Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 465-472.DOI: 10.16085/j.issn.1000-6613.2023-0213
• Materials science and technology • Previous Articles
YANG Chenggong1,2(), HUANG Rong1,2, WANG Dong’e1(), TIAN Zhijian1()
Received:
2023-02-17
Revised:
2023-03-28
Online:
2024-02-05
Published:
2024-01-20
Contact:
WANG Dong’e, TIAN Zhijian
杨成功1,2(), 黄蓉1,2, 王冬娥1(), 田志坚1()
通讯作者:
王冬娥,田志坚
作者简介:
杨成功(1995—),男,博士研究生,研究方向为纳米硫化钼催化剂的合成及应用。E-mail:cgyang@dicp.ac.cn。
基金资助:
CLC Number:
YANG Chenggong, HUANG Rong, WANG Dong’e, TIAN Zhijian. Electrocatalytic hydrogen evolution performance of nitrogen-doped molybdenum disulfide nanocatalysts[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 465-472.
杨成功, 黄蓉, 王冬娥, 田志坚. 氮掺杂二硫化钼纳米催化剂的电催化析氢性能[J]. 化工进展, 2024, 43(1): 465-472.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0213
催化剂 | S/Mo | N/Mo | (S+N)/Mo |
---|---|---|---|
MoS2 | 2.0 | — | 2.00 |
N-MoS2-0.05 | 1.8 | 0.05 | 1.85 |
N-MoS2-0.1 | 1.7 | 0.10 | 1.80 |
N-MoS2-0.2 | 1.8 | 0.05 | 1.85 |
催化剂 | S/Mo | N/Mo | (S+N)/Mo |
---|---|---|---|
MoS2 | 2.0 | — | 2.00 |
N-MoS2-0.05 | 1.8 | 0.05 | 1.85 |
N-MoS2-0.1 | 1.7 | 0.10 | 1.80 |
N-MoS2-0.2 | 1.8 | 0.05 | 1.85 |
催化剂 | N/% | S/% | Mo% | N/Mo原子比 | S/Mo原子比 |
---|---|---|---|---|---|
MoS2 | — | 40.05 | 59.95 | — | 2.00 |
N-MoS2-0.05 | 0.47 | 34.18 | 56.95 | 0.06 | 1.80 |
N-MoS2-0.1 | 0.79 | 30.58 | 53.96 | 0.10 | 1.70 |
N-MoS2-0.2 | 0.42 | 29.09 | 47.96 | 0.06 | 1.82 |
催化剂 | N/% | S/% | Mo% | N/Mo原子比 | S/Mo原子比 |
---|---|---|---|---|---|
MoS2 | — | 40.05 | 59.95 | — | 2.00 |
N-MoS2-0.05 | 0.47 | 34.18 | 56.95 | 0.06 | 1.80 |
N-MoS2-0.1 | 0.79 | 30.58 | 53.96 | 0.10 | 1.70 |
N-MoS2-0.2 | 0.42 | 29.09 | 47.96 | 0.06 | 1.82 |
1 | 黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708. |
HUANG Sheng, WANG Jingyu, GUO Pei, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708. | |
2 | ANJUM M A R, JEONG H Y, LEE M H, et al. Efficient hydrogen evolution reaction catalysis in alkaline media by all-in-one MoS2 with multifunctional active sites[J]. Advanced Materials, 2018, 30(20): 1707105. |
3 | YU Huogen, XIAO Pian, WANG Ping, et al. Amorphous molybdenum sulfide as highly efficient electron-cocatalyst for enhanced photocatalytic H2 evolution[J]. Applied Catalysis B: Environmental, 2016, 193: 217-225. |
4 | LI Yuxuan, YIN Jie, AN Li, et al. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting[J]. Small, 2018, 14(26): 1801070. |
5 | YIN Jie, LI Yuxuan, Fan LYU, et al. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices[J]. Advanced Materials, 2017, 29(47): 1704681. |
6 | AN Li, ZHANG Zhiyong, FENG Jianrui, et al. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte[J]. Journal of the American Chemical Society, 2018, 140(50): 17624-17631. |
7 | SUEN Nian Tzu, HUNG Sung Fu, QUAN Quan, et al. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. |
8 | ZHU Jing, HU Liangsheng, ZHAO Pengxiang, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical Reviews, 2020, 120(2): 851-918. |
9 | CHHOWALLA M, SHIN Hyeon Suk, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275. |
10 | GREELEY J, JARAMILLO T F, BONDE J, et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J]. Nature Materials, 2006, 5(11): 909-913. |
11 | ZHANG Hua. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469. |
12 | KIRIYA D, LOBACCARO P, NYEIN H Y Y, et al. General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction[J]. Nano Letters, 2016, 16(7): 4047-4053. |
13 | PETŐ J, OLLÁR T, VANCSÓ P, et al. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions[J]. Nature Chemistry, 2018, 10(12): 1246-1251. |
14 | SHI Yi, ZHOU Yue, YANG Dongrui, et al. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2017, 139(43): 15479-15485. |
15 | XIE Junfeng, ZHANG Hao, LI Shuang, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Advanced Materials, 2013, 25(40): 5807-5813. |
16 | XIE Junfeng, ZHANG Jiajia, LI Shuang, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2013, 135(47): 17881-17888. |
17 | DENG Jiao, LI Haobo, XIAO Jianping, et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping[J]. Energy & Environmental Science, 2015, 8(5): 1594-1601. |
18 | LAURITSEN J V, NYBERG M, NØRSKOV J K, et al. Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy[J]. Journal of Catalysis, 2004, 224(1): 94-106. |
19 | BONDE J, MOSES P G, JARAMILLO T F, et al. Hydrogen evolution on nano-particulate transition metal sulfides[J]. Faraday Discussions, 2008, 140: 219-231; discussion 297-317. |
20 | LIU Peitao, ZHU Jingyi, ZHANG Jingyan, et al. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution[J]. ACS Energy Letters, 2017, 2(4): 745-752. |
21 | Kuilin LYU, SUO Weiqun, SHAO Mingda, et al. Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst for electroreduction CO2 to CO with high Faradaic efficiency[J]. Nano Energy, 2019, 63: 103834. |
22 | ZENG Libin, CHEN Shuai, VAN DER ZALM Joshua, et al. Sulfur vacancy-rich N-doped MoS2 nanoflowers for highly boosting electrocatalytic N2 fixation to NH3 under ambient conditions[J]. Chemical Communications, 2019, 55(51): 7386-7389. |
23 | LIU Qiuhong, WEIJUN Xia, WU Zhenjun, et al. The origin of the enhanced performance of nitrogen-doped MoS2 in lithium ion batteries[J]. Nanotechnology, 2016, 27(17): 175402. |
24 | ZHENG Jian, ZHANG Han, DONG Shaohua, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide[J]. Nature Communications, 2014, 5(1): 1-7. |
25 | WEI Cong, WU Wenzhuo, LI Hao, et al. Atomic plane-vacancy engineering of transition-metal dichalcogenides with enhanced hydrogen evolution capability[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25264-25270. |
26 | TANG Cheng, JIAO Yan, SHI Bingyang, et al. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts[J]. Angewandte Chemie International Edition, 2020, 59(23): 9171-9176. |
27 | BENOIST L, GONBEAU D, PFISTER-GUILLOUZO G, et al. XPS analysis of oxido-reduction mechanisms during lithium intercalation in amorphous molybdenum oxysulfide thin films[J]. Solid State Ionics, 1995, 76(1/2): 81-89. |
28 | YANG Yang, FEI Huilong, RUAN Gedeng, et al. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices[J]. Advanced Materials, 2014, 26(48): 8163-8168. |
29 | LI Ruchun, YANG Linjing, XIONG Tanli, et al. Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction[J]. Journal of Power Sources, 2017, 356: 133-139. |
30 | BINDER H, SELLMANN D. Röntgen-photoelektronenspektroskopische untersuchungen an pentacarbonyl-chrom-und-wolfram-komplexen mit stickstoffliganden/X-ray photoelectron studies of pentacarbonyl chromium and tungsten complexes with nitrogen ligands[J]. Zeitschrift Für Naturforschung B, 1978, 33(2): 173-179. |
31 | SANJINÉS R, WIEMER C, ALMEIDA J, et al. Valence band photoemission study of the Ti-Mo-N system[J]. Thin Solid Films, 1996, 290: 334-338. |
32 | WU Yi, LI Fan, CHEN Wenlong, et al. Coupling interface constructions of MoS2/Fe5Ni4S8 heterostructures for efficient electrochemical water splitting[J]. Advanced Materials, 2018, 30(38): 1803151. |
33 | YIN Ying, HAN Jiecai, ZHANG Yumin, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. Journal of the American Chemical Society, 2016, 138(25): 7965-7972. |
34 | PLATANITIS P, PANAGIOTOU G D, BOURIKAS K, et al. Preparation of un-promoted molybdenum HDS catalysts supported on titania by equilibrium deposition filtration: Optimization of the preparative parameters and investigation of the promoting action of titania[J]. Journal of Molecular Catalysis A: Chemical, 2016, 412: 1-12. |
35 | DALPIAN G M, CHELIKOWSKY J R. Self-purification in semiconductor nanocrystals[J]. Physical Review Letters, 2006, 96(22): 226802. |
36 | LI Hong, ZHANG Qing, Chin Chong Ray YAP, et al. From bulk to monolayer MoS2: Evolution of Raman scattering[J]. Advanced Functional Materials, 2012, 22(7): 1385-1390. |
37 | 查全性. 电极过程动力学导论[M]. 北京: 科学出版社, 1976. |
ZHA Quanxing. Introduction to electrode process dynamics[M]. Beijing: Science Press, 1976. | |
38 | SCHMICKLER W, SANTOS E. Hydrogen reaction and electrocatalysis[M]// Interfacial Electrochemistry. Berlin, Heidelberg: Springer, 2010: 163-175. |
39 | 孙世刚, 陈胜利. 电催化[M]. 北京: 化学工业出版社, 2013. |
SUN Shigang, CHEN Shengli. Electrocatalysis[M]. Beijing: Chemical Industry Press, 2013. | |
40 | TRASATTI S. Work function, electronegativity, and electrochemical behaviour of metals Ⅲ. Electrolytic hydrogen evolution in acid solutions[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972, 39(1): 163-184. |
41 | KHOOBIAR S. Particle to particle migration of hydrogen atoms on platinum—Alumina catalysts from particle to neighboring particles[J]. The Journal of Physical Chemistry, 1964, 68(2): 411-412. |
[1] | WANG Darui, SUN Hongmin, WANG Yiyan, TANG Zhimou, LI Rui, FAN Xueyan, YANG Weimin. Recent progress in zeolite for efficient catalytic reaction process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 1-18. |
[2] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[3] | LUO Fen, YANG Xiaoqi, DUAN Fanglin, LI Xiaojiang, WU Liang, XU Tongwen. Recent advances in the bipolar membrane and its applications [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 145-163. |
[4] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[5] | ZHANG Jiahao, LI Yingying, XU Yanlin, YIN Jiabin, ZHANG Jisong. Research advancement of continuous reductive amination in microreactors [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 186-197. |
[6] | WANG Lihua, CAI Suhang, JIANG Wentao, LUO Qian, LUO Yong, CHEN Jianfeng. Research progress of micro and nano scale gas-liquid mass transfer to intensify catalytic hydrogenation of oil products [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 19-33. |
[7] | HENG Linyu, DENG Zhuoran, CHENG Daojian, WEI Bin, ZHAO Liqiang. Progress of high-throughput synthesis device for process reinforcement of metal catalyst preparation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 246-259. |
[8] | WANG Yiyan, WANG Darui, SHEN Zhenhao, HE Junlin, SUN Hongmin, YANG Weimin. Preparation and catalytic performance of fully crystalline MCM-22 zeolite catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 285-291. |
[9] | YU Xiaoxiao, CHAO Yanhong, LIU Haiyan, ZHU Wenshuai, LIU Zhichang. Enhanced photoelectric properties and photocatalytic CO2 conversion by D-A conjugated polymerization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 292-301. |
[10] | YU Songmin, JIN Hongbo, YANG Minghu, YU Haifeng, JIANG Hao. Synthesis and modification of F-doped olivine LiFe0.5Mn0.5PO4 cathode materials for Li-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 302-309. |
[11] | SUN Chongzheng, LI Yuxing, XU Jie, HAN Hui, SONG Guangchun, LU Xiao. Offshore adaptability enhancement mechanism of falling film flow outside the FLH2 channel tube during floating hydrogen energy storage and transportation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 338-352. |
[12] | XIA Yinping, LI Zhoupeng, WANG Qianqian. Strategy toward positive electrode design for high-loading lithium-sulfur battery [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 364-375. |
[13] | FENG Debin, WANG Wen, MA Fanhua. Simulation and analysis for pipeline transportation characteristics of hydrogen-enriched compressed natural gas [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 390-399. |
[14] | SUN Jin, CHEN Xiaozhen, LIU Mingrui, LIU Li, NIU Shikun, GUO Rong. Deactivation mechanism of sodium poisoning hydrodesulfurization catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 407-413. |
[15] | ZHANG Haipeng, WANG Shuzhen, MA Mengxi, ZHANG Wei, XIANG Jiangnan, WANG Yuting, WANG Yan, FAN Binbin, ZHENG Jiajun, LI Ruifeng. Synthesis of ZSM-22 molecular sieve and its n-dodecane hydroisomerization performance: Effect of template agent and dynamic crystallization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 414-421. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |