Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 3857-3871.DOI: 10.16085/j.issn.1000-6613.2023-0989
• Materials science and technology • Previous Articles
YANG Guang1(), JIANG Ruiting1, ZHANG Yue1, FU Zijian2, LIU Wei1()
Received:
2023-06-16
Revised:
2023-07-12
Online:
2024-08-14
Published:
2024-07-10
Contact:
LIU Wei
通讯作者:
刘伟
作者简介:
杨光(1988—),女,硕士,助理研究员,研究方向为电极材料。E-mail:18545535486@163.com。
基金资助:
CLC Number:
YANG Guang, JIANG Ruiting, ZHANG Yue, FU Zijian, LIU Wei. Application of vanadium pentoxide/carbon nanocomposites in supercapacitors[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3857-3871.
杨光, 姜瑞婷, 张玥, 符子剑, 刘伟. 五氧化二钒/碳纳米复合材料在超级电容器中的应用[J]. 化工进展, 2024, 43(7): 3857-3871.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0989
88 | CHOUDHURY Arup, KIM Ji-Hoon, YANG Kap-Seung, et al. Facile synthesis of self-standing binder-free vanadium pentoxide-carbon nanofiber composites for high-performance supercapacitors[J]. Electrochimica Acta, 2016, 213: 400-407. |
89 | YANG Guang, WANG Dengke, CHEN Song, et al. Heteroatom-doped carbon spheres from FCC slurry oil as anode material for lithium-ion battery[J]. China Petroleum Processing and Petrochemical Technology, 2022, 24(1): 1-10. |
90 | LUO Wenlong, SUN Yue, LIN Zhongtai, et al. Flexible Ti3C2T x MXene/V2O5 composite films for high-performance all-solid supercapacitors[J]. Journal of Energy Storage, 2023, 62: 106807. |
91 | DEVARAYAPALLI K C, LEE K, H-B DO, et al. Mesostructured g-C3N4 nanosheets interconnected with V2O5 nanobelts as electrode for coin-cell-type-asymmetric supercapacitor device[J]. Materials Today Energy, 2021, 21: 100699. |
92 | YADAV Sarita, DEVI Ambika. Recent advancements of metal oxides/Nitrogen-doped graphene nanocomposites for supercapacitor electrode materials[J]. Journal of Energy Storage, 2020, 30: 101486. |
93 | RAMESH Sivalingam, YADAV H M, BATHULA Chinna, et al. V2O5 nano sheets assembled on nitrogen doped multiwalled carbon nanotubes/carboxy methyl cellulose composite for two-electrode configuration of supercapacitor applications[J]. Ceramics International, 2022, 48(19): 29247-29256. |
94 | 蔡江涛, 候刘华, 兰雨金, 等. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
CAI Jiangtao, HOU Liuhua, LAN Yujin, et al. Preparation of pitch-based porous carbon materials and its application in supercapacitors[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1895-1906. | |
95 | YILMAZ Gamze, LU Xianmao, Ghim Wei HO. Cross-linker mediated formation of sulfur-functionalized V2O5/graphene aerogels and their enhanced pseudocapacitive performance[J]. Nanoscale, 2017, 9(2): 802-811. |
96 | JAMPANI Prashanth H, VELIKOKHATNYI Oleg, KADAKIA Karan, et al. High energy density titanium doped-vanadium oxide-vertically aligned CNT composite electrodes for supercapacitor applications[J]. Journal of Materials Chemistry A, 2015, 3(16): 8413-8432. |
97 | LIN Zongyuan, YAN Xingbin, LANG Junwei, et al. Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods[J]. Journal of Power Sources, 2015, 279: 358-364. |
98 | WALLAR C J, POON R, ZHITOMIRSKY I. High areal capacitance of V2O5-carbon nanotube electrodes[J]. Journal of the Electrochemical Society, 2017, 164(14): A3620-A3627. |
1 | NAJIB Sumaiyah, ERDEM Emre. Current progress achieved in novel materials for supercapacitor electrodes: Mini review[J]. Nanoscale Advances, 2019, 1(8): 2817-2827. |
2 | SUGANYA B, MARUTHAMUTHU S, CHANDRASEKARAN J, et al. Design of zinc vanadate (Zn3V2O8)/nitrogen doped multiwall carbon nanotubes (N-MWCNT) towards supercapacitor electrode applications[J]. Journal of Electroanalytical Chemistry, 2021, 881: 114936. |
3 | NANDI Debabrata, MOHAN Velram Balaji, BHOWMICK Anil K, et al. Metal/metal oxide decorated graphene synthesis and application as supercapacitor: A review[J]. Journal of Materials Science, 2020, 55(15): 6375-6400. |
4 | QIAN Aniu, PANG Yiwei, WANG Guangyu, et al. Pseudocapacitive charge storage in MXene-V2O5 for asymmetric flexible energy storage devices[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54791-54797. |
5 | CHALKER Cody J, An Hyosung, ZAVALA Jose, et al. Fabrication and electrochemical performance of structured mesoscale open shell V2O5 networks[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2017, 33(24): 5975-5981. |
6 | ZHANG Yifu, ZHENG Jiqi, WANG Qiushi, et al. Hydrothermal synthesis of vanadium dioxides/carbon composites and their transformation to surface-uneven V2O5 nanoparticles with high electrochemical properties[J]. RSC Advances, 2016, 6(96): 93741-93752. |
7 | AHIRRAO Dinesh J, MOHANAPRIYA K, Neetu JHA. V2O5 nanowires-graphene composite as an outstanding electrode material for high electrochemical performance and long-cycle-life supercapacitor[J]. Materials Research Bulletin, 2018, 108: 73-82. |
8 | NAGARAJU D H, WANG Qingxiao, BEAUJUGE P, et al. Two-dimensional heterostructures of V2O5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(40): 17146-17152. |
9 | WANG Aiyin, CHAUDHARY Manchal, LIN Tsung-Wu. Enhancing the stability and capacitance of vanadium oxide nanoribbons/3D-graphene binder-free electrode by using VOSO4 as redox-active electrolyte[J]. Chemical Engineering Journal, 2019, 355: 830-839. |
10 | PANDEY Gaind P, LIU Tao, BROWN Emery, et al. Mesoporous hybrids of reduced graphene oxide and vanadium pentoxide for enhanced performance in lithium-ion batteries and electrochemical capacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(14): 9200-9210. |
11 | HSIAO Yu-Sheng, Caiwan CHANG-JIAN, Wei-Lin SYU, et al. Enhanced electrochromic performance of carbon-coated V2O5 derived from a metal-organic framework[J]. Applied Surface Science, 2021, 542: 148498. |
12 | YANG Zhoufei, TIAN Jiarui, YIN Zefang, et al. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review[J]. Carbon, 2019, 141: 467-480. |
13 | MAJUMDAR Dipanwita, MANDAL Manas, BHATTACHARYA Swapan K. V2O5 and its carbon-based nanocomposites for supercapacitor applications[J]. ChemElectroChem, 2019, 6(6): 1623-1648. |
14 | GENG Zhenduo, WANG Yuping. Synthesis of V2O5·1.6H2O/graphene composite and its application in supercapacitors[J]. Journal of Solid State Electrochemistry, 2015, 19(10): 3131-3138. |
15 | DENG Lingjuan, GAO Yihong, MA Zhanying, et al. Free-standing graphene/vanadium oxide composite as binder-free electrode for asymmetrical supercapacitor[J]. Journal of Colloid and Interface Science, 2017, 505: 556-565. |
16 | WANG Xin, ZUO Chunling, JIA Lihua, et al. Synthesis of sandwich-like vanadium pentoxide/carbon nanotubes composites for high performance supercapacitor electrodes[J]. Journal of Alloys and Compounds, 2017, 708: 134-140. |
17 | MEI Jing, MA Yongjun, PEI Chonghua. V2O5 nanobelt-carbonized bacterial cellulose composite with enhanced electrochemical performance for aqueous supercapacitors[J]. Journal of Solid State Electrochemistry, 2017, 21(2): 573-580. |
18 | MOHD ABDAH Muhammad Amirul Aizat, AZMAN Nur Hawa Nabilah, KULANDAIVALU Shalini, et al. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors[J]. Materials & Design, 2020, 186: 108199. |
19 | DELBARI Seyed ALI, GHADIMI Laleh Saleh, HADI Raha, et al. Transition metal oxide-based electrode materials for flexible supercapacitors: A review[J]. Journal of Alloys and Compounds, 2021, 857: 158281. |
20 | RAGHAVENDRA Kummara Venkata Guru, VINOTH Rajangam, Kamran ZEB, et al. An intuitive review of supercapacitors with recent progress and novel device applications[J]. Journal of Energy Storage, 2020, 31: 01652. |
21 | DUBEY Richa, GURUVIAH Velmathi. Review of carbon-based electrode materials for supercapacitor energy storage[J]. Ionics, 2019, 25(4): 1419-1445. |
22 | FLEISCHMANN Simon, ZEIGER Marco, Nicolas JÄCKEL, et al. Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodes[J]. Journal of Materials Chemistry A, 2017, 5(25): 13039-13051. |
23 | ZHANG Gaini, REN Lijun, HU Dengwei, et al. Fabrication of mesoporous carbon hollow spheres intercalated three-dimensional network structure V2O5 nanosheets with enhanced electrochemical performance[J]. Journal of Alloys and Compounds, 2019, 781: 407-414. |
24 | 韩慕瑶, 赵丽娜, 孙洁. 硅及硅基负极材料的研究进展[J]. 高等学校化学学报, 2021, 42(12): 3547-3560. |
HAN Muyao, ZHAO Lina, SUN Jie. Advances in silicon and silicon-based anode materials[J]. Chemical Journal of Chinese Universities, 2021, 42(12): 3547-3560. | |
25 | Ce Yao FOO, SUMBOJA Afriyanti, TAN Daniel Jia Hong, et al. Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices[J]. Advanced Energy Materials, 2014, 4(12): 1400236. |
26 | SHI Chenglong, SUN Junlong, PANG Youyong, et al. A new potassium dual-ion hybrid supercapacitor based on battery-type Ni(OH)2 nanotube arrays and pseudocapacitor-type V2O5-anchored carbon nanotubes electrodes[J]. Journal of Colloid and Interface Science, 2022, 607(1): 462-469. |
27 | ZEIGER Marco, ARIYANTO Teguh, Benjamin KRÜNER, et al. Vanadium pentoxide/carbide-derived carbon core-shell hybrid particles for high performance electrochemical energy storage[J]. Journal of Materials Chemistry A, 2016, 4(48): 18899-18909. |
28 | KIM Andrew, KALITA Golap, KIM Jong Hak, et al. Recent development in vanadium pentoxide and carbon hybrid active materials for energy storage devices[J]. Nanomaterials, 2021, 11(12): 3213. |
29 | SUN Wei, GAO Guohua, DU Yuchuan, et al. A facile strategy for fabricating hierarchical nanocomposites of V2O5 nanowire arrays on a three-dimensional N-doped graphene aerogel with a synergistic effect for supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(21): 9938-9947. |
30 | MTZ-ENRIQUEZ A I, GOMEZ-SOLIS C, OLIVA A I, et al. Enhancing the voltage and discharge times of graphene supercapacitors depositing a CNT/V2O5 layer on their electrodes[J]. Materials Chemistry and Physics, 2020, 244: 122698. |
31 | NARAYANAN Remya, DEWAN Anweshi, CHAKRABORTY Debanjan. Complimentary effects of annealing temperature on optimal tuning of functionalized carbon-V2O5 hybrid nanobelts for targeted dual applications in electrochromic and supercapacitor devices[J]. RSC Advances, 2018, 8(16): 8596-8606. |
32 | ZHANG Hui, XIE Anjian, WANG Cuiping, et al. Bifunctional reduced graphene oxide/V2O5 composite hydrogel: Fabrication, high performance as electromagnetic wave absorbent and supercapacitor[J]. ChemPhysChem, 2014, 15(2): 366-373. |
33 | NARAYANAN Remya. Single step hydrothermal synthesis of carbon nanodot decorated V2O5 nanobelts as hybrid conducting material for supercapacitor application[J]. Journal of Solid State Chemistry, 2017, 253: 103-112. |
34 | ZHANG Yifu, ZHENG Jiqi, WANG Qiushi, et al. Hydrothermal synthesis of vanadium dioxides/carbon composites and their transformation to surface-uneven V2O5 nanoparticles with high electrochemical properties[J]. RSC Advances, 2016, 6(96): 93741-93752. |
35 | KIM Taegyeong, KIM Hanah, YOU Tae-Soo, et al. Carbon-coated V2O5 nanoparticles derived from metal-organic frameworks as a cathode material for rechargeable lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 727: 522-530. |
99 | 叶一桦, 巴德良, 刘帅磊, 等. 高倍率铌基氧化物负极材料的研究进展[J]. 高等学校化学学报, 2021, 42(10): 3005-3023. |
YE Yihua, BA Deliang, LIU Shuailei, et al. Recent progress on high-rate niobium-based oxides anode materials[J]. Chemical Journal of Chinese Universities, 2021, 42(10): 3005-3023. | |
100 | JYOTHIBASU Jincy Parayangattil, CHEN Ming Zhu, TIEN You Ching, et al. V2O5/carbon nanotube/polypyrrole based freestanding negative electrodes for high-performance supercapacitors[J]. Catalysts, 2021, 11: 980. |
101 | GUO Chunxian, YILMAZ Gamze, CHEN Shucheng, et al. Hierarchical nanocomposite composed of layered V2O5/PEDOT/MnO2 nanosheets for high-performance asymmetric supercapacitors[J]. Nano Energy, 2015, 12: 76-87. |
102 | JIANG Haifeng, CAI Xiaoyi, QIAN Yao, et al. V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(45): 23727-23736. |
103 | ZHOU Xi, CHEN Qiang, WANG Anqi, et al. Bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3776-3783. |
104 | SHAKIR Imran, Zahid ALI, Jihyun BAE, et al. Layer by layer assembly of ultrathin V2O5 anchored MWCNTs and graphene on textile fabrics for fabrication of high energy density flexible supercapacitor electrodes[J]. Nanoscale, 2014, 6(8): 4125-4130. |
105 | GUO Yan, LI Jun, CHEN Mingdong, et al. Facile synthesis of vanadium pentoxide@carbon core-shell nanowires for high-performance supercapacitors[J]. Journal of Power Sources, 2015, 273: 804-809. |
106 | WANG Qingyong, ZOU Yongjin, XIANG Cuili, et al. High-performance supercapacitor based on V2O5/carbon nanotubes-super activated carbon ternary composite[J]. Ceramics International, 2016, 42(10): 12129-12135. |
107 | ZHOU Xi, GAO Xuexia, LIU Meihong, et al. Synthesis of 3D phosphorus doped graphene foam in carbon cloth to support V2O5/CoMoS4 hybrid for flexible all-solid-state asymmetry supercapacitors[J]. Journal of Power Sources, 2020, 453: 227902. |
108 | JAYALAKSHMI M, RAO M Mohan, VENUGOPAL N, et al. Hydrothermal synthesis of SnO2-V2O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5-CNT, and SnO2-V2O5-CNT electrodes for supercapacitor applications[J]. Journal of Power Sources, 2007, 166(2): 578-583. |
36 | LI Meili, SUN Guoying, YIN Pingping, et al. Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11462-11470. |
37 | ZHU Yihan, WANG Dongfeng, YAN Xuehua, et al. Vertical, dense and uniform V2O5 nanoneedle arrays on carbon foam for boosting electrochemical performance[J]. Journal of Energy Storage, 2021, 37: 102492. |
38 | XIAO Yingbo, XU Yazhou, ZHANG Kaiyang, et al. Coaxial electrospun free-standing and mechanically stable hierarchical porous carbon nanofiber membranes for flexible supercapacitors[J]. Carbon, 2020, 160: 80-87. |
39 | THANGAPPAN R, KALAISELVAM S, ELAYAPERUMAL A, et al. Synthesis of graphene oxide/vanadium pentoxide composite nanofibers by electrospinning for supercapacitor applications[J]. Solid State Ionics, 2014, 268: 321-325. |
40 | WANG He, NIU Haitao, WANG Hongjie, et al. Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance[J]. Journal of Power Sources, 2021, 482: 228986. |
41 | KIM Bo-Hye, YANG Kap Seung, YANG Duck J. Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-layer capacitors[J]. Electrochimica Acta, 2013, 109: 859-865. |
42 | KIM Bo-Hye, KIM Chang Hyo, YANG Kap Seung, et al. Electrospun vanadium pentoxide/carbon nanofiber composites for supercapacitor electrodes[J]. Electrochimica Acta, 2012, 83: 335-340. |
43 | QIN Huizhen, LIANG Shunfei, CHEN Lingyun, et al. Recent advances in vanadium-based nanomaterials and their composites for supercapacitors[J]. Sustainable Energy & Fuels, 2020, 4(10): 4902-4933. |
44 | KIRUTHIGA R, NITHYA C, KARVEMBU R, et al. Reduced graphene oxide embedded V2O5 nanorods and porous honey carbon as high performance electrodes for hybrid sodium-ion supercapacitors[J]. Electrochimica Acta, 2017, 256: 221-231. |
45 | LIU Haiqing, TANG Yanping, WANG Chi, et al. A lyotropic liquid-crystal-based assembly avenue toward highly oriented vanadium pentoxide/graphene films for flexible energy storage[J]. Advanced Functional Materials, 2017, 27(12): 1606269. |
46 | VELAYUTHAM Rajavel, MANIKANDAN Ramu, JUSTIN Raj C, et al. Electrodeposition of vanadium pentoxide on carbon fiber cloth as a binder-free electrode for high-performance asymmetric supercapacitor[J]. Journal of Alloys and Compounds, 2021, 863: 158332. |
47 | YOU Mingyu, ZHANG Wenjing, YAN Xuehua, et al. V2O5 nanosheets assembled on 3D carbon fiber felt as a free-standing electrode for flexible asymmetric supercapacitor with remarkable energy density[J]. Ceramics International, 2021, 47(3): 3337-3345. |
48 | NGOM B D, NDIAYE N M, SYLLA N F, et al. Binary vanadium pentoxide carbon-graphene foam composites derived from dark red hibiscus sabdariffa for advanced asymmetric supercapacitor[J]. Philosophical Transactions of the Royal Society of Londor Series A, 2021, 379(2209): 20200347. |
49 | CHEN Shuai, JIANG Hao, CHENG Qilin, et al. Amorphous vanadium oxides with metallic character for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2021, 403: 126380. |
50 | PANDIT Bidhan, DUBAL Deepak P, Pedro GÓMEZ-ROMERO, et al. V2O5 encapsulated MWCNTs in 2D surface architecture: Complete solid-state bendable highly stabilized energy efficient supercapacitor device[J]. Scientific Reports, 2017, 7: 43430. |
51 | KORKMAZ S, Meydaneri TEZEL F, KARIPER İ A. Synthesis and characterization of GO/V2O5 thin film supercapacitor[J]. Synthetic Metals, 2018, 242: 37-48. |
52 | SHAKIR Imran, CHOI Joon Hyock, SHAHID Muhammad, et al. Ultra-thin and uniform coating of vanadium oxide on multiwall carbon nanotubes through solution based approach for high-performance electrochemical supercapacitors[J]. Electrochimica Acta, 2013, 111: 400-404. |
53 | LEISTENSCHNEIDER Desirée, ABEDI Zahra, IVEY Douglas G, et al. Coating of low-cost asphaltenes-derived carbon fibers with V2O5 for supercapacitor application[J]. Energy & Fuels, 2022, 36(6): 3328-3338. |
54 | TABATABAI YAZDI Sh, MOUSAVI M, KHORRAMI Gh H. Effect of co-doping in V2O5 nanoparticles synthesized via a gelatin-based sol-gel method[J]. Materials Today Communications, 2021, 26: 101955. |
55 | PENG Tao, WANG Jun, LIU Qi, et al. Mesoporous V2O5/Ketjin black nanocomposites for all-solid-state symmetric supercapacitors[J]. CrystEngComm, 2015, 17(7): 1673-1679. |
56 | AZADIAN Farshad, RASTOGI Alok C. V2O5 film embedded carbon fiber paper synthesized by sol process as highly pseudocapacitive electrode for energy storage[J]. ECS Transactions, 2020, 97(7): 25-33. |
57 | WANG Libin, SHU Ting, GUO Songtao, et al. Fabricating strongly coupled V2O5@PEDOT nanobelts/graphene hybrid films with high areal capacitance and facile transferability for transparent solid-state supercapacitors[J]. Energy Storage Materials, 2020, 27: 150-158. |
58 | BI Wenchao, DENG Shengyuan, TANG Haisha, et al. Coherent V4+-rich V2O5/carbon aerogel nanocomposites for high performance supercapacitors[J]. Science China Materials, 2022, 65(7): 1797-1804. |
59 | SONG Yu, LIU Tianyu, YAO Bin, et al. Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability[J]. Small, 2017, 13(16): 1700067. |
60 | DAUBERT James S, LEWIS Neal P, GOTSCH Hannah N, et al. Effect of meso- and micro-porosity in carbon electrodes on atomic layer deposition of pseudocapacitive V2O5 for high performance supercapacitors[J]. Chemistry of Materials, 2015, 27(19): 6524-6534. |
61 | SUN Gan, REN Hao, SHI Zhongting, et al. V2O5/vertically-aligned carbon nanotubes as negative electrode for asymmetric supercapacitor in neutral aqueous electrolyte[J]. Journal of Colloid and Interface Science, 2021, 588: 847-856. |
62 | PANIGRAHI Karamjyoti, HOWLI Promita, CHATTOPADHYAY Kalyan Kumar. 3D network of V2O5 for flexible symmetric supercapacitor[J]. Electrochimica Acta, 2020, 337: 135701. |
63 | SAHU Vikrant, GOEL Shubhra, KUMAR TOMAR Anuj, et al. Graphene nanoribbons@vanadium oxide nanostrips for supercapacitive energy storage[J]. Electrochimica Acta, 2017, 230: 255-264. |
64 | Nguyen VAN HOA, QUYEN Tran Thi Hoang, NGHIA Nguyen Huu, et al. In situ growth of flower-like V2O5 arrays on graphene@nickel foam as high-performance electrode for supercapacitors[J]. Journal of Alloys and Compounds, 2017, 702: 693-699. |
65 | BALASUBRAMANIAN Sethuraman, PURUSHOTHAMAN Kamatchi Kamaraj. Carbon coated flowery V2O5 nanostructure as novel electrode material for high performance supercapacitors[J]. Electrochimica Acta, 2015, 186: 285-291. |
66 | NGOM B D, NDIAYE N M, SYLLA N F, et al. Sustainable development of vanadium pentoxide carbon composites derived from Hibiscus sabdariffa family for application in supercapacitors[J]. Sustainable Energy & Fuels, 2020, 4(9): 4814-4830. |
67 | LIU Zhangming, ZHANG Haiyan, YANG Qiao, et al. Graphene/V2O5 hybrid electrode for an asymmetric supercapacitor with high energy density in an organic electrolyte[J]. Electrochimica Acta, 2018, 287: 149-157. |
68 | CHANU Sagolsem Nonganbi, SUSHMA Pukhrambam, SWAIN Bhabani Sankar, et al. Optical, chemical bonding and electrochemical properties of vanadium pentoxide/reduced graphene oxide nanocomposite for supercapacitor electrode material[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(26): 20487-20497. |
69 | KUDO T, IKEDA Y, WATANABE T, et al. Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes[J]. Solid State Ionics, 2002, 152/153: 833-841. |
70 | GUO Kai, LI Yiju, LI Chong, et al. Compact self-standing layered film assembled by V2O5·nH2O/CNTs 2D/1D composites for high volumetric capacitance flexible supercapacitors[J]. Science China Materials, 2019, 62(7): 936-946. |
71 | ROHITH R, THEJAS PRASANNAKUMAR Anandhu, MANJU V, et al. Flexible, symmetric supercapacitor using self-stabilized dispersion-polymerised polyaniline/V2O5 hybrid electrodes[J]. Chemical Engineering Journal, 2023, 467: 143499. |
72 | LI Ge, WANG Xiaolei, HASSAN Fathy M, et al. Vanadium pentoxide nanorods anchored to and wrapped with graphene nanosheets for high-power asymmetric supercapacitors[J]. ChemElectroChem, 2015, 2(9): 1264-1269. |
73 | SARAVANAKUMAR Balakrishnan, PURUSHOTHAMAN Kamatchi Kamaraj, MURALIDHARAN Gopalan. Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors[J]. Materials Chemistry and Physics, 2016, 170: 266-275. |
74 | FU Min, ZHUANG Qingru, ZHU Zitong, et al. Facile synthesis of V2O5/graphene composites as advanced electrode materials in supercapacitors[J]. Journal of Alloys and Compounds, 2021, 862: 158006. |
75 | RAMADOSS Ananthakumar, SARAVANAKUMAR Balasubramaniam, KIM Sang Jae. Vanadium pentoxide/reduced graphene oxide composite as an efficient electrode material for high-performance supercapacitors and self-powered systems[J]. Energy Technology, 2015, 3(9): 913-924. |
76 | LEE Minoh, BALASINGAM Suresh Kannan, JEONG Hu Young, et al. One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage[J]. Scientific Reports, 2015, 5: 8151. |
77 | YILMAZ Gamze, GUO Chun xian, LU Xianmao. High-performance solid-state supercapacitors based on V2O5/carbon nanotube composites[J]. ChemElectroChem, 2016, 3(1): 158-164. |
78 | SATHIYA M, PRAKASH A S, RAMESHA K, et al. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage[J]. Journal of the American Chemical Society, 2011, 133(40): 16291-16299. |
79 | PERERA Sanjaya D, PATEL Bijal, NIJEM Nour, et al. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors[J]. Advanced Energy Materials, 2011, 1(5): 936-945. |
80 | SIVA V, MURUGAN A, SHAMEEM A, et al. In situ encapsulation of V2O5@ZIF-8 nanocomposites as electrode materials for high-performance supercapacitors with long term cycling stability[J]. Journal of Materials Chemistry C, 2023, 11(8): 3070-3085. |
81 | MANE Seema A, ULISSO Desta, KASHALE Anil A, et al. Polyethylene glycol assisted synthesis of V2O5 nanofibers as an efficient electrode material for symmetric supercapacitors[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(8): 1-16. |
82 | YAO Lu, ZHANG Chaoran, HU Nantao, et al. Three-dimensional skeleton networks of reduced graphene oxide nanosheets/vanadium pentoxide nanobelts hybrid for high-performance supercapacitors[J]. Electrochimica Acta, 2019, 295: 14-21. |
83 | CHOUDHURY Arup, BONSO Jeliza S, WUNCH Melissa, et al. In-situ synthesis of vanadium pentoxide nanofibre/exfoliated graphene nanohybrid and its supercapacitor applications[J]. Journal of Power Sources, 2015, 287: 283-290. |
84 | NDIAYE Ndeye M, NGOM Balla D, SYLLA Ndeye F, et al. Three dimensional vanadium pentoxide/graphene foam composite as positive electrode for high performance asymmetric electrochemical supercapacitor[J]. Journal of Colloid and Interface Science, 2018, 532: 395-406. |
85 | ZHU Changxiang, HU Duo, LIU Zhi. Interconnected three-dimensionally hierarchical heterostructures with homogeneously-dispersed V2O5 nanocrystals and carbon for high performance supercapacitor electrodes[J]. Electrochimica Acta, 2017, 229: 155-165. |
86 | LEE Seung-Mo, PARK Yong-Jin, VAN LAM Do, et al. Effects of annealing on electrochemical performance in graphene/V2O5 supercapacitor[J]. Applied Surface Science, 2020, 512: 145626. |
87 | LAZAUSKAS Algirdas, MARCINAUSKAS Liutauras, ANDRULEVICIUS Mindaugas. Modification of graphene oxide/V2O5·nH2O nanocomposite films via direct laser irradiation[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18877-18884. |
[1] | SONG Xingfei, JIA Xin, AN Ping, HAN Zhennan, XU Guangwen. Development of science and technology in thermochemical reaction engineering [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3513-3533. |
[2] | LIU Wenjin, ZHANG Yuming, LI Jiazhou, ZHANG Wei, CHEN Zhewen. State of the art and prospect of typical petroleum thermal processing technology [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3534-3550. |
[3] | WANG Dingyou, CHEN Jian, FAN Ruxin, LI Dashun. Mechanism and engineering technology development of hydrocarbons pyrolysis to produce carbon black [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3551-3566. |
[4] | GUO Lei, LIU Feng, GUO Zhancheng. Development process of iron and steel metallurgy technology and the low-carbon development path in the new era [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3567-3577. |
[5] | ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708. |
[6] | ZHAO Peitao, FU Binbin, ZHAO Quan, ZUO Wu, ZHOU Haiyun, HAN Dongtai. Thermal decomposition of plastics via low pressure and superheated solvent steam and its characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3420-3429. |
[7] | MA Jiahui, WANG Yibin, FENG Jingwu, TAN Houzhang, LIN Chi. Experimental of CO2 mineralization by industrial containing calcium solid wastes [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3440-3449. |
[8] | MENG Weibo, XING Baolin, CHENG Song, FENG Laihong, SHI Feng, ZENG Huihui, LEI Sile, WANG Xue, ZHAO Saidan, ZENG Xiangwang. Preparation of carbon nanotubes by catalytic pyrolysis of waste plastics and its growth mechanism [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3468-3478. |
[9] | ZHOU Aiguo, ZHENG Jiale, YANG Chuanruo, YANG Xiaoyi, ZHAO Junde, LI Xingchun. Industrial progress in direct air CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2928-2939. |
[10] | ZHI Yuan, MA Jiliang, CHEN Xiaoping, LIU Daoyin, LIANG Cai. Decarbonization capability of supported Na-based CO2 adsorbents prepared by fluidized bed spray impregnation [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2961-2967. |
[11] | ZHANG Zhen, ZHANG Fan, YUN Zhiting. Carbon reduction and techno-economic analysis of using green hydrogen in chemical and petrochemical industry [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3021-3028. |
[12] | CHEN Fuqiang, ZHONG Zhaoping, QI Renzhi. Research progress on copper-based catalysts for electrochemical reduction of carbon dioxide to formic acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3051-3060. |
[13] | ZENG Zhuang, LI Kezhi, YUAN Zhiwei, DU Jintao, LI Zhuoshi, WANG Yue. Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3061-3079. |
[14] | CHEN Zhiqiang, XIA Mingwei, YANG Haiping, CHEN Yingquan, WANG Xianhua, CHEN Hanping. Research progress on synthesis and regulation of lignocellulose-based carbon quantum dots [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3100-3113. |
[15] | YU Delei, HAN Kangshun, CHEN Yao, LIU Xiangchun, CUI Ping. Recent advances in electroreduction of CO2 to CO using single atom Ni, N co-doped carbon-material based catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3174-3186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |