Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (9): 4979-4998.DOI: 10.16085/j.issn.1000-6613.2024-1230
• Industrial catalysis • Previous Articles
WANG Zhen(
), ZHANG Yaoyuan(
), WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng(
)
Received:2024-07-28
Revised:2024-11-14
Online:2025-09-30
Published:2025-09-25
Contact:
ZHANG Yaoyuan, LI Hansheng
王振(
), 张耀远(
), 吴芹, 史大昕, 陈康成, 黎汉生(
)
通讯作者:
张耀远,黎汉生
作者简介:王振(1999—),男,硕士研究生,研究方向为甲烷干重整。E-mail:zhenwang@bit.edu.cn。
基金资助:CLC Number:
WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998.
王振, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 甲烷干重整用Ni/Al2O3基催化剂研究进展[J]. 化工进展, 2025, 44(9): 4979-4998.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1230
| 催化剂组成 | 反应温度/℃ | 原料 | 催化剂质量/g | 体积空速/L·g-1·h-1 | CH4转化率/% | CO2转化率/% | H2∶CO | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| Ni-Sm/Al2O3-CaO | 700 | CH4∶CO2=1 | 0.20 | 12.0 | 66.2 | 42.3 | — | [ |
| Ni-0.5Fe/Al2O3 | 700 | CH4∶CO2=1 | 0.10 | 24.0 | 60.1 | 68.2 | 0.86 | [ |
| Ni-0.5Ru/MgAl2O4 | 750 | CH4∶CO2∶N2=35∶35∶30 | — | 110.0 | 81.8 | 75.0 | 0.90 | [ |
| Ni-2Ru/MgAl2O4 | 750 | CH4∶CO2∶N2=35∶35∶30 | — | 110.0 | 79.1 | 67.6 | 0.90 | [ |
| Ni-0.5Rh/MgAl2O4 | 750 | CH4∶CO2∶N2=35∶35∶30 | — | 110.0 | 77.4 | 64.0 | 0.80 | [ |
| Ni-2Rh/MgAl2O4 | 750 | CH4∶CO2∶N2=35∶35∶30 | — | 110.0 | 75.3 | 62.1 | 0.80 | [ |
| 0.8Ni-0.2Co/Al2O3 | 700 | CH4∶CO2∶N2=2∶2∶1 | 0.50 | 24.0 | 87.0 | 86.0 | 0.63 | [ |
| 0.5Ni-0.5Co/Al2O3 | 700 | CH4∶CO2∶N2=2∶2∶1 | 0.50 | 24.0 | 84.0 | 79.2 | 0.76 | [ |
| Ni-Rh/Al2O3-CeO2 | 700 | CH4∶CO2∶N2=1∶1∶6 | 0.10 | 60.0 | 75.2 | 91.3 | 1.39 | [ |
| Ni-Rh/MgAl2O4 | 600 | CH4∶CO2=1 | 0.05 | 18.0 | 44.0 | 54.0 | 0.85 | [ |
| 10Ni-1Pd/CaAlO | 600 | CH4∶CO2∶N2=5∶5∶90 | 0.10 | 18.0 | 70.0 | 68.0 | 0.95 | [ |
| 9Ni-1Pt/γ-Al2O3 | 700 | CH4∶CO2∶N2=1∶1∶8 | 0.05 | 120.0 | 52.0 | 63.0 | 0.85 | [ |
| 10Ni-0.5Pt/Al2O3 | 750 | CH4∶CO2=1 | 0.17 | 7.1 | 78.0 | 95.0 | 0.63 | [ |
| Ni-0.02Sn/Al2O3 | 800 | CH4∶CO2=1 | 0.05 | 72.0 | 27.0 | 49.0 | 0.62 | [ |
| Ni-0.2Ir/Al2O3 | 850 | CH4∶CO2=1 | 0.30 | 30.0 | 72.4 | 77.3 | 0.76 | [ |
| Ni-3Au/Al2O3 | 650 | CH4∶CO2∶Ar=69∶30∶1 | 0.03 | 40.0 | 33.0 | 73.0 | 0.65 | [ |
| Au/NiAl | 700 | CH4∶CO2∶He=1∶1∶8 | 0.01 | 600.0 | 72.0 | 86.0 | 0.70 | [ |
| Ni-Cu/Al2O3-ZrO2 | 750 | CH4∶CO2=1 | 0.10 | 24.0 | 84.0 | 81.0 | 0.94 | [ |
| Ni-1Cu/Al2O3 | 750 | CH4∶CO2=1 | 0.20 | 14.0 | 94.0 | 95.5 | 1.04 | [ |
| Ni-3Cu/Al2O3 | 750 | CH4∶CO2=1 | 0.20 | 14.0 | 72.0 | 76.0 | 0.83 | [ |
| 10Ni-20Mo/Al2O3 | 750 | CH4∶CO2∶N2=1∶1∶1.6 | 0.20 | 6.8 | 19.0 | 39.0 | — | [ |
| 3NiMoAl | 800 | CH4∶CO2=1 | 0.30 | 10.0 | 85.0 | 90.0 | 0.80 | [ |
| 1.86NiMoP/Al2O3 | 750 | CH4∶CO2=1 | — | 24.0 | 84.0 | 92.0 | 0.89 | [ |
| Ni-0.5Mn/γ-Al2O3 | 700 | CH4∶CO2∶N2=17∶17∶2 | 0.30 | 7.2 | 80.6 | 85.8 | 0.92 | [ |
| Ni-0.5Mn/γ-Al2O3 | 600 | CH4∶CO2∶N2=17∶17∶2 | 0.30 | 7.2 | 37.0 | 51.0 | 0.72 | [ |
| Ni-2Mn/γ-Al2O3 | 600 | CH4∶CO2∶N2=17∶17∶2 | 0.30 | 7.2 | 22.0 | 29.0 | 0.24 | [ |
| Ni-3Mn/Al2O3 | 700 | CH4∶CO2=1 | 0.20 | 12.0 | 67.0 | 82.0 | 0.90 | [ |
| 0.8Ni-0.2Ga/LDO | 700 | CH4∶CO2∶Ar=1∶1∶9 | 0.02 | 275.0 | 72.0 | 75.0 | 0.73 | [ |
| 催化剂组成 | 反应温度/℃ | 原料 | 催化剂质量/g | 体积空速/L·g-1·h-1 | CH4转化率/% | CO2转化率/% | H2∶CO | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| Ni-Sm/Al2O3-CaO | 700 | CH4∶CO2=1 | 0.20 | 12.0 | 66.2 | 42.3 | — | [ |
| Ni-0.5Fe/Al2O3 | 700 | CH4∶CO2=1 | 0.10 | 24.0 | 60.1 | 68.2 | 0.86 | [ |
| Ni-0.5Ru/MgAl2O4 | 750 | CH4∶CO2∶N2=35∶35∶30 | — | 110.0 | 81.8 | 75.0 | 0.90 | [ |
| Ni-2Ru/MgAl2O4 | 750 | CH4∶CO2∶N2=35∶35∶30 | — | 110.0 | 79.1 | 67.6 | 0.90 | [ |
| Ni-0.5Rh/MgAl2O4 | 750 | CH4∶CO2∶N2=35∶35∶30 | — | 110.0 | 77.4 | 64.0 | 0.80 | [ |
| Ni-2Rh/MgAl2O4 | 750 | CH4∶CO2∶N2=35∶35∶30 | — | 110.0 | 75.3 | 62.1 | 0.80 | [ |
| 0.8Ni-0.2Co/Al2O3 | 700 | CH4∶CO2∶N2=2∶2∶1 | 0.50 | 24.0 | 87.0 | 86.0 | 0.63 | [ |
| 0.5Ni-0.5Co/Al2O3 | 700 | CH4∶CO2∶N2=2∶2∶1 | 0.50 | 24.0 | 84.0 | 79.2 | 0.76 | [ |
| Ni-Rh/Al2O3-CeO2 | 700 | CH4∶CO2∶N2=1∶1∶6 | 0.10 | 60.0 | 75.2 | 91.3 | 1.39 | [ |
| Ni-Rh/MgAl2O4 | 600 | CH4∶CO2=1 | 0.05 | 18.0 | 44.0 | 54.0 | 0.85 | [ |
| 10Ni-1Pd/CaAlO | 600 | CH4∶CO2∶N2=5∶5∶90 | 0.10 | 18.0 | 70.0 | 68.0 | 0.95 | [ |
| 9Ni-1Pt/γ-Al2O3 | 700 | CH4∶CO2∶N2=1∶1∶8 | 0.05 | 120.0 | 52.0 | 63.0 | 0.85 | [ |
| 10Ni-0.5Pt/Al2O3 | 750 | CH4∶CO2=1 | 0.17 | 7.1 | 78.0 | 95.0 | 0.63 | [ |
| Ni-0.02Sn/Al2O3 | 800 | CH4∶CO2=1 | 0.05 | 72.0 | 27.0 | 49.0 | 0.62 | [ |
| Ni-0.2Ir/Al2O3 | 850 | CH4∶CO2=1 | 0.30 | 30.0 | 72.4 | 77.3 | 0.76 | [ |
| Ni-3Au/Al2O3 | 650 | CH4∶CO2∶Ar=69∶30∶1 | 0.03 | 40.0 | 33.0 | 73.0 | 0.65 | [ |
| Au/NiAl | 700 | CH4∶CO2∶He=1∶1∶8 | 0.01 | 600.0 | 72.0 | 86.0 | 0.70 | [ |
| Ni-Cu/Al2O3-ZrO2 | 750 | CH4∶CO2=1 | 0.10 | 24.0 | 84.0 | 81.0 | 0.94 | [ |
| Ni-1Cu/Al2O3 | 750 | CH4∶CO2=1 | 0.20 | 14.0 | 94.0 | 95.5 | 1.04 | [ |
| Ni-3Cu/Al2O3 | 750 | CH4∶CO2=1 | 0.20 | 14.0 | 72.0 | 76.0 | 0.83 | [ |
| 10Ni-20Mo/Al2O3 | 750 | CH4∶CO2∶N2=1∶1∶1.6 | 0.20 | 6.8 | 19.0 | 39.0 | — | [ |
| 3NiMoAl | 800 | CH4∶CO2=1 | 0.30 | 10.0 | 85.0 | 90.0 | 0.80 | [ |
| 1.86NiMoP/Al2O3 | 750 | CH4∶CO2=1 | — | 24.0 | 84.0 | 92.0 | 0.89 | [ |
| Ni-0.5Mn/γ-Al2O3 | 700 | CH4∶CO2∶N2=17∶17∶2 | 0.30 | 7.2 | 80.6 | 85.8 | 0.92 | [ |
| Ni-0.5Mn/γ-Al2O3 | 600 | CH4∶CO2∶N2=17∶17∶2 | 0.30 | 7.2 | 37.0 | 51.0 | 0.72 | [ |
| Ni-2Mn/γ-Al2O3 | 600 | CH4∶CO2∶N2=17∶17∶2 | 0.30 | 7.2 | 22.0 | 29.0 | 0.24 | [ |
| Ni-3Mn/Al2O3 | 700 | CH4∶CO2=1 | 0.20 | 12.0 | 67.0 | 82.0 | 0.90 | [ |
| 0.8Ni-0.2Ga/LDO | 700 | CH4∶CO2∶Ar=1∶1∶9 | 0.02 | 275.0 | 72.0 | 75.0 | 0.73 | [ |
| 催化剂组成 | 反应温度/℃ | 原料 | 催化剂质量/g | 体积空速/L·g-1·h-1 | CH4转化率/% | CO2转化率/% | H2∶CO | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| Ni/Al2O3-0.5MgO | 800 | CH4∶CO2∶N2=45∶45∶10 | 0.03 | 144.0 | 78.0 | 85.0 | 0.88 | [ |
| Ni/Al2O3-0.25MgO | 800 | CH4∶CO2∶N2=45∶45∶10 | 0.03 | 144.0 | 76.0 | 85.0 | 0.89 | [ |
| 5%Ni-3%Mg/Al2O3 | 700 | CH4∶CO2=1 | 0.20 | 12.0 | 76.0 | 89.0 | 0.91 | [ |
| 5%Ni-3%Ca/Al2O3 | 700 | CH4∶CO2=1 | 0.20 | 12.0 | 65.0 | 82.0 | 0.94 | [ |
| 5%Ni-3%Ba/Al2O3 | 700 | CH4∶CO2=1 | 0.20 | 12.0 | 70.0 | 84.0 | 0.92 | [ |
| Ni-0.1Ca/Al2O3 | 700 | CH4∶CO2=1 | 0.10 | 36.0 | 72.0 | 74.0 | 0.71 | [ |
| Ni-Ba/Al2O3(IM) | 700 | CH4∶CO2∶He=2∶2∶6 | 0.10 | 6.0 | 62.0 | 72.0 | 0.68 | [ |
| Ni-Ba/Al2O3(M) | 700 | CH4∶CO2∶He=2∶2∶6 | 0.10 | 6.0 | 57.0 | 69.0 | 0.68 | [ |
| Ni-1.0K/Al2O3 | 800 | CH4∶CO2∶N2=1∶1∶2 | 0.30 | 36.0 | 89.0 | 97.1 | 0.96 | [ |
| Ni-0.2K/MgAl2O4 | 800 | CH4∶CO2=1 | — | — | 96.0 | 98.0 | 0.75 | [ |
| Ni-0.4K/MgAl2O4 | 800 | CH4∶CO2=1 | — | — | 92.0 | 100.0 | 0.83 | [ |
| Ni-0.7K/MgAl2O4 | 800 | CH4∶CO2=1 | — | — | 88.0 | 94.0 | 0.70 | [ |
| U-(Cs)Ni/Al2O3 | 800 | CH4∶CO2=1 | 0.05 | 72.0 | 89.8 | 91.8 | — | [ |
| Ni/Al2O3-La2O3 | 800 | CH4∶CO2∶N2=1∶1∶1 | — | 36.0 | 97.0 | 97.0 | 0.99 | [ |
| Ni/10LaAl | 700 | CH4∶CO2∶N2=5∶5∶1 | — | 3.6 | 82.4 | 77.3 | 0.95 | [ |
| Ni/20LaAl | 700 | CH4∶CO2∶N2=5∶5∶1 | — | 3.6 | 84.0 | 78.2 | 0.95 | [ |
| Ni/30LaAl | 700 | CH4∶CO2∶N2=5∶5∶1 | — | 3.6 | 82.8 | 81.0 | 0.91 | [ |
| Ni-0.3La/ MgAl2O4 | 700 | CH4∶CO2=2 | 0.20 | 24.0 | 36.0 | 84.0 | 1.25 | [ |
| Ni-0.3Zr/ MgAl2O4 | 700 | CH4∶CO2=2 | 0.20 | 24.0 | 34.5 | 84.2 | 1.30 | [ |
| Ni-0.3Ce/ MgAl2O4 | 700 | CH4∶CO2=2 | 0.20 | 24.0 | 49.5 | 86.0 | 1.24 | [ |
| Ni-0.3Ca/ MgAl2O4 | 700 | CH4∶CO2=2 | 0.20 | 24.0 | 36.5 | 84.5 | 1.24 | [ |
| Ni/1Ce-Al | 550 | CH4∶CO2∶N2=2∶2∶6 | 0.05 | 120.0 | 50.0 | 56.0 | 0.63 | [ |
| Ni/3Ce-Al | 550 | CH4∶CO2∶N2=2∶2∶6 | 0.05 | 120.0 | 50.0 | 52.0 | 0.59 | [ |
| Ni/6Ce-Al | 550 | CH4∶CO2∶N2=2∶2∶6 | 0.05 | 120.0 | 57.0 | 69.0 | 0.63 | [ |
| Ni/9Ce-Al | 550 | CH4∶CO2∶N2=2∶2∶6 | 0.05 | 120.0 | 47.0 | 58.0 | 0.62 | [ |
| Ni/Al2O3-ZrO2 | 620 | CH4∶CO2∶N2=3∶5∶4 | 0.20 | 18.0 | 54.3 | 49.8 | 0.55 | [ |
| Ni/Al2O3-0.05ZrO2 | 700 | CH4∶CO2∶Ar=1∶1∶2 | 0.10 | 30.0 | 91.7 | 77.7 | 2.00 | [ |
| Ni/Al2O3-0.15ZrO2 | 700 | CH4∶CO2∶Ar=1∶1∶2 | 0.10 | 30.0 | 84.2 | 88.9 | 2.30 | [ |
| Ni/Al2O3-0.25ZrO2 | 700 | CH4∶CO2∶Ar=1∶1∶2 | 0.10 | 30.0 | 76.2 | 69.9 | 2.00 | [ |
| Ni/Al2O3-25TiO2 | 800 | CH4∶CO2∶Ar=1∶1∶8 | 0.12 | 10.0 | 98.11 | 96.2 | 1.04 | [ |
| Ni/Al2O3-50TiO2 | 800 | CH4∶CO2∶Ar=1∶1∶8 | 0.12 | 10.0 | 98.18 | 95.79 | 1.03 | [ |
| Ni/Al2O3-75TiO2 | 800 | CH4∶CO2∶Ar=1∶1∶8 | 0.12 | 10.0 | 98.87 | 96.17 | 1.03 | [ |
| 催化剂组成 | 反应温度/℃ | 原料 | 催化剂质量/g | 体积空速/L·g-1·h-1 | CH4转化率/% | CO2转化率/% | H2∶CO | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| Ni/Al2O3-0.5MgO | 800 | CH4∶CO2∶N2=45∶45∶10 | 0.03 | 144.0 | 78.0 | 85.0 | 0.88 | [ |
| Ni/Al2O3-0.25MgO | 800 | CH4∶CO2∶N2=45∶45∶10 | 0.03 | 144.0 | 76.0 | 85.0 | 0.89 | [ |
| 5%Ni-3%Mg/Al2O3 | 700 | CH4∶CO2=1 | 0.20 | 12.0 | 76.0 | 89.0 | 0.91 | [ |
| 5%Ni-3%Ca/Al2O3 | 700 | CH4∶CO2=1 | 0.20 | 12.0 | 65.0 | 82.0 | 0.94 | [ |
| 5%Ni-3%Ba/Al2O3 | 700 | CH4∶CO2=1 | 0.20 | 12.0 | 70.0 | 84.0 | 0.92 | [ |
| Ni-0.1Ca/Al2O3 | 700 | CH4∶CO2=1 | 0.10 | 36.0 | 72.0 | 74.0 | 0.71 | [ |
| Ni-Ba/Al2O3(IM) | 700 | CH4∶CO2∶He=2∶2∶6 | 0.10 | 6.0 | 62.0 | 72.0 | 0.68 | [ |
| Ni-Ba/Al2O3(M) | 700 | CH4∶CO2∶He=2∶2∶6 | 0.10 | 6.0 | 57.0 | 69.0 | 0.68 | [ |
| Ni-1.0K/Al2O3 | 800 | CH4∶CO2∶N2=1∶1∶2 | 0.30 | 36.0 | 89.0 | 97.1 | 0.96 | [ |
| Ni-0.2K/MgAl2O4 | 800 | CH4∶CO2=1 | — | — | 96.0 | 98.0 | 0.75 | [ |
| Ni-0.4K/MgAl2O4 | 800 | CH4∶CO2=1 | — | — | 92.0 | 100.0 | 0.83 | [ |
| Ni-0.7K/MgAl2O4 | 800 | CH4∶CO2=1 | — | — | 88.0 | 94.0 | 0.70 | [ |
| U-(Cs)Ni/Al2O3 | 800 | CH4∶CO2=1 | 0.05 | 72.0 | 89.8 | 91.8 | — | [ |
| Ni/Al2O3-La2O3 | 800 | CH4∶CO2∶N2=1∶1∶1 | — | 36.0 | 97.0 | 97.0 | 0.99 | [ |
| Ni/10LaAl | 700 | CH4∶CO2∶N2=5∶5∶1 | — | 3.6 | 82.4 | 77.3 | 0.95 | [ |
| Ni/20LaAl | 700 | CH4∶CO2∶N2=5∶5∶1 | — | 3.6 | 84.0 | 78.2 | 0.95 | [ |
| Ni/30LaAl | 700 | CH4∶CO2∶N2=5∶5∶1 | — | 3.6 | 82.8 | 81.0 | 0.91 | [ |
| Ni-0.3La/ MgAl2O4 | 700 | CH4∶CO2=2 | 0.20 | 24.0 | 36.0 | 84.0 | 1.25 | [ |
| Ni-0.3Zr/ MgAl2O4 | 700 | CH4∶CO2=2 | 0.20 | 24.0 | 34.5 | 84.2 | 1.30 | [ |
| Ni-0.3Ce/ MgAl2O4 | 700 | CH4∶CO2=2 | 0.20 | 24.0 | 49.5 | 86.0 | 1.24 | [ |
| Ni-0.3Ca/ MgAl2O4 | 700 | CH4∶CO2=2 | 0.20 | 24.0 | 36.5 | 84.5 | 1.24 | [ |
| Ni/1Ce-Al | 550 | CH4∶CO2∶N2=2∶2∶6 | 0.05 | 120.0 | 50.0 | 56.0 | 0.63 | [ |
| Ni/3Ce-Al | 550 | CH4∶CO2∶N2=2∶2∶6 | 0.05 | 120.0 | 50.0 | 52.0 | 0.59 | [ |
| Ni/6Ce-Al | 550 | CH4∶CO2∶N2=2∶2∶6 | 0.05 | 120.0 | 57.0 | 69.0 | 0.63 | [ |
| Ni/9Ce-Al | 550 | CH4∶CO2∶N2=2∶2∶6 | 0.05 | 120.0 | 47.0 | 58.0 | 0.62 | [ |
| Ni/Al2O3-ZrO2 | 620 | CH4∶CO2∶N2=3∶5∶4 | 0.20 | 18.0 | 54.3 | 49.8 | 0.55 | [ |
| Ni/Al2O3-0.05ZrO2 | 700 | CH4∶CO2∶Ar=1∶1∶2 | 0.10 | 30.0 | 91.7 | 77.7 | 2.00 | [ |
| Ni/Al2O3-0.15ZrO2 | 700 | CH4∶CO2∶Ar=1∶1∶2 | 0.10 | 30.0 | 84.2 | 88.9 | 2.30 | [ |
| Ni/Al2O3-0.25ZrO2 | 700 | CH4∶CO2∶Ar=1∶1∶2 | 0.10 | 30.0 | 76.2 | 69.9 | 2.00 | [ |
| Ni/Al2O3-25TiO2 | 800 | CH4∶CO2∶Ar=1∶1∶8 | 0.12 | 10.0 | 98.11 | 96.2 | 1.04 | [ |
| Ni/Al2O3-50TiO2 | 800 | CH4∶CO2∶Ar=1∶1∶8 | 0.12 | 10.0 | 98.18 | 95.79 | 1.03 | [ |
| Ni/Al2O3-75TiO2 | 800 | CH4∶CO2∶Ar=1∶1∶8 | 0.12 | 10.0 | 98.87 | 96.17 | 1.03 | [ |
| [72] | WYSOCKA Izabela, Aleksandra MIELEWCZYK-GRYŃ, Łapiński MARCIN, et al. Effect of small quantities of potassium promoter and steam on the catalytic properties of nickel catalysts in dry/combined methane reforming[J]. International Journal of Hydrogen Energy, 2021, 46(5): 3847-3864. |
| [73] | Kyung Hee OH, LEE Jin Hee, KIM Kwangsoo, et al. A new automated synthesis of a coke-resistant Cs-promoted Ni-supported nanocatalyst for sustainable dry reforming of methane[J]. Journal of Materials Chemistry A, 2023, 11(4): 1666-1675. |
| [74] | Hyun-Seog ROH, Ki-Won JUN. Carbon dioxide reforming of methane over Ni catalysts supported on Al2O3 modified with La2O3, MgO, and CaO[J]. Catalysis Surveys from Asia, 2008, 12(4): 239-252. |
| [75] | AL-FATESH Ahmed S, NAEEM Muhammad A, FAKEEHA Anis H, et al. Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane[J]. Chinese Journal of Chemical Engineering, 2014, 22(1): 28-37. |
| [76] | MIRI Somaye Sadat, MESHKANI Fereshteh, RASTEGARPANAH Ali, et al. Influence of Fe, La, Zr, Ce, and Ca on the catalytic performance and coke formation in dry reforming of methane over Ni/MgO.Al2O3 catalyst[J]. Chemical Engineering Science, 2022, 250: 116956. |
| [77] | DAMYANOVA S, PAWELEC B, PALCHEVA R, et al. Structure and surface properties of ceria-modified Ni-based catalysts for hydrogen production[J]. Applied Catalysis B: Environmental, 2018, 225: 340-353. |
| [78] | SUMARASINGHA Wassachol, SUPASITMONGKOL Somsak, PHONGAKSORN Monrudee. The effect of ZrO2 as different components of Ni-based catalysts for CO2 reforming of methane and combined steam and CO2 reforming of methane on catalytic performance with coke formation[J]. Catalysts, 2021, 11(8): 984. |
| [79] | ANZURES Fernando Morales, HERNÁNDEZ Pastora Salinas, GALICIA Gilberto Mondragón, et al. Synthetic gas production by dry reforming of methane over Ni/Al2O3-ZrO2 catalysts: High H2/CO ratio[J]. International Journal of Hydrogen Energy, 2021, 46(51): 26224-26233. |
| [80] | SHAH Mumtaj, BORDOLOI Ankur, NAYAK Ameeya Kumar, et al. Effect of Ti/Al ratio on the performance of Ni/TiO2-Al2O3 catalyst for methane reforming with CO2 [J]. Fuel Processing Technology, 2019, 192: 21-35. |
| [81] | JUAN-JUAN J, ROMÁN-MARTÍNEZ M C, ILLÁN-GÓMEZ M J. Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane[J]. Applied Catalysis A: General, 2006, 301(1): 9-15. |
| [82] | PECHIMUTHU Nandini A, PANT Kamal K, DHINGRA Subhash C. Deactivation studies over Ni-K/CeO2-Al2O3 catalyst for dry reforming of methane[J]. Industrial & Engineering Chemistry Research, 2007, 46(6): 1731-1736. |
| [83] | KWON Yongtak, Ehren EICHLER J, FLOTO Michael E, et al. A study of refractory carbon deposits on Ni/Al2O3 catalysts for dry reforming of methane[J]. ChemistrySelect, 2023, 8(8): e202203734. |
| [84] | ARBAG Huseyin. Effect of impregnation sequence of Mg on performance of mesoporous alumina supported Ni catalyst in dry reforming of methane[J]. International Journal of Hydrogen Energy, 2018, 43(13): 6561-6574. |
| [85] | HOU Zhaoyin, YOKOTA Osamu, TANAKA Takumi, et al. Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2 [J]. Applied Catalysis A: General, 2003, 253(2): 381-387. |
| [86] | DE ARAÚJO Ítalo R S, RIBEIRO André T S, ARAÚJO I C F, et al. Use of structured systems as a strategy to minimize the deactivation of Ni-based catalysts applied in dry reforming of methane[J]. Brazilian Journal of Chemical Engineering, 2025, 42(1): 251-266. |
| [87] | AKBARI Ehsan, ALAVI Seyed Mehdi, REZAEI Mehran. CeO2 Promoted Ni-MgO-Al2O3 nanocatalysts for carbon dioxide reforming of methane[J]. Journal of CO2 Utilization, 2018, 24: 128-138. |
| [88] | LUISETTO Igor, TUTI Simonetta, BATTOCCHIO Chiara, et al. Ni/CeO2-Al2O3 catalysts for the dry reforming of methane: The effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance[J]. Applied Catalysis A: General, 2015, 500: 12-22. |
| [89] | AGHAMOHAMMADI Sogand, HAGHIGHI Mohammad, MALEKI Mahin, et al. Sequential impregnation vs. Sol-gel synthesized Ni/Al2O3-CeO2 nanocatalyst for dry reforming of methane: Effect of synthesis method and support promotion[J]. Molecular Catalysis, 2017, 431: 39-48. |
| [90] | CHEN Jixiang, WANG Rijie, ZHANG Jiyan, et al. Effects of preparation methods on properties of Ni/CeO2-Al2O3 catalysts for methane reforming with carbon dioxide[J]. Journal of Molecular Catalysis A: Chemical, 2005, 235(1/2): 302-310. |
| [91] | LIU Qing, GU Fangna, GAO Jiajian, et al. Coking-resistant Ni-ZrO2/Al2O3 catalyst for CO methanation[J]. Journal of Energy Chemistry, 2014, 23(6): 761-770. |
| [92] | GUO Cuili, WU Yuanyuan, QIN Hongyun, et al. CO methanation over ZrO2/Al2O3 supported Ni catalysts: A comprehensive study[J]. Fuel Processing Technology, 2014, 124: 61-69. |
| [93] | THERDTHIANWONG Supaporn, SIANGCHIN Chairut, THERDTHIANWONG Apichai. Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2 reforming by ZrO2 addition[J]. Fuel Processing Technology, 2008, 89(2): 160-168. |
| [94] | POMPEO Francisco, NICHIO Nora N, FERRETTI Osmar A, et al. Study of Ni catalysts on different supports to obtain synthesis gas[J]. International Journal of Hydrogen Energy, 2005, 30(13/14): 1399-1405. |
| [95] | JIN Baitang, LI Shiguang, LIU Yuzi, et al. Engineering metal-oxide interface by depositing ZrO2 overcoating on Ni/Al2O3 for dry reforming of methane[J]. Chemical Engineering Journal, 2022, 436: 135195. |
| [1] | SHI Yu, TIAN Xiaoyan, DENG Zhiyong, et al. Review and outlook of confined Ni catalysts for the dry reforming of methane reaction[J]. Energy & Fuels, 2024, 38(3): 1633-1656. |
| [2] | USMAN Muhammad, WAN DAUD W M A, ABBAS Hazzim F. Dry reforming of methane: Influence of process parameters—A review[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 710-744. |
| [3] | 陈倩倩, 顾宇, 唐志永, 等. 以二氧化碳规模化利用技术为核心的碳减排方案[J]. 中国科学院院刊, 2019, 34(4): 478-487. |
| CHEN Qianqian, GU Yu, TANG Zhiyong, et al. Carbon dioxide sizable utilization technology based carbon reduction solutions[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 478-487. | |
| [4] | SEO Hyun. Recent scientific progress on developing supported Ni catalysts for dry (CO2) reforming of methane[J]. Catalysts, 2018, 8(3): 110. |
| [5] | Frank ABILD-PEDERSEN, NØRSKOV Jens K, ROSTRUP-NIELSEN Jens R, et al. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations[J]. Physical Review B, 2006, 73(11): 115419. |
| [6] | ZHANG Z L, VERYKIOS X E. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts[J]. Catalysis Today, 1994, 21(2/3): 589-595. |
| [7] | ZHU Haibin, CHEN Huichao, ZHANG Menghan, et al. Recent advances in promoting dry reforming of methane using nickel-based catalysts[J]. Catalysis Science & Technology, 2024, 14(7): 1712-1729. |
| [8] | YOON Sun Geun, Hyung-Jun KOO, CHANG Suk Tai. Highly stretchable and transparent microfluidic strain sensors for monitoring human body motions[J]. ACS Applied Materials & Interfaces, 2015, 7(49): 27562-27570. |
| [9] | 陈楠, 岑洁, 姚楠. 适用于甲烷干重整反应的镍基催化剂[J]. 石油化工, 2019, 48(6): 606-611. |
| CHEN Nan, CEN Jie, YAO Nan. Ni-based catalysts used for dry reforming of methane[J]. Petrochemical Technology, 2019, 48(6): 606-611. | |
| [10] | FOUSKAS A, KOLLIA M, KAMBOLIS A, et al. Boron-modified Ni/Al2O3 catalysts for reduced carbon deposition during dry reforming of methane[J]. Applied Catalysis A: General, 2014, 474: 125-134. |
| [11] | ARAMOUNI Nicolas Abdel Karim, TOUMA Jad G, TARBOUSH Belal Abu, et al. Catalyst design for dry reforming of methane: Analysis review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2570-2585. |
| [12] | Subhasis DAS, SENGUPTA Manideepa, PATEL Jim, et al. A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles[J]. Applied Catalysis A: General, 2017, 545: 113-126. |
| [13] | ABDULLAH Bawadi, GHANI Nur Azeanni ABD, Dai-Viet N VO. Recent advances in dry reforming of methane over Ni-based catalysts[J]. Journal of Cleaner Production, 2017, 162: 170-185. |
| [14] | ABDULRASHEED Abdulrahman, JALIL Aishah Abdul, GAMBO Yahya, et al. A review on catalyst development for dry reforming of methane to syngas: Recent advances[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 175-193. |
| [15] | ARAMOUNI Nicolas Abdel Karim, ZEAITER Joseph, KWAPINSKI Witold, et al. Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation[J]. Energy Conversion and Management, 2017, 150: 614-622. |
| [16] | DAN Monica, MIHET Maria, BORODI Gheorghe, et al. Combined steam and dry reforming of methane for syngas production from biogas using bimodal pore catalysts[J]. Catalysis Today, 2021, 366: 87-96. |
| [17] | BEREKETIDOU O A, GOULA M A. Biogas reforming for syngas production over nickel supported on ceria-alumina catalysts[J]. Catalysis Today, 2012, 195(1): 93-100. |
| [18] | PEGIOS N, BLIZNUK V, THEOFANIDIS S A, et al. Ni nanoparticles and the Kirkendall effect in dry reforming of methane[J]. Applied Surface Science, 2018, 452: 239-247. |
| [19] | Subhasis DAS, THAKUR Sharvani, Arijit BAG, et al. Support interaction of Ni nanocluster based catalysts applied in CO2 reforming[J]. Journal of Catalysis, 2015, 330: 46-60. |
| [20] | TAHERIAN Zahra, GHARAHSHIRAN Vahid Shahed, FAZLIKHANI Fatemeh, et al. Catalytic performance of Samarium-modified Ni catalysts over Al2O3-CaO support for dry reforming of methane[J]. International Journal of Hydrogen Energy, 2021, 46(10): 7254-7262. |
| [21] | LI Baitao, LUO Yao, LI Bin, et al. Catalytic performance of iron-promoted nickel-based ordered mesoporous alumina FeNiAl catalysts in dry reforming of methane[J]. Fuel Processing Technology, 2019, 193: 348-360. |
| [22] | MORENO Andrea Álvarez, Tomás RAMIREZ-REINA, IVANOVA Svetlana, et al. Bimetallic Ni-Ru and Ni-Re catalysts for dry reforming of methane: Understanding the synergies of the selected promoters[J]. Frontiers in Chemistry, 2021, 9: 694976. |
| [23] | ABDOLLAHIFAR Mozaffar, HAGHIGHI Mohammad, BABALUO Ali Akbar, et al. Sono-synthesis and characterization of bimetallic Ni-Co/Al2O3-MgO nanocatalyst: Effects of metal content on catalytic properties and activity for hydrogen production via CO2 reforming of CH4 [J]. Ultrasonics Sonochemistry, 2016, 31: 173-183. |
| [24] | CARRASCO-RUIZ S, ZHANG Q, GÁNDARA-LOE J, et al. H2-rich syngas production from biogas reforming: Overcoming coking and sintering using bimetallic Ni-based catalysts[J]. International Journal of Hydrogen Energy, 2023, 48(72): 27907-27917. |
| [25] | MAO Yiru, ZHANG Lizhi, ZHENG Xiangjuan, et al. Coke-resistance over Rh-Ni bimetallic catalyst for low temperature dry reforming of methane[J]. International Journal of Hydrogen Energy, 2023, 48(37): 13890-13901. |
| [26] | DANG Chengxiong, LUO Jinlu, YANG Wenwen, et al. Low-temperature catalytic dry reforming of methane over Pd promoted Ni-CaO-Ca12Al14O33 multifunctional catalyst[J]. Industrial & Engineering Chemistry Research, 2021, 60(50): 18361-18372. |
| [27] | BIAUSQUE Gregory M, LAVEILLE Paco V, ANJUM Dalaver H, et al. One-pot synthesis of size- and composition-controlled Ni-rich NiPt alloy nanoparticles in a reverse microemulsion system and their application[J]. ACS Applied Materials & Interfaces, 2017, 9(36): 30643-30653. |
| [28] | DE MIGUEL S R, VILELLA I M J, MAINA S P, et al. Influence of Pt addition to Ni catalysts on the catalytic performance for long term dry reforming of methane[J]. Applied Catalysis A: General, 2012, 435: 10-18. |
| [29] | LIU Jianjun, PENG Honggen, LIU Wenming, et al. Tin modification on Ni/Al2O3: Designing potent coke-resistant catalysts for the dry reforming of methane[J]. ChemCatChem, 2014, 6(7): 2095-2104. |
| [30] | HUANG Yanli, LI Xiaodong, ZHANG Qian, et al. Enhanced carbon tolerance of hydrotalcite-derived Ni-Ir/Mg(Al)O catalysts in dry reforming of methane under elevated pressures[J]. Fuel Processing Technology, 2022, 237: 107446. |
| [31] | HORVÁTH A, GUCZI L, KOCSONYA A, et al. Sol-derived AuNi/MgAl2O4 catalysts: Formation, structure and activity in dry reforming of methane[J]. Applied Catalysis A: General, 2013, 468: 250-259. |
| [32] | LA PAROLA Valeria, PANTALEO Giuseppe, LIOTTA Leonarda Francesca, et al. Gold and ceria modified NiAl hydrotalcite materials as catalyst precursors for dry reforming of methane[J]. Catalysts, 2023, 13(3): 606. |
| [33] | SHARIFI Mahdi, HAGHIGHI Mohammad, RAHMANI Farhad, et al. Syngas production via dry reforming of CH4 over Co- and Cu-promoted Ni/Al2O3-ZrO2 nanocatalysts synthesized via sequential impregnation and sol-gel methods[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 993-1004. |
| [34] | NATAJ Seyedeh Molood Masoom, ALAVI Seyed Mehdi, MAZLOOM Golshan. Modeling and optimization of methane dry reforming over Ni-Cu/Al2O3 catalyst using Box-Behnken design[J]. Journal of Energy Chemistry, 2018, 27(5): 1475-1488. |
| [35] | GAILLARD Marine, VIRGINIE Mirella, KHODAKOV Andrei Y. New molybdenum-based catalysts for dry reforming of methane in presence of sulfur: A promising way for biogas valorization[J]. Catalysis Today, 2017, 289: 143-150. |
| [96] | ELTEJAEI Hamideh, REZA BOZORGZADEH H, TOWFIGHI Jafar, et al. Methane dry reforming on Ni/Ce0.75Zr0.25O2-MgAl2O4 and Ni/Ce0.75Zr0.25O2-γ-alumina: Effects of support composition and water addition[J]. International Journal of Hydrogen Energy, 2012, 37(5): 4107-4118. |
| [97] | NIU Fang, LI Shuiqing, ZONG Yichen, et al. Catalytic behavior of flame-made Pd/TiO2 nanoparticles in methane oxidation at low temperatures[J]. The Journal of Physical Chemistry C, 2014, 118(33): 19165-19171. |
| [98] | FAKEEHA Anis H, AL-FATESH Ahmed S A, ABASAEED Ahmed E. Modification of alumina support with TiO2-P25 in CO2 reforming of CH4 [J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 212-217. |
| [99] | LU Yao, GUO Dan, RUAN Yongzhe, et al. Facile one-pot synthesis of Ni@HSS as a novel yolk-shell structure catalyst for dry reforming of methane[J]. Journal of CO2 Utilization, 2018, 24: 190-199. |
| [100] | WANG Qianqian, WANG Wu, CAO Min, et al. Effect of interstitial carbon atoms in core-shell Ni3ZnC0.7/Al2O3 catalyst for high-performance dry reforming of methane[J]. Applied Catalysis B: Environmental, 2022, 317: 121806. |
| [101] | LATSIOU Angeliki I, BEREKETIDOU Olga A, CHARISIOU Nikolaos D, et al. Synthesis and mathematical modelling of the preparation process of nickel-alumina catalysts with egg-shell structures for syngas production via reforming of clean model biogas[J]. Catalysts, 2022, 12(3): 274. |
| [102] | KANG Ki-Moon, SHIM Il-Wun, KWAK Ho-Young. Mixed and autothermal reforming of methane with supported Ni catalysts with a core/shell structure[J]. Fuel Processing Technology, 2012, 93(1): 105-114. |
| [103] | HUANG Qiong, FANG Xiuzhong, CHENG Qinzhen, et al. Synthesis of a highly active and stable nickel-embedded alumina catalyst for methane dry reforming: On the confinement effects of alumina shells for nickel nanoparticles[J]. ChemCatChem, 2017, 9(18): 3563-3571. |
| [104] | LI Shuqing, FU Yu, KONG Wenbo, et al. Dually confined Ni nanoparticles by room-temperature degradation of AlN for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2020, 277: 118921. |
| [36] | SILVA Camila G, PASSOS Fabio B, SILVA Victor Teixeira DA. Influence of the support on the activity of a supported nickel-promoted molybdenum carbide catalyst for dry reforming of methane[J]. Journal of Catalysis, 2019, 375: 507-518. |
| [37] | ZHU Yuwei, DING Wei, YAO Zhiwei. Development of a unique Ni δ + (0<δ<2) in NiMoP/Al2O3 catalyst for dry reforming of methane[J]. Catalysis Science & Technology, 2023, 13(1): 178-186. |
| [38] | FAKEEHA Anis Hamza, NAEEM Muhammad Awais, KHAN Wasim Ullah, et al. Reforming of methane by CO2 over bimetallic Ni-Mn/γ-Al2O3 catalyst[J]. Chinese Journal of Chemical Physics, 2014, 27(2): 214-220. |
| [39] | RAMEZANI Yalda, MESHKANI Fereshteh, REZAEI Mehran. Preparation and evaluation of mesoporous nickel and manganese bimetallic nanocatalysts in methane dry reforming process for syngas production[J]. Journal of Chemical Sciences, 2018, 130(1): 11. |
| [40] | ZENG Fang, WEI Bo, LAN Dengpeng, et al. Highly dispersed Ni x Ga y catalyst and La2O3 promoter supported by LDO nanosheets for dry reforming of methane: Synergetic catalysis by Ni, Ga, and La2O3 [J]. Langmuir, 2021, 37(32): 9744-9754. |
| [41] | SONG Dahye, JUNG Unho, Hyo Been IM, et al. Comparison of preparation methods for improving coke resistance of Ni-Ru/MgAl2O4 catalysts in dry reforming of methane for syngas production[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(4): 10755-10765. |
| [42] | ARKATOVA Larisa A, KASATSKY Nikolai G, MAXIMOV Yury M, et al. Intermetallides as the catalysts for carbon dioxide reforming of methane[J]. Catalysis Today, 2018, 299: 303-316. |
| [43] | GARCÍA-DIÉGUEZ M, PIETA I S, HERRERA M C, et al. Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane[J]. Journal of Catalysis, 2010, 270(1): 136-145. |
| [44] | WU Hongjing, PANTALEO Giuseppe, LA PAROLA Valeria, et al. Bi- and trimetallic Ni catalysts over Al2O3 and Al2O3-MO x (M=Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects[J]. Applied Catalysis B: Environmental, 2014, 156: 350-361. |
| [45] | YU Mingjue, ZHU Yi-An, LU Yong, et al. The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction[J]. Applied Catalysis B: Environmental, 2015, 165: 43-56. |
| [46] | SUTTIKUL Thitiporn, NUCHDANG Sasikarn, RATTANAPHRA Dussadee, et al. Plasma-assisted CO2 reforming of methane over Ni-based catalysts: Promoting role of Ag and Sn secondary metals[J]. International Journal of Hydrogen Energy, 2022, 47(72): 30830-30842. |
| [47] | FERRANDON Magali S, BYRON Carly, CELIK Gokhan, et al. Grafted nickel-promoter catalysts for dry reforming of methane identified through high-throughput experimentation[J]. Applied Catalysis A: General, 2022, 629: 118379. |
| [48] | JIN Feikai, FU Yu, KONG Wenbo, et al. Stable trimetallic NiFeCu catalysts with high carbon resistance for dry reforming of methane[J]. ChemPlusChem, 2020, 85(6): 1120-1128. |
| [49] | AL-FATESH Ahmed S, CHAVA Ramakrishna, ALMUTAIRI Ghzzai, et al. Effect of Ni-Co addition on Pd promoted Al2O3 catalysts for dry reforming of methane[J]. Molecular Catalysis, 2023, 549: 113528. |
| [50] | SONG Kai, LU Miaomiao, XU Shuping, et al. Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2018, 239: 324-333. |
| [51] | LEE Jae-Hee, LEE Eun-Gu, Oh-Shim JOO, et al. Stabilization of Ni/Al2O3 catalyst by Cu addition for CO2 reforming of methane[J]. Applied Catalysis A: General, 2004, 269(1/2): 1-6. |
| [52] | QUINCOCES Claudia E, DE VARGAS Susana P, GRANGE Paul, et al. Role of Mo in CO2 reforming of CH4 over Mo promoted Ni/Al2O3 catalysts[J]. Materials Letters, 2002, 56(5): 698-704. |
| [53] | AL-FATESH Ahmed S, ALRASHED Maher M, EL-SALAMONY Radwa A, et al. Tailoring strontium-promoted alumina-zirconia supported Ni-catalysts for enhanced CO2 utilization via dry reforming of methane: Sr loading effects and process optimization[J]. Journal of CO2 Utilization, 2023, 75: 102578. |
| [54] | AL-FATESH Ahmed Sadeq, NAEEM Muhammad Awais, FAKEEHA Anis Hamza, et al. CO2 reforming of methane to produce syngas over γ-Al2O3-supported Ni-Sr catalysts[J]. Bulletin of the Chemical Society of Japan, 2013, 86(6): 742-748. |
| [55] | HOU Zhaoyin, YOKOTA Osamu, TANAKA Takumi, et al. Surface properties of a coke-free Sn doped nickel catalyst for the CO2 reforming of methane[J]. Applied Surface Science, 2004, 233(1/2/3/4): 58-68. |
| [56] | NICHIO Nora N, CASELLA Mónica L, SANTORI Gerardo F, et al. Stability promotion of Ni/α-Al2O3 catalysts by tin added via surface organometallic chemistry on metals Application in methane reforming processes[J]. Catalysis Today, 2000, 62(2/3): 231-240. |
| [57] | AL-FATESH Ahmed S A, FAKEEHA Anis H. Reduction of green house gases by dry reforming: Effect of support[J]. Research Journal of Chemistry And Environment, 2011, 15(2): 259-268. |
| [58] | MAJIDIAN Nasrollah, HABIBI Narges, REZAEI Mehran. CH4 reforming with CO2 for syngas production over nickel catalysts supported on mesoporous nanostructured γ-Al2O3 [J]. Korean Journal of Chemical Engineering, 2014, 31(7): 1162-1167. |
| [59] | QUINCOCES Claudia E, BASALDELLA Elena I, DE VARGAS Susana P, et al. Ni/γ-Al2O3 catalyst from kaolinite for the dry reforming of methane[J]. Materials Letters, 2004, 58(3/4): 272-275. |
| [60] | CAO Pengfei, ZHAO Haitao, ADEGBITE Stephen, et al. Vacuum-freeze drying assist for the fabrication of a nickel-aluminium catalyst and its effects on the structure-reactivity in the catalytic dry reforming of methane[J]. Bulletin of the Chemical Society of Japan, 2022, 95(5): 759-767. |
| [61] | ABOONASR SHIRAZ Mohammad Hossein, REZAEI Mehran, MESHKANI Fereshteh. Ni catalysts supported on nano-crystalline aluminum oxide prepared by a microemulsion method for dry reforming reaction[J]. Research on Chemical Intermediates, 2016, 42(8): 6627-6642. |
| [62] | LI Xinyu, LI Di, TIAN Hao, et al. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles[J]. Applied Catalysis B: Environmental, 2017, 202: 683-694. |
| [63] | SHEN Dongyang, HUO Miaomiao, LI Lin, et al. Effects of alumina morphology on dry reforming of methane over Ni/Al2O3 catalysts[J]. Catalysis Science & Technology, 2020, 10(2): 510-516. |
| [64] | KIM Won Yong, LEE Young Hye, PARK Hunmin, et al. Coke tolerance of Ni/Al2O3 nanosheet catalyst for dry reforming of methane[J]. Catalysis Science & Technology, 2016, 6(7): 2060-2064. |
| [65] | SUN Jinwei, WANG Sun, GUO Yu, et al. Carbon dioxide reforming of methane over nanostructured Ni/Al2O3 catalysts[J]. Catalysis Communications, 2018, 104: 53-56. |
| [66] | ZHANG Lin, ZHANG Yi. An active and stable Ni/Al2O3 nanosheet catalyst for dry reforming of CH4 [J]. RSC Advances, 2015, 5(76): 62173-62178. |
| [67] | FENG Xiaoqian, ZHAO Yilin, LIU Shenghua, et al. Flower-like hollow Ni0.5/xMgO-Al2O3 catalysts with excellent stability for dry reforming of methane: The role of Mg addition[J]. Fuel, 2024, 358: 130029. |
| [68] | ALIPOUR Zahra, REZAEI Mehran, MESHKANI Fereshteh. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2858-2863. |
| [69] | CAO Anh Ngoc T, NGUYEN Huu Hieu, PHAM Thuy-Phuong T, et al. Insight into the role of material basicity in the coke formation and performance of Ni/Al2O3 catalyst for the simulated- biogas dry reforming[J]. Journal of the Energy Institute, 2023, 108: 101252. |
| [70] | GARCÍA-DIÉGUEZ M, HERRERA M C, PIETA I S, et al. NiBa catalysts for CO2-reforming of methane[J]. Catalysis Communications, 2010, 11(14): 1133-1136. |
| [71] | CAO Pengfei, ZHAO Haitao, ADEGBITE Stephen, et al. Stabilized CO2 reforming of CH4 on modified Ni/Al2O3 catalysts via in situ K2CO3-enabled dynamic coke elimination reaction[J]. Fuel, 2021, 298: 120599. |
| [1] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [2] | ZHAO Yongming, BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu. Integrated optimization of catalyst dynamic replacement and steady-state Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4536-4544. |
| [3] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [4] | WANG Hui, LIU Jiaxu. Research progress on the synthesis of SSZ-39 zeolite and NH3-SCR application [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3892-3906. |
| [5] | LU Peng, ZHANG Di, LIU Yaoyao, YU Wanjin, LIU Wucan, ZHANG Jianjun. Research progress of catalysts for gas-phase dehydrofluorination to synthesize C2 hydrofluoroolefins [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3907-3916. |
| [6] | LI Xiang, WU Zhangyong, JIANG Jiajun, ZHU Qichen, GONG Qiu. Tribological properties of seawater-based MoS2/SiC binary nanofluids [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4050-4060. |
| [7] | HE Yijian, LIU Xiangkun, SHI Yao, DUAN Xuezhi. Catalyst particle shape design for ethane oxidative dehydrogenation to ethylene [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3497-3508. |
| [8] | FU Yuanpeng, DONG Xianshu, MA Xiaomin, FAN Yuping. Mechanism study on preparation of LiNi1/3Co1/3Mn1/3O2 ternary electrode material precursor by liquid sol-gel method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3561-3569. |
| [9] | XUE Lixin, DONG Yongping, CHEN Mengyao, GAO Congjie. Synergistic regulation mechanism of sodium dodecyl sulfate (SDS) and strong base (NaOH) on polyamide composite nanofiltration memrbanes [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2225-2237. |
| [10] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, CHENG Meng, ZHANG Kui, LYU Yijun, MEN Zhuowu. Advances in Fe-based catalysts for conversion of syngas/CO2 to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1323-1337. |
| [11] | TAO Jinquan, JIA Yijing, BAI Tianyu, YAO Rongpeng, HUANG Wenbin, CUI Yan, ZHOU Yasong, WEI Qiang. Synthesis and catalytic MTP performance of Silicalite-1 zeolite with low cost [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1550-1558. |
| [12] | BAI Zhongliang, LI Ping, WANG Hui, LI Wei, ZHANG Qiang, LI Ning. Proportioning design and anti-aging performance of asphalt rejuvenator based on response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1607-1618. |
| [13] | ZHANG Huanling, MA Huixia, ZHOU Feng, ZHAO Chenghao, ZHU Xiaolin, WANG Guowei, LI Chunyi. Effect of introduced In species on propane dehydrogenation over Ge/SiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 879-886. |
| [14] | ZHANG Haibing, LIU Yun’e, HUANG Zhihao, SHEN Rong. Electrocatalytic reduction of NO3--N by the prepared Ti foam-Ni-Sn/Bi cathode [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1100-1109. |
| [15] | SU Liangjian, XIAO Junyan, ZHANG Chunguang, ZHAO Yuansheng, YANG Xu. Deep regeneration of fixed-bed HDCCR catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 728-734. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |