742.99 | 4453.62 |
公用工程费用/104CNY·a-1 | 1951.43 | 1917.29 |
1 | 王子宗, 王基铭, 高立兵. 石化工业软件分类及自主工业软件成熟度分析[J]. 化工进展, 2021, 40(4): 1827-1836. |
WANG Zizong, WANG Jiming, GAO Libing. Classification and maturity analysis on petrochemical industrial software[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1827-1836. | |
2 | GRIEVES Michael W. Product lifecycle management: The new paradigm for enterprises[J]. International Journal of Product Development, 2005, 2(1/2): 71. |
3 | 苗田, 张旭, 熊辉, 等. 数字孪生技术在产品生命周期中的应用与展望[J]. 计算机集成制造系统, 2019, 25(6): 1546-1558. |
MIAO Tian, ZHANG Xu, XIONG Hui, et al. Applications and expectation of digital twin in product lifecycle[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1546-1558. | |
4 | 林智成. 数字孪生技术框架及其在制造业中的应用[J]. 工业控制计算机, 2020, 33(6): 129-131, 133. |
LIN Zhicheng. Digital twins technology framework and its applications in manufacturing industry[J]. Industrial Control Computer, 2020, 33(6): 129-131, 133. | |
5 | SHANKAR Narasimhan, CORNELIUS Jordache. Data reconciliation and gross error detection[M]. Gulf Professional Publishing, 1999:142-173. |
6 | XIE Sen, YANG Chunhua, WANG Xiaoli, et al. A data-driven adaptive multivariate steady state detection strategy for the evaporation process of the sodium aluminate solution[J]. Journal of Process Control, 2018, 68: 145-159. |
7 | WANG Zan, WANG Xianpeng. Multiobjective multifactorial operation optimization for continuous annealing production process[J]. Industrial & Engineering Chemistry Research, 2019, 58(41): 19166-19178. |
8 | WANG Yalin, PAN Zhuofu, YUAN Xiaofeng, et al. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network[J]. ISA Transactions, 2020, 96: 457-467. |
9 | YUAN Xiaofeng, Chen OU, WANG Yalin, et al. Deep quality-related feature extraction for soft sensing modeling: A deep learning approach with hybrid VW-SAE[J]. Neurocomputing, 2020, 396: 375-382. |
10 | KUEHN D R, DAVIDSON H. Computer control Ⅱ. Mathematics of control[J]. Chemical Engineering Progress, 1961, 57(6): 44-47. |
11 | ZHOU Lingke, SU Hongye, CHU Jian. A new method to solve robust data reconciliation in nonlinear process[J]. Chinese Journal of Chemical Engineering, 2006, 14(3): 357-363. |
12 | CROWE Cameron M. Recursive identification of gross errors in linear data reconciliation[J]. AIChE Journal, 1988, 34(4): 541-550. |
13 | Mabel SÁNCHEZ, ROMAGNOLI José. Use of orthogonal transformations in data classification-reconciliation[J]. Computers & Chemical Engineering, 1996, 20(5): 483-493. |
14 | ZHANG Zhengjiang, CHUANG Yingyu, CHEN Junghui. Methodology of data reconciliation and parameter estimation for process systems with multi-operating conditions[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 137: 110-119. |
15 | MARTINEZ PRATA Diego, SCHWAAB Marcio, LUIS LIMA Enrique, et al. Simultaneous robust data reconciliation and gross error detection through particle swarm optimization for an industrial polypropylene reactor[J]. Chemical Engineering Science, 2010, 65(17): 4943-4954. |
16 | CHEBEIR J, WEBB Z T, ROMAGNOLI J A. An environment for topology analysis and data reconciliation of the pre-heat train in an industrial refinery[J]. Applied Thermal Engineering, 2019, 147: 623-635. |
17 | VASEBI Amir, Éric POULIN, HODOUIN Daniel. Dynamic data reconciliation in mineral and metallurgical plants[J]. Annual Reviews in Control, 2012, 36(2): 235-243. |
18 | KHODADADI Hossein, Hooshang JAZAYERI-RAD. Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor[J]. Computers & Chemical Engineering, 2011, 35(11): 2426-2436. |
19 | PRAKASH J, HUANG Biao, SHAH Sirish L. Recursive constrained state estimation using modified extended Kalman filter[J]. Computers & Chemical Engineering, 2014, 65: 9-17. |
20 | LEIBMAN M J, EDGAR T F, LASDON L S. Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques[J]. Computers & Chemical Engineering, 1992, 16(10/11): 963-986. |
21 | GANDHI Mital A, MILI Lamine. Robust Kalman filter based on a generalized maximum-likelihood-type estimator[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2509-2520. |
22 | FUENTE M J, GUTIERREZ G, GOMEZ E, et al. Gross error management in data reconciliation[J]. IFAC-PapersOnLine, 2015, 48(8): 623-628. |
23 | LLANOS Claudia E, SANCHÉZ Mabel C, MARONNA Ricardo A. Robust estimators for data reconciliation[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 5096-5105. |
24 | XIE Sen, YANG Chunhua, YUAN Xiaofeng, et al. A novel robust data reconciliation method for industrial processes[J]. Control Engineering Practice, 2019, 83: 203-212. |
25 | VALLERIO Mattia, TELEN Dries, CABIANCA Lorenzo, et al. Robust multi-objective dynamic optimization of chemical processes using the Sigma Point method[J]. Chemical Engineering Science, 2016, 140: 201-216. |
26 | LI Yue, YANG Zhenning, DENG Xianghui, et al. A mechanism-data hybrid-driven framework for identifying dynamic characteristic of actual chemical processes[J]. Chemical Engineering Research and Design, 2023, 199: 115-129. |
27 | LI Yue, HU Lijuan, LI Ning, et al. A light attention-mixed-base deep learning architecture toward process multivariable modeling and knowledge discovery[J]. Computers & Chemical Engineering, 2023, 174: 108259. |
[1] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[2] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[3] | SUO Hansheng, JIA Mengda, SONG Guang, LIU Dongqing. Digital twin-driving force for petrochemical smart factory [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3365-3373. |
[4] | WANG Zizong, SUO Hansheng, ZHAO Xueliang, YAN Yakun. Design and construction of industrial internet platform for digital twin intelligent ethylene plant [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5029-5036. |
[5] | WANG Zizong, GAO Libing, SUO Hansheng. Designing petrochemical smart plant of the future: state of the art, comparison and prospects [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3387-3401. |
[6] | DONG Lin, CHEN Qingbai, WANG Jianyou, LI Pengfei, WANG Jin. Research progress in brackish water electrodialysis desalination technology [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2102-2114. |
[7] | GAO Libing, LYU Zhongyuan, SUO Hansheng, LIU Xiaoyu. Market analysis and development trend of petrochemical process simulation software [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 1-14. |
[8] | LI Qiao, TIAN Siqi, FENG Zeming, DONG Lichun. Simulation and optimization for separation processes of methanol and trimethoxysilane azeotrope [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2431-2439. |
[9] | YAO Yuman, LUO Wenjia, DAI Yiyang. Research progress of data-driven methods in fault diagnosis of chemical process [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1755-1764. |
[10] | Dongliang WANG, Wenliang MENG, Yong YANG, Peng DONG, Chunqiang LI. A novel methanol distillation process combining heat pump and multi-effect process [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3550-3555. |
[11] | YU Bin, ZHU Weijia. Application exploration of digital twin technology in petrochemical industry [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 278-281. |
[12] | Hong JIANG, Shijian ZHANG, Jiaqiang JING, Cong ZHU. Comparison of conventional and novel high-pressure NGL recovery processes [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2581-2589. |
[13] | ZHU Henan, WANG Zhipu, XING Wenlong, SHU Xinqian. Process optimization and adsorption performance of biochars prepared by co-pyrolysis of sludge and biomasses [J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 199-204. |
[14] | ZOU Jiangwen, YANG Xinyun, ZHANG Yongming, XU Shuying. Application of uniform design in the preparation of nano-alumina by microemulsion method [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2748-2752. |
[15] | QIAN Yu, YANG Siyu, MA Donghui, CUI Peizhe. Research advances in treatment of coal gasification wastewater with high phenol and ammonia [J]. Chemical Industry and Engineering Progree, 2016, 35(06): 1884-1893. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |