Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (9): 5416-5431.DOI: 10.16085/j.issn.1000-6613.2024-1110
• Resources and environmental engineering • Previous Articles
ZENG Jin1,2(
), GAO Yan1,2, WANG Zhaopeng1,2, XIE Yuyun1,2, LIU Jun1,2, LIANG Qi2, WANG Chunying1,2(
)
Received:2024-07-10
Revised:2024-09-08
Online:2025-09-30
Published:2025-09-25
Contact:
WANG Chunying
曾金1,2(
), 高艳1,2, 王赵鹏1,2, 谢雨芸1,2, 刘俊1,2, 梁旗2, 王春英1,2(
)
通讯作者:
王春英
作者简介:曾金(2002—),男,本科生,研究方向为环境工程。E-mail: jinzeng157@163.com。
基金资助:CLC Number:
ZENG Jin, GAO Yan, WANG Zhaopeng, XIE Yuyun, LIU Jun, LIANG Qi, WANG Chunying. Degradation mechanism of 2,4-dichlorophenoxyacetic acid by NaYF4:Yb,Tm composite TiO2/Bi2WO6 photocatalyst and evaluation of products toxicity[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5416-5431.
曾金, 高艳, 王赵鹏, 谢雨芸, 刘俊, 梁旗, 王春英. NaYF4:Yb,Tm复合TiO2/Bi2WO6光催化降解2,4-二氯苯氧乙酸机制及产物毒性评价[J]. 化工进展, 2025, 44(9): 5416-5431.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1110
| 元素 | Na | F | Ti | Bi | W |
|---|---|---|---|---|---|
| 原子分数/% | 4.63 | 17.57 | 15.02 | 10.56 | 4.54 |
| 元素 | Na | F | Ti | Bi | W |
|---|---|---|---|---|---|
| 原子分数/% | 4.63 | 17.57 | 15.02 | 10.56 | 4.54 |
| 序号 | 名称 | 分子式 | 结构式 | m/z | 时间/min |
|---|---|---|---|---|---|
| A | 2,4-二氯苯氧乙酸(2,4-D) | C8H6Cl2O3 | ![]() | 219 | 34.6 |
| B | 2,4-二氯苯酚(2,4-DCP) | C6H4Cl2O | ![]() | 162 | 17.1 |
| C | 乙醇酸 | C2H4O3 | ![]() | 76 | 无 |
| D | 对氯苯酚 | C6H5ClO | ![]() | 128 | 无 |
| E | 对苯酚(HQ) | C6H6O2 | ![]() | 110 | 无 |
| F | 对苯醌(BQ) | C6H4O2 | ![]() | 108 | 无 |
| G | 反-2-庚烯酸 | C7H12O2 | ![]() | 128 | 18.1 |
| H | 4-甲氧基-4-甲基-1,2-戊二烯 | C7H12O | ![]() | 112 | 13.3 |
| I | 1-亚丁烯环己烷 | C10H16 | ![]() | 136 | 10.3 |
| 序号 | 名称 | 分子式 | 结构式 | m/z | 时间/min |
|---|---|---|---|---|---|
| A | 2,4-二氯苯氧乙酸(2,4-D) | C8H6Cl2O3 | ![]() | 219 | 34.6 |
| B | 2,4-二氯苯酚(2,4-DCP) | C6H4Cl2O | ![]() | 162 | 17.1 |
| C | 乙醇酸 | C2H4O3 | ![]() | 76 | 无 |
| D | 对氯苯酚 | C6H5ClO | ![]() | 128 | 无 |
| E | 对苯酚(HQ) | C6H6O2 | ![]() | 110 | 无 |
| F | 对苯醌(BQ) | C6H4O2 | ![]() | 108 | 无 |
| G | 反-2-庚烯酸 | C7H12O2 | ![]() | 128 | 18.1 |
| H | 4-甲氧基-4-甲基-1,2-戊二烯 | C7H12O | ![]() | 112 | 13.3 |
| I | 1-亚丁烯环己烷 | C10H16 | ![]() | 136 | 10.3 |
| [1] | 李纪岳, 符莉, 宋彦亭, 等. 国家粮食安全产业带区域协调发展的思考[J]. 农业经济, 2023(11): 15-17. |
| LI Jiyue, FU Li, SONG Yanting, et al. Thoughts on regional coordinated development of national food security industrial belt[J]. Agricultural Economy, 2023(11): 15-17. | |
| [2] | 侯胜利. 中国粮食安全的发展历程、 现实挑战与提升策略[J]. 农业经济, 2023(12): 32-33. |
| HOU Shengli. The development course, realistic challenges and promotion strategies of food security in China[J]. Agricultural Economy, 2023(12): 32-33. | |
| [3] | 魏秀菊, 朱明, 廖艳. 推动农业工程发展 保障我国粮食安全[J]. 科技导报, 2023, 41(20): 5-19. |
| WEI Xiuju, ZHU Ming, LIAO Yan. Promoting the development of agricultural engineering and ensuring China’s food security[J]. Science & Technology Review, 2023, 41(20): 5-19. | |
| [4] | 王阳, 荆杰, 雷雨辰, 等. 典型耕地土壤有机氯农药残留特征、 来源解析及风险评价[J]. 环境化学, 2023, 42(6): 1911-1921. |
| WANG Yang, JING Jie, LEI Yuchen, et al. Residue characteristics, sources and risk assessment of organochlorine pesticides in typical farmland soil[J]. Environmental Chemistry, 2023, 42(6): 1911-1921. | |
| [5] | 戴红梅, 邓媛英, 张辰, 等. 毒死蜱暴露对健康危害研究进展[J]. 中国公共卫生, 2016, 32(7): 995-998. |
| DAI Hongmei, DENG Yuanying, ZHANG Chen, et al. Progress in researches on health effects of chlorpyrifos: A review[J]. Chinese Journal of Public Health, 2016, 32(7): 995-998. | |
| [6] | BALES Scott R, SPRAGUE Christy L. Tank contamination with dicamba and 2,4-D influences dry edible bean[J]. Weed Technology, 2020, 34(1): 89-95. |
| [7] | LESKOVAC Andreja, Sandra PETROVIĆ. Pesticide use and degradation strategies: Food safety, challenges and perspectives[J]. Foods, 2023, 12(14): 2709. |
| [8] | HAMNER C L, TUKEY H B. The herbicidal action of 2,4-dichlorophenoxyacetic and 2,4, 5-trichlorophenoxyacetic acid on bindweed[J]. Science, 1944, 100(2590): 154-155. |
| [9] | MAGNOLI Karen, CARRANZA Cecilia Soledad, ALUFFI Melisa Eglé, et al. Herbicides based on 2,4-D: Its behavior in agricultural environments and microbial biodegradation aspects. A review[J]. Environmental Science and Pollution Research, 2020, 27(31): 38501-38512. |
| [10] | DEVAULT Damien Alain, KAROLAK Sara. Wastewater-based epidemiology approach to assess population exposure to pesticides: A review of a pesticide pharmacokinetic dataset[J]. Environmental Science and Pollution Research International, 2020, 27(5): 4695-4702. |
| [11] | ISLAM Faisal, WANG Jian, FAROOQ Muhammad A, et al. Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems[J]. Environment International, 2018, 111: 332-351. |
| [12] | BURNS Carol J, SWAEN Gerard M H. Review of 2,4-dichlorophenoxyacetic acid (2, 4-D) biomonitoring and epidemiology[J]. Critical Reviews in Toxicology, 2012, 42(9): 768-786. |
| [13] | BURNS Carol, BODNER Kenneth, SWAEN Gerard, et al. Cancer incidence of 2, 4-D production workers[J]. International Journal of Environmental Research and Public Health, 2011, 8(9): 3579-3590. |
| [14] | NANNI Wagner, SILVA PORTO Gisele DA, PEREIRA Joice Naiara Bertaglia, et al. Evaluation of myenteric neurons in the colon of rats exposed to 2, 4-dichlorophenoxyacetic acid herbicide[J]. Journal of Environmental Science and Health, Part B, 2022, 57(5): 421-429. |
| [15] | SILVER Monica K, SHAO Jie, LI Mingyan, et al. Prenatal exposure to the herbicide 2,4-D is associated with deficits in auditory processing during infancy[J]. Environmental Research, 2019, 172: 486-494. |
| [16] | DEMIREL Hasan Huseyin, Fahriye ZEMHERI-NAVRUZ, İsmail KUCUKKURT, et al. Synergistic toxicity of 2,4-dichlorophenoxyacetic acid and arsenic alters biomarkers in rats[J]. Toxicology Research, 2023, 12(4): 574-583. |
| [17] | INCE Sinan, DEMIREL Hasan Huseyin, Fahriye ZEMHERI-NAVRUZ, et al. Synergistic toxicity of ethanol and 2,4-dichlorophenoxyacetic acid enhances oxidant status, DNA damage, inflammation, and apoptosis in rats[J]. Environmental Science and Pollution Research International, 2023, 30(4): 10710-10723. |
| [18] | LIU Jie, LI Rongxia, YANG Chongshuang, et al. Clinical study and observation on the effect of hemoperfusion therapy treatment on central nervous system injury in patients with 2,4-dichlorophenoxyacetic acid poisoning[J]. European Review for Medical and Pharmacological Sciences, 2021, 25(5): 2403-2408. |
| [19] | YANG Changwon, Whasun LIM, SONG Gwonhwa. Reproductive toxicity due to herbicide exposure in freshwater organisms[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2021, 248: 109103. |
| [20] | NEAL Barbara H, James BUS, MARTY M. Sue,et al. Weight-of-the-evidence evaluation of 2,4-D potential for interactions with the estrogen, androgen and thyroid pathways and steroidogenesis[J]. Critical Reviews in Toxicology, 2017, 47(5): 345-401. |
| [21] | LEWIS Jori. A thorny problem: Glyphosate and 2,4-D associated with neurobehavioral effects for Ecuadorian adolescents[J]. Environmental Health Perspectives, 2023, 131(12): 124001. |
| [22] | TANG Bo, SHI Huijie, FAN Zhiyong, et al. Preferential electrocatalytic degradation of 2,4-dichlorophenoxyacetic acid on molecular imprinted mesoporous SnO2 surface[J]. Chemical Engineering Journal, 2018, 334: 882-890. |
| [23] | 国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水卫生标准: [S]. 北京: 中国标准出版社, 2022. |
| State Administration of Market Supervision and Administration of China, Standardization Administration of China. Standard for drinking water quality: [S]. Beijing: China Standard Press, 2022. | |
| [24] | 季红军, 童裕佳, 李佳尧, 等. 粉末活性炭集成MBR膜处理农药废水研究[J]. 膜科学与技术, 2022, 42(1): 115-120. |
| JI Hongjun, TONG Yujia, LI Jiayao, et al. Application of powder activated carbon integrated membrane bio-reactor (MBR) process in pesticide wastewater[J]. Membrane Science and Technology, 2022, 42(1): 115-120. | |
| [25] | 李睿, 曹月阳, 刘郁枫, 等. 生物炭材料分散固相萃取环境水中有机氯农药[J]. 化学试剂, 2023, 45(8): 116-121. |
| LI Rui, CAO Yueyang, LIU Yufeng, et al. Biochar materials dispersed solid phase extraction of organochlorine pesticides in environmental water[J]. Chemical Reagents, 2023, 45(8): 116-121. | |
| [26] | 党璞, 赵亚娟, 谢会东, 等. CuNiFe LDHs/BiO2- x 异质结可见光活化过硫酸盐降解环丙沙星[J]. 环境科学, 2023, 44(10): 5587-5598. |
| DANG Pu, ZHAO Yajuan, XIE Huidong, et al. Degradation of ciprofloxacin by CuNiFe LDHs/BiO2- x heterojunction-activated peroxymonosulfate under visible light irradiation[J]. Environmental Science, 2023, 44(10): 5587-5598. | |
| [27] | ZESHAN Muhammad, BHATTI Ijaz A, MOHSIN Muhammad, et al. Remediation of pesticides using TiO2 based photocatalytic strategies: A review[J]. Chemosphere, 2022, 300: 134525. |
| [28] | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
| [29] | CAREY John H, LAWRENCE John, TOSINE Helle M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6): 697-701. |
| [30] | 孙凌波, 胡明忠, 梁明明, 等. 铋系半导体光催化剂研究进展[J]. 化工进展, 2022, 41(9): 4813-4830. |
| SUN Lingbo, HU Mingzhong, LIANG Mingming, et al. Research progress of bismuth-based semiconductor photocatalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4813-4830. | |
| [31] | 张文海, 吉庆华, 兰华春, 等. BiOCl-(NH4)3PW12O40复合光催化剂制备及其光催化降解污染物机制[J]. 环境科学, 2019, 40(3): 1295-1301. |
| ZHANG Wenhai, JI Qinghua, LAN Huachun, et al. Preparation of BiOCl-(NH4)3PW12O40 photocatalyst and a mechanism for photocatalytic degradation of organic pollutants[J]. Environmental Science, 2019, 40(3): 1295-1301. | |
| [32] | 杨利伟, 刘丽君, 夏训峰, 等. pg-C3N4/BiOBr/Ag复合材料的制备及其光催化降解磺胺甲𫫇唑[J]. 环境科学, 2021, 42(6): 2896-2907. |
| YANG Liwei, LIU Lijun, XIA Xunfeng, et al. Preparation of pg-C3N4/BiOBr/Ag composite and photocatalytic degradation of sulfamethoxazole[J]. Environmental Science, 2021, 42(6): 2896-2907. | |
| [33] | SHI Meng, YANG Huiying, ZHAO Zehui, et al. Bismuth-based semiconductors applied in photocatalytic reduction processes: Fundamentals, advances and future perspectives[J]. Chemical Communications, 2023, 59(29): 4274-4287. |
| [34] | ELAOUNI Aicha, OUARDI M EL, BAQAIS A, et al. Bismuth tungstate Bi2WO6: A review on structural, photophysical and photocatalytic properties[J]. RSC Advances, 2023, 13(26): 17476-17494. |
| [35] | 王慧杰, 李鑫, 赵小雪, 等. 可用于环境修复的半导体光催化剂及其改性策略研究进展[J]. 催化学报, 2022, 43(2): 178-214. |
| WANG Huijie, LI Xin, ZHAO Xiaoxue, et al. Research progress on semiconductor photocatalysts and their modification strategies that can be used for environmental remediation[J]. Chinese Journal of Catalysis, 2022, 43(2): 178-214. | |
| [36] | 雷倩, 许路, 艾伟, 等. CDs-BOC复合催化剂可见光下活化过硫酸盐降解典型PPCPs[J]. 环境科学, 2021, 42(6): 2885-2895. |
| LEI Qian, XU Lu, AI Wei, et al. CDs-BOC nanophotocatalyst activating persulfate under visible light for the efficient degradation of typical PPCPs[J]. Environmental Science, 2021, 42(6): 2885-2895. | |
| [37] | 张佩, 高莉宁, 丁思晴, 等. g-C3N4/TiO2异质结光催化剂的制备及其对NO的降解性能[J]. 化工进展, 2024, 44(4): 2045-2056. |
| ZHANG Pei, GAO Lining, DING Siqing, et al. Preparation of g-C3N4/TiO2 heterojunction photocatalysts and their NO degradation performance[J]. Chemical Industry and Engineering Progress, 2024, 44(4): 2045-2056. | |
| [38] | JIANG Tiangui, WANG Kai, GUO Ting, et al. Fabrication of Z-scheme MoO3/Bi2O4 heterojunction photocatalyst with enhanced photocatalytic performance under visible light irradiation[J]. Chinese Journal of Catalysis, 2020, 41(1): 161-169. |
| [39] | Haoxin MAI, ZHANG Yawen, SI Rui, et al. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties[J]. Journal of the American Chemical Society, 2006, 128(19): 6426-6436. |
| [40] | GAI Shili, LI Chunxia, YANG Piaoping, et al. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications[J]. Chemical Reviews, 2014, 114(4): 2343-2389. |
| [41] | YI Guangshun, CHOW Ganmoog. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence[J]. Advanced Functional Materials, 2006, 16(18): 2324-2329. |
| [42] | CHEN Bing, WANG Feng. Combating concentration quenching in upconversion nanoparticles[J]. Accounts of Chemical Research, 2020, 53(2): 358-367. |
| [43] | QIN Weiping, ZHANG Daisheng, ZHAO Dan, et al. Near-infrared photocatalysis based on YF3:Yb3+,Tm3+/TiO2 core/shell nanoparticles[J]. Chemical Communications, 2010, 46(13): 2304-2306. |
| [44] | 生态环境部环境标准研究所. 6种苯氧羧酸类除草剂和麦草畏的测定 高效液相色谱法: [S]. 北京: 中国环境出版集团, 2022. |
| Institute of Environmental Standards, Ministry of Ecology and Environment, China. Determination of 6 phenoxy acid herbicides and dicamba—High performance liquid chromatography: [S]. Beijin: China Environmental Publishing Group, 2022. | |
| [45] | CAI Zhengqing, HAO Xiaodi, SUN Xianbo, et al. Highly active WO3@anatase-SiO2 aerogel for solar-light-driven phenanthrene degradation: Mechanism insight and toxicity assessment[J]. Water Research, 2019, 162: 369-382. |
| [46] | 胡静慧, 曹潇楠, 董孟杰, 等. 纳米光敏剂NaYF4:Yb,Tm@NaGdF4:Yb@SiO2@TiO2-Au的制备和碘标记性能[J]. 科学通报, 2020, 65(S1): 155-166. |
| HU Jinghui, CAO Xiaonan, DONG Mengjie, et al. Preparation and iodine labeling properties of nanophotosensitizer NaYF4:Yb,Tm@NaGdF4: Yb@SiO2@TiO2-Au[J]. Chinese Science Bulletin, 2020, 65(S1): 155-166. | |
| [47] | WANG Feng, HAN Yu, Chin Seong LIM, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping[J]. Nature, 2010, 463(7284): 1061-1065. |
| [48] | LI Haibo, LI Haojun, ZHOU Zhennan, et al. Tailoring hydrophily and composition of BiOI for an ultrafast photodegradation of tetracycline hydrochloride[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106292. |
| [49] | FOO K Y, HAMEED B H. Insights into the modeling of adsorption isotherm systems[J]. Chemical Engineering Journal, 2010, 156(1): 2-10. |
| [50] | MOHAMED Mohamed Mokhtar, BAYOUMY W A, KHAIRY M, et al. Structural features and photocatalytic behavior of titania and titania supported vanadia synthesized by polyol functionalized materials[J]. Microporous and Mesoporous Materials, 2008, 109(1/2/3): 445-457. |
| [51] | RAGHAVAN Akshaya, SARKAR Suprabhat, NAGAPPAGARI Lakshmana Reddy, et al. Decoration of graphene quantum dots on TiO2 nanostructures: Photosensitizer and cocatalyst role for enhanced hydrogen generation[J]. Industrial & Engineering Chemistry Research, 2020, 59(29): 13060-13068. |
| [52] | 黄瑞宇, 罗序燕, 赵东方, 等. 银掺杂二氧化钛及其光催化性能研究[J]. 有色金属科学与工程, 2016, 7(2): 67-72. |
| HUANG Ruiyu, LUO Xuyan, ZHAO Dongfang, et al. Preparation and photocatalytic properties of Ag doped TiO2 [J]. Nonferrous Metals Science and Engineering, 2016, 7(2): 67-72. | |
| [53] | ZHAO Gang, LIU Suwen, LU Qifang, et al. Fabrication of electrospun Bi2WO6 microbelts with enhanced visible photocatalytic degradation activity[J]. Journal of Alloys and Compounds, 2013, 578: 12-16. |
| [54] | WANG Junlei, WANG Kuan, HE Zhenhong, et al. Constructing of ultrathin Bi2WO6/BiOCl nanosheets with oxygen vacancies for photocatalytic oxidation of cyclohexane with air in solvent-free[J]. Applied Surface Science, 2022, 584: 152606. |
| [55] | 韦飞, 文涛, 姜东生, 等. Bi/B-TiO2/Bi2WO6催化剂的制备及Bi纳米粒子影响光催化氧化甲苯的性能研究[J]. 环境科学学报. 2024, 44(8): 131-142. |
| WEI Fei, WEN Tao, JIANG Dongsheng, et al. Preparation of Bi/B-TiO2/Bi2WO6 catalyst and the performance of Bi nanoparticles affecting photocatalytic oxidation of toluene [J]. Journal of Environmental Science. 2024, 44(8): 131-142. | |
| [56] | ZHANG Zhijie, WANG Wenzhong, GAO Erping, et al. Enhanced photocatalytic activity of Bi2WO6 with oxygen vacancies by zirconium doping[J]. Journal of Hazardous Materials, 2011, 196: 255-262. |
| [57] | GUO Yuxi, WEN Hao, ZHONG Tao, et al. Core-shell-like BiOBr@BiOBr homojunction for enhanced photocatalysis[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644: 128829. |
| [58] | 袁小亚, 俞丽芯, 贾雯. 一步溶剂热法制备铋-氧化铋-溴氧化铋三元复合物及其可见光驱动催化降解亚甲基蓝[J]. 复合材料学报, 2023, 40(7): 3973-3985. |
| YUAN Xiaoya, YU Lixin, JIA Wen. One-step solvothermal preparation of Bi-Bi2O3-BiOBr ternary complex and its visible light-driven catalytic degradation of methylene blue[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3973-3985. | |
| [59] | SHEN Zewen, HU Yezi, PAN Qiushi, et al. Oxygen vacancies-enriched Ta-doped Bi2WO6 with Pt as cocatalyst for boosting the dehydrogenation of benzyl alcohol in water[J]. Applied Surface Science, 2022, 571: 151370. |
| [60] | JIN Xingyun, LEI Shiyun, CHEN Jiufu, et al. BiO and oxygen vacancies co-induced enhanced visible-light photocatalytic detoxication of three typical contaminants over Bi2WO6 treated by NaBH4 solution[J]. Surfaces and Interfaces, 2022, 28: 101648. |
| [61] | WANG Zhongliao, HU Taiping, DAI Kai, et al. Construction of Z-scheme Ag3PO4/Bi2WO6 composite with excellent visible-light photodegradation activity for removal of organic contaminants[J]. Chinese Journal of Catalysis, 2017, 38(12): 2021-2029. |
| [62] | CHONG Mengnan, JIN Bo, CHOW Christopher W K, et al. Recent developments in photocatalytic water treatment technology: A review[J]. Water Research, 2010, 44(10): 2997-3027. |
| [63] | YANG Xiaogang, WANG Dunwei. Photocatalysis: From fundamental principles to materials and applications[J]. ACS Applied Energy Materials, 2018, 1(12): 6657-6693. |
| [64] | ZUO Jinxiang, WANG Binyuan, KANG Jing, et al. Activation of peroxymonosulfate by nanoscaled NiFe2O4 magnetic particles for the degradation of 2, 4-dichlorophenoxyacetic acid in water: Efficiency, mechanism and degradation pathways[J]. Separation and Purification Technology, 2022, 297: 121459. |
| [65] | CAI Jingju, ZHOU Minghua, DU Xuedong, et al. Enhanced mechanism of 2, 4-dichlorophenoxyacetic acid degradation by electrochemical activation of persulfate on blue-TiO2 nanotubes anode[J]. Separation and Purification Technology, 2021, 254: 117560. |
| [66] | CHEN Hai, ZHANG Zhonglei, FENG Mingbao, et al. Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite)[J]. Chemical Engineering Journal, 2017, 313: 498-507. |
| [67] | ABDULLAH Mohammad, Gary K C LOW, MATTHEWS Ralph W. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide[J]. The Journal of Physical Chemistry, 1990, 94(17): 6820-6825. |
| [68] | CAI Jingju, ZHOU Minghua, YANG Weilu, et al. Degradation and mechanism of 2, 4-dichlorophenoxyacetic acid (2, 4-D) by thermally activated persulfate oxidation[J]. Chemosphere, 2018, 212: 784-793. |
| [69] | LI Si, HU Jiangyong. Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms[J]. Journal of Hazardous Materials, 2016, 318: 134-144. |
| [70] | LIU Haiping, MA Shuanglong, SHAO Li, et al. Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection[J]. Applied Catalysis B: Environmental, 2020, 261: 118201. |
| [71] | YU Hanbo, HUANG Jinhui, JIANG Longbo, et al. Steering photo-excitons towards active sites: Intensified substrates affinity and spatial charge separation for photocatalytic molecular oxygen activation and pollutant removal[J]. Chemical Engineering Journal, 2021, 408: 127334. |
| [72] | QIU Pengxiang, YAO Jinhua, CHEN Huan, et al. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst[J]. Journal of Hazardous Materials, 2016, 317: 158-168. |
| [73] | YANG Lixia, SUN Wensi, LUO Shenglian, et al. White fungus-like mesoporous Bi2S3 ball/TiO2 heterojunction with high photocatalytic efficiency in purifying 2, 4-dichlorophenoxyacetic acid/Cr(Ⅵ) contaminated water[J]. Applied Catalysis B: Environmental, 2014, 156: 25-34. |
| [74] | CHENG Cheng, GAO Shengwang, ZHU Jianchao, et al. Enhanced performance of LaFeO3 perovskite for peroxymonosulfate activation through strontium doping towards 2, 4-D degradation[J]. Chemical Engineering Journal, 2020, 384: 123377. |
| [75] | GOLSHAN Masoumeh, KAKAVANDI Babak, AHMADI Mehdi, et al. Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2, 4-D degradation: Process feasibility, mechanism and pathway[J]. Journal of Hazardous Materials, 2018, 359: 325-337. |
| [76] | WANG Chunchun, LI Shijie, CAI Mingjie, et al. Rationally designed tetra (4-carboxyphenyl) porphyrin/graphene quantum dots/bismuth molybdate Z-scheme heterojunction for tetracycline degradation and Cr(Ⅵ) reduction: Performance, mechanism, intermediate toxicity appraisement[J]. Journal of Colloid and Interface Science, 2022, 619: 307-321. |
| [77] | FALLAHTAFTI Shirin, RANTANEN Toni, Stephen BROWN R, et al. Toxicity of hydroxylated alkyl-phenanthrenes to the early life stages of Japanese medaka (Oryzias latipes)[J]. Aquatic Toxicology, 2012, 106: 56-64. |
| [1] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [2] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [3] | ZHANG Haipeng, QIN Shanshan, WANG Yuxuan, YU Haibiao. Preparation of 3.0F-Ag x Co catalysts for N2O decomposition [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4999-5005. |
| [4] | LI Xuejiao, JIANG Ning, LIU Xinhao, LI Di, XU Jiachuan. Research progress of thermal-oxidative aging mechanism and life prediction of polyolefin [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5075-5091. |
| [5] | WANG Rui, WANG Hailan, DAI Ruobin, WANG Zhiwei. Silicon fouling of reverse osmosis membrane for advanced treatment of industrial wastewater: Mechanisms, influencing factors and control strategies [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5315-5326. |
| [6] | SUN Mengyuan, LU Shijian, LIU Ling, XUE Yanyang, ZHANG Yunrong, DONG Qi, KANG Guojun. Research progress of MOF and their derivatives in carbon capture [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5339-5350. |
| [7] | WANG Wenjun, LIU Ruixin, WANG Jun, ZHANG Qinglei, HOU Li’an. Research progress of visible light degradation of indoor VOCs by titanium dioxide materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5351-5362. |
| [8] | CAO Jiangfei, LEI Xiaotong, HUANG Zhiyi, HUANG Jiankai, CHEN Fan, YANG Pianpian, XIE Chunsheng. Preparation of iron-nitrogen doped carbon microspheres and their activation for PS degradation of rhodamine B [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5406-5415. |
| [9] | LI Yanping, YANG Tao, WANG Hongxun, ZHANG Cheng, WEN Guosheng, HAN Zhicheng, LAN Gongjia, YAN Dazhou. Reaction molecular dynamics simulation of the thermal decomposition and reduction system of trichlorosilane in a hydrogen atmosphere [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4322-4330. |
| [10] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [11] | ZHAO Yongming, BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu. Integrated optimization of catalyst dynamic replacement and steady-state Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4536-4544. |
| [12] | TANG Jian, CUI Wangwang, CHEN Jiakun, WANG Tianzheng, QIAO Junfei. Full lifecycle prediction model construction for dioxins in municipal solid waste incineration process: Method of coupling numerical simulation and fuzzy forest regression [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4628-4647. |
| [13] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [14] | LU Peng, ZHANG Di, LIU Yaoyao, YU Wanjin, LIU Wucan, ZHANG Jianjun. Research progress of catalysts for gas-phase dehydrofluorination to synthesize C2 hydrofluoroolefins [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3907-3916. |
| [15] | GAO Jiaojiao, YAN Shiyu, YANG Taishun, XIE Shangzhi, YANG Yanjuan, XU Jing. Effect of alumina support crystal structure of Ru-based catalysts on polyethylene hydrogenolysis performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3917-3927. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |