Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 178-184.DOI: 10.16085/j.issn.1000-6613.2025-0346
• Industrial catalysis • Previous Articles
WANG Tao(
), ZHANG Xuebing, ZHANG Qi, CHEN Qiang, ZHANG Kui, MEN Zhuowu(
)
Received:2025-03-07
Revised:2025-04-28
Online:2025-11-24
Published:2025-10-25
Contact:
MEN Zhuowu
通讯作者:
门卓武
作者简介:王涛(1984—),男,博士,研究方向为煤间接液化。E-mail:17240164@chnenergy.com.cn。
基金资助:CLC Number:
WANG Tao, ZHANG Xuebing, ZHANG Qi, CHEN Qiang, ZHANG Kui, MEN Zhuowu. Effects of reduction-carburization temperature and inlet CO concentration on industrial precipitated iron-based catalyst for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 178-184.
王涛, 张雪冰, 张琪, 陈强, 张魁, 门卓武. 还原碳化温度和CO浓度对工业级费托合成沉淀铁催化剂性能的影响[J]. 化工进展, 2025, 44(S1): 178-184.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0346
| 参数 | 数值 |
|---|---|
| 堆密度/g·cm-3 | 0.8 |
| 粒径范围/μm | 30~120 |
| 孔体积/cm3·g-1 | 0.53 |
| 比表面积/m2·g-1 | 186 |
| 平均孔径/nm | 11.5 |
| 参数 | 数值 |
|---|---|
| 堆密度/g·cm-3 | 0.8 |
| 粒径范围/μm | 30~120 |
| 孔体积/cm3·g-1 | 0.53 |
| 比表面积/m2·g-1 | 186 |
| 平均孔径/nm | 11.5 |
| 序号 | 新鲜气CO流量/mL·min-1 | 循环气量/mL·min-1 | 循环气CO体积分数/% | 入口CO体积分数/% |
|---|---|---|---|---|
| 1 | 16 | 1540 | 0.00 | 0.8 |
| 2 | 22 | 1547 | 0.16 | 1.3 |
| 3 | 32 | 1542 | 0.28 | 1.9 |
| 4 | 37 | 1553 | 0.34 | 2.2 |
| 5 | 43 | 1532 | 0.48 | 2.6 |
| 6 | 59 | 1547 | 0.74 | 3.6 |
| 7 | 105 | 1575 | 1.45 | 6.2 |
| 8 | 168 | 1538 | 3.34 | 10.6 |
| 序号 | 新鲜气CO流量/mL·min-1 | 循环气量/mL·min-1 | 循环气CO体积分数/% | 入口CO体积分数/% |
|---|---|---|---|---|
| 1 | 16 | 1540 | 0.00 | 0.8 |
| 2 | 22 | 1547 | 0.16 | 1.3 |
| 3 | 32 | 1542 | 0.28 | 1.9 |
| 4 | 37 | 1553 | 0.34 | 2.2 |
| 5 | 43 | 1532 | 0.48 | 2.6 |
| 6 | 59 | 1547 | 0.74 | 3.6 |
| 7 | 105 | 1575 | 1.45 | 6.2 |
| 8 | 168 | 1538 | 3.34 | 10.6 |
| [1] | DING Mingyue, YANG Yong, WU Baoshan, et al. Study on reduction and carburization behaviors of iron phases for iron-based Fischer-Tropsch synthesis catalyst[J]. Applied Energy, 2015, 160: 982-989. |
| [2] | 朱加清, 程萌, 常海, 等. 还原工艺对费托合成铁基催化剂反应性能的影响[J]. 洁净煤技术, 2016, 22(5): 79-84. |
| ZHU Jiaqing, CHENG Meng, CHANG Hai, et al. Effect of reduction process on iron-based catalyst reaction performance for Fischer-Tropsch synthesis[J]. Clean Coal Technology, 2016, 22(5): 79-84. | |
| [3] | YAO Yali, LIU Xinying, GORIMBO Joshua, et al. Fischer-Tropsch synthesis: A long term comparative study of the product selectivity and paraffin to olefin ratios over an iron-based catalyst activated by syngas or H2 [J]. Applied Catalysis A: General, 2020, 602: 117700. |
| [4] | RAMUTSINDELA Franscina K, OKOYE-CHINE Chike G, MBUYA Christel O L, et al. The effect of reducing gases on raw iron ore catalyst for Fischer-Tropsch synthesis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131: 104163. |
| [5] | CHAI Jiachun, PESTMAN Robert, CHEN Wei, et al. The role of H2 in Fe carburization by CO in Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2021, 400: 93-102. |
| [6] | LI Hu, LI Weizhen, ZHUANG Zhuang, et al. Effect of reaction temperature and H2/CO ratio on deactivation behavior of precipitated iron Fischer-Tropsch synthesis catalyst[J]. Catalysis Today, 2022, 405/406: 277-284. |
| [7] | ARSALANFAR Maryam. Influence of pretreatment conditions on the catalytic behavior and structure of Fe-Co-Mn/MgO FTS nanocatalyst: Modeling and optimization using RSM[J]. International Journal of Energy Research, 2022, 46(4): 5028-5049. |
| [8] | 贺飞, 王涛, 张雪冰, 等. 熔铁催化剂H2-TPR还原动力学和反应模型研究[J]. 低碳化学与化工, 2023, 48(6): 17-23. |
| HE Fei, WANG Tao, ZHANG Xuebing, et al. Study on reduction kinetics of H2-TPR and reaction models of fused iron catalysts[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(6): 17-23. | |
| [9] | DING Mingyue, YANG Yong, XU Jian, et al. Effect of reduction pressure on precipitated potassium promoted iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2008, 345(2): 176-184. |
| [10] | 王洪学, 石玉林, 李导. 催化剂活化压力对费托合成反应影响的研究[J]. 炼油技术与工程, 2013, 43(2): 49-52. |
| WANG Hongxue, SHI Yulin, LI Dao. Study on impact of catalyst reduction pressure on Fischer-Tropsch (F-T) synthesis reaction[J]. Petroleum Refinery Engineering, 2013, 43(2): 49-52. | |
| [11] | DING Mingyue, YANG Yong, WU Baoshan, et al. Effect of reducing agents on microstructure and catalytic performance of precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Fuel Processing Technology, 2011, 92(12): 2353-2359. |
| [12] | 王洪, 杨勇, 吴宝山, 等. 水分压对铁基费托合成催化剂还原动力学的影响[J]. 催化学报, 2010, 31(2): 205-212. |
| WANG Hong, YANG Yong, WU Baoshan, et al. Effect of H2O partial pressure on reduction kinetics of iron-based Fischer-Tropsch catalyst[J]. Chinese Journal of Catalysis, 2010, 31(2): 205-212. | |
| [13] | LIU Xiaoling, MA Cailian, ZHAO Wentao, et al. Effects of promoters on carburized fused iron catalysts in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1504-1512. |
| [14] | NIU Liwei, LIU Xingwu, LIU Xi, et al. In situ XRD study on promotional effect of potassium on carburization of spray-dried precipitated Fe2O3 catalysts[J]. ChemCatChem, 2017, 9(9): 1691-1700. |
| [15] | NIU Liwei, LIU Xingwu, WEN Xiaodong, et al. Effect of potassium promoter on phase transformation during H2 pretreatment of a Fe2O3 Fischer Tropsch synthesis catalyst precursor[J]. Catalysis Today, 2020, 343: 101-111. |
| [16] | 张琪, 王涛, 张雪冰, 等. 还原条件对高温费托合成熔铁催化剂性能的影响[J]. 化工进展, 2022, 41(S1): 239-246. |
| ZHANG Qi, WANG Tao, ZHANG Xuebing, et al. Effects of reduction conditions on fused iron catalyst for high temperature Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 239-246. | |
| [17] | LI Peixia, QU Longmei, ZHANG Caihong, et al. Probing into the crystal plane effect on the reduction of α-Fe2O3 in CO by Operando Raman spectroscopy[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1558-1566. |
| [18] | 李思琪, 魏旭松, 王洪, 等. Fe3O4晶体碳化过程中的晶面效应[J]. 燃料化学学报(中英文), 2023, 51(9): 1282-1290. |
| LI Siqi, WEI Xusong, WANG Hong, et al. The effect of crystal plane on Fe3O4 carbonization[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1282-1290. | |
| [19] | SHIPILIN Mikhail, DEGERMAN David, Patrick LÖMKER, et al. In situ surface-sensitive investigation of multiple carbon phases on Fe(110) in the Fischer-Tropsch synthesis[J]. ACS Catalysis, 2022, 12(13): 7609-7621. |
| [20] | CHAI Jiachun, JIANG Jidong, GONG Yan, et al. Recent mechanistic understanding of Fischer-Tropsch synthesis on Fe-carbide[J]. Catalysts, 2023, 13(7): 1052. |
| [21] | CHANG Qiang, ZHANG Chenghua, LIU Chengwei, et al. Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts[J]. ACS Catalysis, 2018, 8(4): 3304-3316. |
| [22] | 武鹏, 吕元, 郭中山, 等. 煤间接液化及产品加工成套技术开发研究进展[J]. 煤炭学报, 2020, 45(4): 1222-1243. |
| WU Peng, Yuan LYU, GUO Zhongshan, et al. R&D progress of indirect coal liquefaction and product processing integrated technology[J]. Journal of China Coal Society, 2020, 45(4): 1222-1243. | |
| [23] | 郭中山, 王峰, 杨占奇, 等. 400万t/a煤基费托合成装置运行和优化[J]. 煤炭学报, 2020, 45(4): 1259-1266. |
| GUO Zhongshan, WANG Feng, YANG Zhanqi, et al. Operation and optimization of 4Mt/a industrial plant of coal-based Fischer-Tropsch synthesis[J]. Journal of China Coal Society, 2020, 45(4): 1259-1266. | |
| [24] | LI Weizhen, ZHANG Xuebing, WANG Tao, et al. The effect of chlorine modification of precipitated iron catalysts on their Fischer-Tropsch synthesis properties[J]. Catalysts, 2022, 12(8): 812. |
| [25] | LIN Quan, CHENG Meng, ZHANG Kui, et al. Development of an iron-based Fischer-Tropsch catalyst with high attrition resistance and stability for industrial application[J]. Catalysts, 2021, 11(8): 908. |
| [26] | HAO Qinglan, LIU Fuxia, WANG Hong, et al. Effect of reduction temperature on a spray-dried iron-based catalyst for slurry Fischer-Tropsch synthesis[J]. Journal of Molecular Catalysis A: Chemical, 2007, 261(1): 104-111. |
| [1] | LIU Haijun, TIAN Jingru, WANG Yijie, HOU Jungang, ZHANG Zhenxiong, LI Jing. Characteristics of Changqing wax-containing crude oil and the effects of heat treatment modification [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 134-143. |
| [2] | LIU Zhe, ZHOU Shunli, LI Yongxiang, ZHANG Chengxi, LIU Yipeng. Research progress on alkyl naphthalene synthesis catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 144-158. |
| [3] | LIN Yijie, QIAO Peng, LI Xinrui, ZHANG Hongbin, WANG Xueqin. Construction and application of heterostructures of photocatalyst TiO2 nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 159-177. |
| [4] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [5] | WANG Wenjun, LIU Ruixin, WANG Jun, ZHANG Qinglei, HOU Li’an. Research progress of visible light degradation of indoor VOCs by titanium dioxide materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5351-5362. |
| [6] | ZENG Jin, GAO Yan, WANG Zhaopeng, XIE Yuyun, LIU Jun, LIANG Qi, WANG Chunying. Degradation mechanism of 2,4-dichlorophenoxyacetic acid by NaYF4:Yb,Tm composite TiO2/Bi2WO6 photocatalyst and evaluation of products toxicity [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5416-5431. |
| [7] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [8] | ZHANG Haipeng, QIN Shanshan, WANG Yuxuan, YU Haibiao. Preparation of 3.0F-Ag x Co catalysts for N2O decomposition [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4999-5005. |
| [9] | WANG Zhenhuan, LEE Changsoo, WANG Zhiyong. Shear stress characterization of low-density magnetorheological fluids at low and high temperatures [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5101-5107. |
| [10] | WANG Jin, HE Xiaorui, JIANG Zhuangzhuang, FENG Yong, LIU Cheng, SHEN Xinghan. Theoretical calculations and experiments on gas permeability of proton exchange membranes for automotive fuel cells [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5202-5210. |
| [11] | SUN Mengyuan, LU Shijian, LIU Ling, XUE Yanyang, ZHANG Yunrong, DONG Qi, KANG Guojun. Research progress of MOF and their derivatives in carbon capture [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5339-5350. |
| [12] | LI Yanping, YANG Tao, WANG Hongxun, ZHANG Cheng, WEN Guosheng, HAN Zhicheng, LAN Gongjia, YAN Dazhou. Reaction molecular dynamics simulation of the thermal decomposition and reduction system of trichlorosilane in a hydrogen atmosphere [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4322-4330. |
| [13] | WANG Guochao, DING Huidian, SHI Li, LI Qiang, XIA Tao, YUAN Yang. Temperature inferential control of compound distillation sequences [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4720-4731. |
| [14] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [15] | ZHAO Yongming, BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu. Integrated optimization of catalyst dynamic replacement and steady-state Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4536-4544. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |