1 |
张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371.
|
|
ZHANG Xuan, FAN Xinye, WU Zhenyu, et al. Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371.
|
2 |
FRANCO Brais Armiño, BAPTISTA Patrícia, NETO Rui Costa, et al. Assessment of offloading pathways for wind-powered offshore hydrogen production: Energy and economic analysis[J]. Applied Energy, 2021, 286: 116553.
|
3 |
BABARIT Aurélien, GILLOTEAUX Jean-Christophe, CLODIC Gaël, et al. Techno-economic feasibility of fleets of far offshore hydrogen-producing wind energy converters[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7266-7289.
|
4 |
孙崇正, 樊欣, 李玉星, 等. 海上多孔介质通道内氢气换热与正仲氢转化的耦合特性[J]. 化工进展, 2023, 42(3): 1281-1290.
|
|
SUN Chongzheng, FAN Xin, LI Yuxing, et al. Coupling characteristics of hydrogen heat transfer and normal-parahydrogen conversion in offshore porous media channels[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1281-1290.
|
5 |
陈晓露, 刘小敏, 王娟, 等. 液氢储运技术及标准化[J]. 化工进展, 2021, 40(9): 4806-4814.
|
|
CHEN Xiaolu, LIU Xiaomin, WANG Juan, et al. Technology and standardization of liquid hydrogen storage and transportation[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4806-4814.
|
6 |
曹学文, 杨健, 边江, 等. 新型双压Linde-Hampson氢液化工艺设计与分析[J]. 化工进展, 2021, 40(12): 6663-6669.
|
|
CAO Xuewen, YANG Jian, BIAN Jiang, et al. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669.
|
7 |
JIAN Guanping, WANG Simin, SUN Lijuan, et al. Experimental study of the effects of key geometry parameters on shell-side vapor condensation of spiral-wound heat exchangers[J]. Applied Thermal Engineering, 2020, 166: 114731.
|
8 |
ZHANG Jun, SONG Chenchen, NIU Xiaofei, et al. Investigation on the thermal performance of spiral wound heat exchanger for the superfluid helium cryogenic system[J]. Cryogenics, 2021, 115: 103264.
|
9 |
CHIEN Lianghan, TSAI Yue-Lin. An experimental study of pool boiling and falling film vaporization on horizontal tubes in R-245fa[J]. Applied Thermal Engineering, 2011, 31(17/18): 4044-4054.
|
10 |
HU Haitao, DING Chao, DING Guoliang, et al. Heat transfer characteristics of two-phase mixed hydrocarbon refrigerants flow boiling in shell side of LNG spiral wound heat exchanger[J]. International Journal of Heat and Mass Transfer, 2019, 131: 611-622.
|
11 |
GEIR Skaugen, DAVID Berstad, Wilhelmsen ØIVIND. Comparing exergy losses and evaluating the potential of catalyst-filled plate-fin and spiral-wound heat exchangers in a large-scale Claude hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6663-6679.
|
12 |
GENIĆ S B, JAĆIMOVIĆ B M, JARIĆ M S, et al. Research on the shell-side thermal performances of heat exchangers with helical tube coils[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 4295-4300.
|
13 |
GENIĆ S B, JAĆIMOVIĆ B M, JARIĆ M S, et al. Analysis of fouling factor in district heating heat exchangers with parallel helical tube coils[J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 9-15.
|
14 |
LU Xing, DU Xueping, ZENG Min, et al. Shell-side thermal-hydraulic performances of multilayer spiral-wound heat exchangers under different wall thermal boundary conditions[J]. Applied Thermal Engineering, 2014, 70(2): 1216-1227.
|
15 |
LU Xing, ZHANG Gaopeng, CHEN Yi-tung, et al. Effect of geometrical parameters on flow and heat transfer performances in multi-stream spiral-wound heat exchangers[J]. Applied Thermal Engineering, 2015, 89: 1104-1116.
|
16 |
WANG Simin, JIAN Guanping, XIAO Juan, et al. Fluid-thermal-structural analysis and structural optimization of spiral-wound heat exchanger[J]. International Communications in Heat and Mass Transfer, 2018, 95: 42-52.
|
17 |
WANG S M, JIAN G, WANG J R, et al. Application of entransy-dissipation-based thermal resistance for performance optimization of spiral-wound heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 116: 743-750.
|
18 |
JIAN Guanping, WANG Simin, SUN Lijuan, et al. Numerical investigation on the application of elliptical tubes in a spiral-wound heat exchanger used in LNG plant[J]. International Journal of Heat and Mass Transfer, 2019, 130: 333-341.
|
19 |
YU Jiawen, CHEN Jie, LI Fengzhi, et al. Experimental investigation of forced convective condensation heat transfer of hydrocarbon refrigerant in a helical tube[J]. Applied Thermal Engineering, 2018, 129: 1634-1644.
|
20 |
YU Jiawen, JIANG Yiqiang, CAI Weihua, et al. Numerical investigation on flow condensation of zeotropic hydrocarbon mixtures in a helically coiled tube[J]. Applied Thermal Engineering, 2018, 134: 322-332.
|
21 |
YU Jiawen, JIANG Yiqiang, CAI Weihua, et al. Heat transfer characteristics of hydrocarbon mixtures refrigerant during condensation in a helical tube[J]. International Journal of Thermal Sciences, 2018, 133: 196-205.
|
22 |
LI Shulei, CAI Weihua, CHEN Jie, et al. Evaluation analysis of correlations for predicting void fraction of condensation hydrocarbon refrigerant upward flow in a spiral pipe[J]. Applied Thermal Engineering, 2018, 140: 716-732.
|
23 |
LI Shulei, CAI Weihua, CHEN Jie, et al. Numerical study on condensation heat transfer and pressure drop characteristics of ethane/propane mixture upward flow in a spiral pipe[J]. International Journal of Heat and Mass Transfer, 2018, 121: 170-186.
|
24 |
LI Shulei, JIANG Yiqiang, CAI Weihua, et al. The influence of structural parameters on heat transfer and pressure drop for hydrocarbon mixture refrigerant during condensation in enhanced spiral pipes[J]. Applied Thermal Engineering, 2018, 140: 759-774.
|
25 |
DING Chao, HU Haitao, DING Guoliang, et al. Experimental investigation on downward flow boiling heat transfer characteristics of propane in shell side of LNG spiral wound heat exchanger[J]. International Journal of Refrigeration, 2017, 84: 13-25.
|
26 |
DING Chao, HU Haitao, DING Guoliang, et al. Experimental investigation on pressure drop characteristics of two-phase hydrocarbon mixtures flow in the shell side of LNG spiral wound heat exchangers[J]. Applied Thermal Engineering, 2017, 127: 347-358.
|
27 |
DING Chao, HU Haitao, DING Guoliang, et al. Influences of tube pitches on heat transfer and pressure drop characteristics of two-phase propane flow boiling in shell side of LNG spiral wound heat exchanger[J]. Applied Thermal Engineering, 2018, 131: 270-283.
|
28 |
ZHENG Wenke, CAI Weihua, JIANG Yiqiang. Distribution performance of gas-liquid mixture in the shell side of spiral-wound heat exchangers[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2284-2292.
|
29 |
WANG Tingting, DING Guoliang, REN Tao, et al. A mathematical model of floating LNG spiral-wound heat exchangers under rolling conditions[J]. Applied Thermal Engineering, 2016, 99: 959-969.
|
30 |
DUAN Zhongdi, REN Tao, DING Guoliang, et al. Liquid-migration based model for predicting the thermal performance of spiral wound heat exchanger for floating LNG[J]. Applied Energy, 2017, 206: 972-982.
|
31 |
LI Shulei, JIANG Yiqiang, CAI Weihua, et al. Numerical study on condensation heat transfer and pressure drop characteristics of methane upward flow in a spiral pipe under sloshing condition[J]. International Journal of Heat and Mass Transfer, 2019, 129: 310-325.
|
32 |
REN Yan, CAI Weihua, CHEN Jie, et al. Numerical study on the shell-side flow and heat transfer of superheated vapor flow in spiral wound heat exchanger under rolling working conditions[J]. International Journal of Heat and Mass Transfer, 2018, 121: 691-702.
|
33 |
REN Yan, CAI Weihua, CHEN Jie, et al. The heat transfer characteristic of shell-side film flow in spiral wound heat exchanger under rolling working conditions[J]. Applied Thermal Engineering, 2018, 132: 233-244.
|
34 |
HOU Hao, BI Qincheng, MA Hong, et al. Distribution characteristics of falling film thickness around a horizontal tube[J]. Desalination, 2012, 285: 393-398.
|
35 |
孙崇正, 李玉星, 曹学文, 等. 天然气液化冷剂管外降膜流动特性数值模拟[J]. 油气储运, 2022, 41(2): 200-210.
|
|
SUN Chongzheng, LI Yuxing, CAO Xuewen, et al. Numerical simulation of flow characteristics of falling film outside coolant pipelines during liquefaction of natural gas[J]. Oil & Gas Storage and Transportation, 2022, 41(2): 200-210.
|