Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (9): 4968-4978.DOI: 10.16085/j.issn.1000-6613.2024-1213
• Industrial catalysis • Previous Articles
CHEN Zizhao(
), HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping(
)
Received:2024-07-26
Revised:2024-10-11
Online:2025-09-30
Published:2025-09-25
Contact:
YANG Haiping
陈子朝(
), 何方书, 胡强, 杨扬, 陈汉平, 杨海平(
)
通讯作者:
杨海平
作者简介:陈子朝(1997—),男,博士研究生,研究方向为二氧化碳的利用。E-mail:903307351@qq.com。
基金资助:CLC Number:
CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978.
陈子朝, 何方书, 胡强, 杨扬, 陈汉平, 杨海平. 甲烷干重整抗积炭Ni基催化剂研究进展[J]. 化工进展, 2025, 44(9): 4968-4978.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1213
| [1] | MEEHL Gerald A, WASHINGTON Warren M, COLLINS William D, et al. How much more global warming and sea level rise?[J]. Science, 2005, 307(5716): 1769-1772. |
| [2] | SAEIDI Samrand, AMIN Nor Aishah Saidina, RAHIMPOUR Mohammad Reza. Hydrogenation of CO2 to value-added products—A review and potential future developments[J]. Journal of CO2 Utilization, 2014, 5: 66-81. |
| [3] | LI Lei, ZHAO Ning, WEI Wei, et al. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences[J]. Fuel, 2013, 108: 112-130. |
| [4] | 何展军,黄敏,林铁军,等. 光热催化甲烷干重整研究进展[J]. 物理化学学报, 2023, 39(9): 28-40. |
| HE Zhanjun, HUANG Min, LIN Tiejun, et al. Recent advances in dry reforming of methane via photothermocatalysis[J]. Acta Physico-Chimica Sinica, 2023, 39(9): 28-40. | |
| [5] | ZHANG Xiao, XU Yao, LIU Yang, et al. A novel Ni-MoC x O y interfacial catalyst for syngas production via the chemical looping dry reforming of methane[J]. Chem, 2023, 9(1): 102-116. |
| [6] | 苏海兰,张丹,豆高锋. 甲烷干重整反应镁铝尖晶石镍基催化剂的研究进展[J]. 工业催化, 2024, 32(6): 30-35. |
| SU Hailan, ZHANG Dan, DOU Gaofeng. Research progress on magnesium aluminum spinel nickel based catalysts for dry reforming of methane[J]. Industrial Catalysis, 2024, 32(6): 30-35. | |
| [7] | TORREZ-HERRERA J J, KORILI S A, GIL A. Recent progress in the application of Ni-based catalysts for the dry reforming of methane[J]. Catalysis Reviews, 2023, 65(4): 1300-1357. |
| [8] | 侯人玮,柳圣华,冯效迁. CH4-CO2重整反应用Ni基合金催化剂研究进展[J]. 低碳化学与化工, 2023, 48(6): 1-9. |
| HOU Renwei, LIU Shenghua, FENG Xiaoqian. Research progress on Ni-based alloy catalysts in CH4-CO2 reforming reaction[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(6): 1-9. | |
| [9] | ZHU Xinli, HUO Peipei, ZHANG Yueping, et al. Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane[J]. Applied Catalysis B: Environmental, 2008, 81(1/2): 132-140. |
| [10] | 王明智,张秋林,张腾飞,等. Ni基甲烷二氧化碳重整催化剂研究进展[J]. 化工进展, 2015, 34(8): 3027-3033, 3039. |
| WANG Mingzhi, ZHANG Qiulin, ZHANG Tengfei, et al. Advance in Ni-based catalysts for the carbondioxide reforming of methane[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3027-3033, 3039. | |
| [11] | ROSLI Siti Nor Amira, ABIDIN Sumaiya Zainal, OSAZUWA Osarieme Uyi, et al. The effect of oxygen mobility/vacancy on carbon gasification in nano catalytic dry reforming of methane: A review[J]. Journal of CO2 Utilization, 2022, 63: 102109. |
| [12] | HE Lei, LI Mingrun, LI Wencui, et al. Robust and coke-free Ni catalyst stabilized by 1—2 nm-thick multielement oxide for methane dry reforming[J]. ACS Catalysis, 2021, 11(20): 12409-12416. |
| [13] | BAKTASH Elham, LITTLEWOOD Patrick, Reinhard SCHOMÄCKER, et al. Alumina coated nickel nanoparticles as a highly active catalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2015, 179: 122-127. |
| [14] | LI Haocheng, HAO Cong, TIAN Jingqing, et al. Ultra-durable Ni-Ir/MgAl2O4 catalysts for dry reforming of methane enabled by dynamic balance between carbon deposition and elimination[J]. Chem Catalysis, 2022, 2(7): 1748-1763. |
| [15] | KIM Sunkyu, LAUTERBACH Jochen, SASMAZ Erdem. Yolk-shell Pt-NiCe@SiO2 single-atom-alloy catalysts for low-temperature dry reforming of methane[J]. ACS Catalysis, 2021, 11(13): 8247-8260. |
| [16] | 闫金彪,王莎,张华荣. 甲烷干重整制氢催化剂抗积碳性能研究进展[J]. 上海工程技术大学学报, 2023, 37(1): 1-6, 40. |
| YAN Jinbiao, WANG Sha, ZHANG Huarong. Research progress of carbon deposition resistance of catalyst for dry reforming of methane to hydrogen[J]. Journal of Shanghai University of Engineering Science, 2023, 37(1): 1-6, 40. | |
| [17] | SASSON BITTERS Jaylin, HE Tina, NESTLER Elizabeth, et al. Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane[J]. Journal of Energy Chemistry, 2022, 68: 124-142. |
| [18] | Linghui LYU, SHENGENE Makpal, MA Qingxiang, et al. Synergy of macro-meso bimodal pore and Ni-Co alloy for enhanced stability in dry reforming of methane[J]. Fuel, 2022, 310: 122375. |
| [19] | GUO Shuowen, SUN Yinghui, ZHANG Yanbin, et al. Bimetallic nickel-cobalt catalysts and their application in dry reforming reaction of methane[J]. Fuel, 2024, 358: 130290. |
| [20] | KIM Dong Hyun, SEO Jeong-Cheol, KIM Yong Jun, et al. Ni-Co alloy catalyst derived from Ni x Co y /MgAl2O4 via exsolution method for high coke resistance toward dry reforming of methane[J]. Catalysis Today, 2024, 425: 114337. |
| [21] | CHEN Shuyue, YANG Bo. Activity and stability of alloyed NiCo catalyst for the dry reforming of methane: A combined DFT and microkinetic modeling study[J]. Catalysis Today, 2022, 400: 59-65. |
| [22] | CHAGHOURI M, CIOTONEA C, MOHAMAD ALI M, et al. Deposition precipitation derived Ni-Co active sites for enhanced dry reforming of methane performances[J]. Catalysis Today, 2024, 429: 114458. |
| [23] | CUI Tianxiao, CHEN Qicheng, ZHANG Yingjin, et al. Promotion of activity and stability mechanisms of adjusting the Co ratio in nickel-based catalysts for dry reforming of methane reaction[J]. Molecular Catalysis, 2024, 556: 113946. |
| [24] | LIU Jun, ZHANG Yu, LIANG Zhoujie, et al. Enhancing the dry reforming of methane over Ni-Co-Y/WC-AC catalyst: Influence of the different Ni/Co ratio on the catalytic performance[J]. Fuel, 2023, 335: 127082. |
| [25] | OSOJNIK ČRNIVEC I G, DJINOVIĆ P, ERJAVEC B, et al. Effect of synthesis parameters on morphology and activity of bimetallic catalysts in CO2-CH4 reforming[J]. Chemical Engineering Journal, 2012, 207-208: 299-307. |
| [26] | THEOFANIDIS Stavros Alexandros, GALVITA Vladimir V, POELMAN Hilde, et al. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe[J]. ACS Catalysis, 2015, 5(5): 3028-3039. |
| [27] | TOMISHIGE Keiichi, LI Dalin, TAMURA Masazumi, et al. Nickel-iron alloy catalysts for reforming of hydrocarbons: Preparation, structure, and catalytic properties[J]. Catalysis Science & Technology, 2017, 7(18): 3952-3979. |
| [28] | DHILLON Gagandeep Singh, CAO Guoqiang, YI Nan. The role of Fe in Ni-Fe/TiO2 catalysts for the dry reforming of methane[J]. Catalysts, 2023, 13(8): 1171. |
| [29] | ZHANG Tingting, LIU Zhongxian, ZHU Yi-An, et al. Dry reforming of methane on Ni-Fe-MgO catalysts: Influence of Fe on carbon-resistant property and kinetics[J]. Applied Catalysis B: Environmental, 2020, 264: 118497. |
| [30] | MARGOSSIAN Tigran, LARMIER Kim, KIM Sung Min, et al. Supported bimetallic NiFe nanoparticles through colloid synthesis for improved dry reforming performance[J]. ACS Catalysis, 2017, 7(10): 6942-6948. |
| [31] | Koustuv RAY, SENGUPTA Siddhartha, Goutam DEO. Reforming and cracking of CH4 over Al2O3 supported Ni, Ni-Fe and Ni-Co catalysts[J]. Fuel Processing Technology, 2017, 156: 195-203. |
| [32] | KIM Sung Min, ABDALA Paula Macarena, MARGOSSIAN Tigran, et al. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts[J]. Journal of the American Chemical Society, 2017, 139(5): 1937-1949. |
| [33] | LI Yubin, WANG Qianqian, CAO Min, et al. Structural evolution of robust Ni3Fe1 alloy on Al2O3 in dry reforming of methane: Effect of iron-surplus strategy from Ni1Fe1 to Ni3Fe1 [J]. Applied Catalysis B: Environmental, 2023, 331: 122669. |
| [34] | LIANG Defang, WANG Yishuang, CHEN Mingqiang, et al. Dry reforming of methane over Mn-Ni/attapulgite: Effect of Mn content on the active site distribution and catalytic performance[J]. Fuel, 2022, 321: 124032. |
| [35] | SHAHNAZI Amirhossein, FIROOZI Sadegh. Mesoporous LaNi1- x Mn x O3 perovskite with enhanced catalytic performance and coke resistance synthesized via glycine-assisted spray pyrolysis for methane dry reforming[J]. Molecular Catalysis, 2023, 547: 113320. |
| [36] | LI Weisong, Xiangyu JIE, WANG Changzhen, et al. MnO x -promoted, coking-resistant nickel-based catalysts for microwave-initiated CO2 utilization[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 6914-6923. |
| [37] | YAO Lu, GALVEZ Maria Elena, HU Changwei, et al. Synthesis gas production via dry reforming of methane over manganese promoted nickel/cerium-zirconium oxide catalyst[J]. Industrial & Engineering Chemistry Research, 2018, 57(49): 16645-16656. |
| [38] | KAZEMI Saba, ALAVI Seyed Mehdi, REZAEI Mehran, et al. Fabrication and evaluation of the Mn-promoted Ni/FeAl2O4 catalysts in the thermocatalytic decomposition of methane: Impact of various promoters[J]. Fuel, 2023, 342: 127797. |
| [39] | Sangwook JOO, KIM Kyeounghak, KWON Ohhun, et al. Enhancing thermocatalytic activities by upshifting the d-band center of exsolved Co-Ni-Fe ternary alloy nanoparticles for the dry reforming of methane[J]. Angewandte Chemie International Edition, 2021, 60(29): 15912-15919. |
| [40] | JIN Feikai, FU Yu, KONG Wenbo, et al. Stable trimetallic NiFeCu catalysts with high carbon resistance for dry reforming of methane[J]. ChemPlusChem, 2020, 85(6): 1120-1128. |
| [41] | ABDEL KARIM ARAMOUNI Nicolas, ZEAITER Joseph, KWAPINSKI Witold, et al. Trimetallic Ni-Co-Ru catalyst for the dry reforming of methane: Effect of the Ni/Co ratio and the calcination temperature[J]. Fuel, 2021, 300: 120950. |
| [42] | RAMEZANI Yalda, MESHKANI Fereshteh, REZAEI Mehran. Promotional effect of Mg in trimetallic nickel-manganese-magnesium nanocrystalline catalysts in CO2 reforming of methane[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22347-22356. |
| [43] | ZHANG Junshe, LI Fanxing. Coke-resistant Ni@SiO2 catalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2015, 176: 513-521. |
| [44] | YANG Juanjuan, WANG Jiaqi, ZHAO Jingjing, et al. CO2 conversion via dry reforming of methane on a core-shell Ru@SiO2 catalyst[J]. Journal of CO2 Utilization, 2022, 57: 101893. |
| [45] | Sonali DAS, Kang Hui LIM, GANI Terry Z H, et al. Bi-functional CeO2 coated NiCo-MgAl core-shell catalyst with high activity and resistance to coke and H2S poisoning in methane dry reforming[J]. Applied Catalysis B: Environmental, 2023, 323: 122141. |
| [46] | Zi-Yian LIM, TU Junling, XU Yongjun, et al. Ni@ZrO2 yolk-shell catalyst for CO2 methane reforming: Effect of Ni@SiO2 size as the hard-template[J]. Journal of Colloid and Interface Science, 2021, 590: 641-651. |
| [47] | WANG Fagen, HAN Bolin, ZHANG Linjia, et al. CO2 reforming with methane over small-sized Ni@SiO2 catalysts with unique features of sintering-free and low carbon[J]. Applied Catalysis B: Environmental, 2018, 235: 26-35. |
| [48] | LI Ziwei, MO Liuye, KATHIRASER Yasotha, et al. Yolk-satellite-shell structured Ni-Yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction[J]. ACS Catalysis, 2014, 4(5): 1526-1536. |
| [49] | WANG Changzhen, QIU Yuan, ZHANG Xiaoming, et al. Geometric design of a Ni@silica nano-capsule catalyst with superb methane dry reforming stability: Enhanced confinement effect over the nickel site anchoring inside a capsule shell with an appropriate inner cavity[J]. Catalysis Science & Technology, 2018, 8(19): 4877-4890. |
| [50] | WANG Guangying, LIANG Yan, SONG Jian, et al. Study on high activity and outstanding stability of hollow-NiPt@SiO2 core-shell structure catalyst for DRM reaction[J]. Frontiers in Chemistry, 2020, 8: 220. |
| [51] | KOSARI Mohammadreza, ASKARI Saeed, SEAYAD Abdul Majeed, et al. Strong coke-resistivity of spherical hollow Ni/SiO2 catalysts with shell-confined high-content Ni nanoparticles for methane dry reforming with CO2 [J]. Applied Catalysis B: Environmental, 2022, 310: 121360. |
| [52] | WANG Han, KIM Sunkyu, SASMAZ Erdem. Numerical investigation of the reaction kinetics of dry reforming of methane over the yolk-shell and single-atom alloy catalysts[J]. Chemical Engineering Journal, 2022, 450: 138111. |
| [53] | 邓少碧,边洲峰. 核壳结构在甲烷干重整中的应用[J]. 化工进展, 2023, 42(1): 247-254. |
| DENG Shaobi, BIAN Zhoufeng. Application of core-shell structure catalyst in dry reforming of methane[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 247-254. | |
| [54] | ZHAO Yu, KANG Yunqing, LI Hui, et al. CO2 conversion to synthesis gas via DRM on the durable Al2O3/Ni/Al2O3 sandwich catalyst with high activity and stability[J]. Green Chemistry, 2018, 20(12): 2781-2787. |
| [55] | GOULD Troy D, IZAR Alan, WEIMER Alan W, et al. Stabilizing Ni catalysts by molecular layer deposition for harsh, dry reforming conditions[J]. ACS Catalysis, 2014, 4(8): 2714-2717. |
| [56] | KAVIANI Maryam, REZAEI Mehran, ALAVI Seyed Mehdi, et al. Biogas dry reforming over nickel-silica sandwiched core-shell catalysts with various shell thicknesses[J]. Fuel, 2024, 355: 129533. |
| [57] | DAS S, ASHOK J, BIAN Z, et al. Silica-ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights[J]. Applied Catalysis B: Environmental, 2018, 230: 220-236. |
| [58] | DOU Jian, ZHANG Riguang, HAO Xiaobin, et al. Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2019, 254: 612-623. |
| [59] | AMENT Kevin, WAGNER Daniel R, Thomas GÖTSCH, et al. Enhancing the catalytic activity of palladium nanoparticles via sandwich-like confinement by thin titanate nanosheets[J]. ACS Catalysis, 2021, 11(5): 2754-2762. |
| [60] | NICOLOSI Valeria, CHHOWALLA Manish, KANATZIDIS Mercouri G, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1226419. |
| [61] | QU Hao, YANG Hui, HAN Libo, et al. Sandwich-structured nickel/kaolinite catalyst with boosted stability for dry reforming of methane with carbon dioxide[J]. Chemical Engineering Journal, 2023, 453: 139694. |
| [62] | WEN Shipeng, LIANG Meili, ZOU Junma, et al. Synthesis of a SiO2 nanofibre confined Ni catalyst by electrospinning for the CO2 reforming of methane[J]. Journal of Materials Chemistry A, 2015, 3(25): 13299-13307. |
| [63] | ZHENG Jiajia, IMPENG Sarawoot, LIU Jun, et al. Mo promoting Ni-based catalysts confined by halloysite nanotubes for dry reforming of methane: Insight of coking and H2S poisoning resistance[J]. Applied Catalysis B: Environmental, 2024, 342: 123369. |
| [64] | ABDULLAH Bawadi, GHANI Nur Azeanni ABD, Dai-Viet N VO. Recent advances in dry reforming of methane over Ni-based catalysts[J]. Journal of Cleaner Production, 2017, 162: 170-185. |
| [65] | 苏海兰,孙加亮,芦良. 限域功能材料在甲烷重整催化剂中的应用[J]. 化工新型材料, 2023, 51(S2): 199-202, 207. |
| SU Hailan, SUN Jialiang, LU Liang. Application of confined functional materials in methane reforming catalyst[J]. New Chemical Materials, 2023, 51(S2): 199-202, 207. | |
| [66] | KOZONOE Camila Emilia, SANTOS Vinícius Modolo, SCHMAL Martin. Investigating the stability of Ni and Fe nanoparticle distribution and the MWCNT structure in the dry reforming of methane[J]. Environmental Science and Pollution Research, 2023, 30(51): 111382-111396. |
| [67] | MA Qingxiang, WANG Ding, WU Mingbo, et al. Effect of catalytic site position: Nickel nanocatalyst selectively loaded inside or outside carbon nanotubes for methane dry reforming[J]. Fuel, 2013, 108: 430-438. |
| [68] | LI Huanxuan, SU Liya, ZHENG Junting, et al. MOFs derived carbon supporting CuCo nanospheres as efficient catalysts of peroxymonosulfate for rapid removal of organic pollutant[J]. Chemical Engineering Journal, 2023, 451: 139114. |
| [69] | ZHANG Hanguang, HWANG Sooyeon, WANG Maoyu, et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation[J]. Journal of the American Chemical Society, 2017, 139(40): 14143-14149. |
| [70] | WANG Jing, QI Tianqinji, LI Guangming, et al. Elucidating the promoting mechanism of coordination-driven self-assembly MOFs/SiO2 composite derived catalyst for dry reforming of methane with CO2 [J]. Fuel, 2022, 330: 125569. |
| [71] | LIANG Tengyun, RAJA Duraisamy Senthil, CHIN Kah Chun, et al. Bimetallic metal-organic framework-derived hybrid nanostructures as high-performance catalysts for methane dry reforming[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15183-15193. |
| [72] | ZHANG Qian, AKRI Mohcin, YANG Yiwen, et al. Atomically dispersed metals as potential coke-resistant catalysts for dry reforming of methane[J]. Cell Reports Physical Science, 2023, 4(3): 101310. |
| [73] | WU Jinwei, GAO Jie, LIAN Shuangshuang, et al. Engineering the oxygen vacancies enables Ni single-atom catalyst for stable and efficient C-H activation[J]. Applied Catalysis B: Environmental, 2022, 314: 121516. |
| [74] | YU Haoran, WANG Yehua, TAO Xuyingnan, et al. Interfacial metal-support interaction and catalytic performance of perovskite LaCrO3-supported Ru catalyst[J]. ACS Applied Materials & Interfaces, 2024, 16(14): 17483-17492. |
| [75] | WANG Dingdi, LITTLEWOOD Patrick, MARKS Tobin J, et al. Coking can enhance product yields in the dry reforming of methane[J]. ACS Catalysis, 2022, 12(14): 8352-8362. |
| [76] | AZANCOT Lola, BOBADILLA Luis F, CENTENO Miguel A, et al. Effect of potassium loading on basic properties of Ni/MgAl2O4 catalyst for CO2 reforming of methane[J]. Journal of CO2 Utilization, 2021, 52: 101681. |
| [77] | WANG Zhitao, SHAO Xin, LARCHER Alfons, et al. A study on carbon formation over fibrous NiO/CeO2 nanocatalysts during dry reforming of methane[J]. Catalysis Today, 2013, 216: 44-49. |
| [78] | ZHANG Xiaoyu, DENG Jiang, PUPUCEVSKI Max, et al. High-performance binary Mo-Ni catalysts for efficient carbon removal during carbon dioxide reforming of methane[J]. ACS Catalysis, 2021, 11(19): 12087-12095. |
| [79] | JI L, TANG S, ZENG H C, et al. CO2 reforming of methane to synthesis gas over sol-gel-made Co/γ-Al2O3 catalysts from organometallic precursors[J]. Applied Catalysis A: General, 2001, 207(1/2): 247-255. |
| [80] | NIU Juntian, LI Kuo, ZHANG Cunxin, et al. Mechanism study on carbon atom growth on different Ni facets in CO2 reforming reaction[J]. International Journal of Hydrogen Energy, 2024, 58: 1332-1344. |
| [81] | V Yu BYCHKOV, TYULENIN Yu P, FIRSOVA A A, et al. Carbonization of nickel catalysts and its effect on methane dry reforming[J]. Applied Catalysis A: General, 2013, 453: 71-79. |
| [82] | AKRI Mohcin, ZHAO Shu, LI Xiaoyu, et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming[J]. Nature Communications, 2019, 10(1): 5181. |
| [83] | TANG Yu, WEI Yuechang, WANG Ziyun, et al. Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4 [J]. Journal of the American Chemical Society, 2019, 141(18): 7283-7293. |
| [84] | CHONG CHI Cheng, CHENG Yoke Wang, SETIABUDI H D, et al. Dry reforming of methane over Ni/dendritic fibrous SBA-15 (Ni/DFSBA-15): Optimization, mechanism, and regeneration studies[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8507-8525. |
| [85] | MARINHO André L A, TONIOLO Fabio S, NORONHA Fabio B, et al. Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane[J]. Applied Catalysis B: Environmental, 2021, 281: 119459. |
| [86] | Luis SANDOVAL-DIAZ, CRUZ Daniel, VUIJK Maurits, et al. Metastable nickel-oxygen species modulate rate oscillations during dry reforming of methane[J]. Nature Catalysis, 2024, 7: 161-171. |
| [1] | ZHAO Yongming, BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu. Integrated optimization of catalyst dynamic replacement and steady-state Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4536-4544. |
| [2] | YANG Jiacong, CHENG Guangxu, JIA Tonghua, JIANG Zhao. Simulation and techno-economic analysis of new efficient coupling processes between coal to methanol and green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4657-4668. |
| [3] | ZHOU Ying, BAI Baohua, PU Tian, ZHOU Enze, HU Jianqing, ZHANG Songlin, ZHOU Hongjun, XU Chunming. Construction and demonstration of net-zero industrial parks [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4282-4286. |
| [4] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [5] | WANG Hui, LIU Jiaxu. Research progress on the synthesis of SSZ-39 zeolite and NH3-SCR application [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3892-3906. |
| [6] | LU Peng, ZHANG Di, LIU Yaoyao, YU Wanjin, LIU Wucan, ZHANG Jianjun. Research progress of catalysts for gas-phase dehydrofluorination to synthesize C2 hydrofluoroolefins [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3907-3916. |
| [7] | GAO Jiaojiao, YAN Shiyu, YANG Taishun, XIE Shangzhi, YANG Yanjuan, XU Jing. Effect of alumina support crystal structure of Ru-based catalysts on polyethylene hydrogenolysis performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3917-3927. |
| [8] | TANG Xuan, BAI Xiaowei, ZHANG Feifei, LI Jinping, YANG Jiangfeng. Research progress on zeolite for CO2-N2-CH4 sieving separation [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3938-3949. |
| [9] | LI Xiang, WU Zhangyong, JIANG Jiajun, ZHU Qichen, GONG Qiu. Tribological properties of seawater-based MoS2/SiC binary nanofluids [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4050-4060. |
| [10] | XIE Wuqiang, ZHANG Ling, HE Gang, JIANG Lifeng, ZHENG Xirui, ZHANG Hepeng. Electrocatalytic CO2 reduction to methane by CoTBrPP-PTAB-Cu catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3093-3100. |
| [11] | XU Zhicheng, GAO Ningbo, QUAN Cui, SONG Qingbin. Research progress on synergistic catalytic conversion of biomass gasification tar by non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3432-3442. |
| [12] | LI Hongwei, XU Hanqiao, ZHAO Yan, LIU Yaozong, TENG Zhijun, JI Dong, LI Guixian. Research progress and prospect of platinum-based catalysts for electrocatalytic methanol oxidation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3443-3456. |
| [13] | FU Yuanpeng, DONG Xianshu, MA Xiaomin, FAN Yuping. Mechanism study on preparation of LiNi1/3Co1/3Mn1/3O2 ternary electrode material precursor by liquid sol-gel method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3561-3569. |
| [14] | BAO Jie, YU Panjie, MA Yongde, ZHANG Hongwei, CAI Zhenping, CAO Yanning, HUANG Kuan, JIANG Lilong. Design of Cu-ZrO2 catalyst and its utilization in hydrogenation of methyl palmitate to fatty alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2997-3008. |
| [15] | GAO Jiangang, JIANG Yapeng, BAO Baoqing, WANG Shuqi, CUI Shuming. Green methanol and green ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1987-1997. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |