Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1323-1337.DOI: 10.16085/j.issn.1000-6613.2024-0472
• Industrial catalysis • Previous Articles Next Articles
ZHANG Qi(
), WANG Tao, ZHANG Xuebing, LI Weizhen, CHENG Meng, ZHANG Kui, LYU Yijun(
), MEN Zhuowu(
)
Received:2024-03-22
Revised:2024-05-29
Online:2025-04-16
Published:2025-03-25
Contact:
LYU Yijun, MEN Zhuowu
张琪(
), 王涛, 张雪冰, 李为真, 程萌, 张魁, 吕毅军(
), 门卓武(
)
通讯作者:
吕毅军,门卓武
作者简介:张琪(1986—),女,硕士,高级工程师,研究方向为煤间接液化。E-mail qi.zhang.as@chnenergy.com.cn。
基金资助:CLC Number:
ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, CHENG Meng, ZHANG Kui, LYU Yijun, MEN Zhuowu. Advances in Fe-based catalysts for conversion of syngas/CO2 to higher alcohols[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1323-1337.
张琪, 王涛, 张雪冰, 李为真, 程萌, 张魁, 吕毅军, 门卓武. 合成气/CO2转化制高级醇Fe基催化剂研究进展[J]. 化工进展, 2025, 44(3): 1323-1337.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0472
| 催化剂 | CO转化率/% | 选择性/% | 醇分布/% | ||||
|---|---|---|---|---|---|---|---|
| CO2 | HC | ROH | 甲醇 | C2-5醇 | C6+醇 | ||
| CuFe | 92.8 | 29.6 | 55.2 | 15.2 | 27.9 | 57.1 | 15.0 |
| CuFe/SiO2 | 84.8 | 22.0 | 58.2 | 19.8 | 26.2 | 57.4 | 16.4 |
| CuFe/Al2O3 | 80.4 | 25.4 | 58.3 | 16.3 | 25.0 | 61.4 | 13.6 |
| CuFe/CeO2 | 85.8 | 28.6 | 56.1 | 15.3 | 33.5 | 54.7 | 11.8 |
| 催化剂 | CO转化率/% | 选择性/% | 醇分布/% | ||||
|---|---|---|---|---|---|---|---|
| CO2 | HC | ROH | 甲醇 | C2-5醇 | C6+醇 | ||
| CuFe | 92.8 | 29.6 | 55.2 | 15.2 | 27.9 | 57.1 | 15.0 |
| CuFe/SiO2 | 84.8 | 22.0 | 58.2 | 19.8 | 26.2 | 57.4 | 16.4 |
| CuFe/Al2O3 | 80.4 | 25.4 | 58.3 | 16.3 | 25.0 | 61.4 | 13.6 |
| CuFe/CeO2 | 85.8 | 28.6 | 56.1 | 15.3 | 33.5 | 54.7 | 11.8 |
| 1 | Ho Ting LUK, MONDELLI Cecilia, FERRÉ Daniel Curulla, et al. Status and prospects in higher alcohols synthesis from syngas[J]. Chemical Society Reviews, 2017, 46(5): 1358-1426. |
| 2 | 曾壮, 李柯志, 苑志伟, 等. CO/CO2加氢制低碳醇改性费托合成催化剂研究进展[J]. 化工进展, 2024, 43(6): 3061-3079. |
| ZENG Zhuang, LI Kezhi, YUAN Zhiwei, et al. Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO2 hydrogenation to higher alcohols[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3061-3079. | |
| 3 | HU Jingting, WEI Zeyu, ZHANG Yunlong, et al. Edge-rich molybdenum disulfide tailors carbon-chain growth for selective hydrogenation of carbon monoxide to higher alcohols[J]. Nature Communications, 2023, 14(1): 6808. |
| 4 | AO Min, PHAM Gia Hung, SUNARSO Jaka, et al. Active centers of catalysts for higher alcohol synthesis from syngas: A review[J]. ACS Catalysis, 2018, 8(8): 7025-7050. |
| 5 | 刘瑞琴, 孟凡会, 王立言, 等. 有序介孔CuCoZr催化剂的制备及其催化合成气制乙醇及高级醇性能[J]. 化工进展, 2022, 41(11): 5870-5878. |
| LIU Ruiqin, MENG Fanhui, WANG Liyan, et al. Preparation of ordered mesoporous CuCoZr catalyst and its catalytic performance for syngas to ethanol and higher alcohols[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5870-5878. | |
| 6 | BORSHCH Vyacheslav N, ZHUK Svetlana Ya, PUGACHEVA Elena V, et al. Co-Cu-La catalysts for selective CO2 hydrogenation to higher hydrocarbons[J]. Mendeleev Communications, 2023, 33(1): 55-57. |
| 7 | GUAN Zun, ZHAO Wantong, LI Debao, et al. The new role of pivotal intermediate CH x in CO activation and conversion to hydrocarbons on the transition metal catalysts[J]. Fuel, 2023, 331: 125788. |
| 8 | ZHANG Shunan, HUANG Chaojie, SHAO Zilong, et al. Revealing and regulating the complex reaction mechanism of CO2 hydrogenation to higher alcohols on multifunctional tandem catalysts[J]. ACS Catalysis, 2023, 13(5): 3055-3065. |
| 9 | GUO Shaoxia, LI Zhuoshi, YIN Rui, et al. Oxygen vacancy over CoMnO x catalysts boosts selective ethanol production in the higher alcohol synthesis from syngas[J]. ACS Catalysis, 2023, 13(21): 14404-14414. |
| 10 | XU Di, WANG Yanqiu, DING Mingyue, et al. Advances in higher alcohol synthesis from CO2 hydrogenation[J]. Chem, 2021, 7(4): 849-881. |
| 11 | 孔祥宇, 谢亮, 王延民, 等. CO2的捕集及资源化利用[J]. 化工进展, 2022, 41(3): 1187-1198. |
| KONG Xiangyu, XIE Liang, WANG Yanmin, et al. CO2 capture and resource utilization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1187-1198. | |
| 12 | LATSIOU Angeliki I, CHARISIOU Nikolaos D, FRONTISTIS Zacharias, et al. CO2 hydrogenation for the production of higher alcohols: Trends in catalyst developments, challenges and opportunities[J]. Catalysis Today, 2023, 420: 114179. |
| 13 | NING Shangbo, Honghui OU, LI Yaguang,et al. Co0-Co δ + interface double-site-mediated C—C coupling for the photothermal conversion of CO2 into light olefins[J]. Angewandte Chemie International Edition, 2023, 62(23): e202302253. |
| 14 | LI Haobo, WU Donghai, WU Jiarui, et al. Mechanistic understanding of the electrocatalytic conversion of CO into C2+ products by double-atom catalysts[J]. Materials Today Physics, 2023, 37: 101203. |
| 15 | XIONG Haifeng, JEWELL Linda L, COVILLE Neil J. Shaped carbons as supports for the catalytic conversion of syngas to clean fuels[J]. ACS Catalysis, 2015, 5(4): 2640-2658. |
| 16 | DE SMIT Emiel, WECKHUYSEN Bert M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews, 2008, 37(12): 2758-2781. |
| 17 | GAUBE J, H-F KLEIN. Studies on the reaction mechanism of the Fischer-Tropsch synthesis on iron and cobalt[J]. Journal of Molecular Catalysis A: Chemical, 2008, 283(1/2): 60-68. |
| 18 | VAN SANTEN Rutger A, GHOURI Minhaj, HENSEN Emiel M J. Microkinetics of oxygenate formation in the Fischer-Tropsch reaction[J]. Physical Chemistry Chemical Physics, 2014, 16(21): 10041-10058. |
| 19 | PHAM Thanh Hai, QI Yanying, YANG Jia, et al. Insights into Hägg iron-carbide-catalyzed Fischer-Tropsch synthesis: Suppression of CH4 formation and enhancement of C—C coupling on χ-Fe5C2(510)[J]. ACS Catalysis, 2015, 5(4): 2203-2208. |
| 20 | XU Jing, WEI Jian, ZHANG Jixin, et al. Highly selective production of long-chain aldehydes, ketones or alcohols via syngas at a mild condition[J]. Applied Catalysis B: Environment and Energy, 2022, 307: 121155. |
| 21 | SHENG Yao, POLYNSKI Mikhail V, ESWARAN Mathan K, et al. A review of mechanistic insights into CO2 reduction to higher alcohols for rational catalyst design[J]. Applied Catalysis B: Environmental, 2024, 343: 123550. |
| 22 | WANG Yanqiu, XU Di, ZHANG Xinxin, et al. Selective C2+ alcohol synthesis by CO2 hydrogenation via a reaction-coupling strategy[J]. Catalysis Science & Technology, 2022, 12(5): 1539-1550. |
| 23 | WANG Yanqiu, ZHOU Ying, ZHANG Xinxin, et al. PdFe Alloy-Fe5C2 interfaces for efficient CO2 hydrogenation to higher alcohols[J]. Applied Catalysis B: Environment and Energy, 2024, 345: 123691. |
| 24 | XU Jing, WEI Jian, ZHANG Jixin, et al. Precisely synergistic synthesis of higher alcohols from syngas over iron carbides[J]. Chem Catalysis, 2023, 3(4): 100584. |
| 25 | LI Linge, QING Ming, LIU Xingwu, et al. Efficient one-pot synthesis of higher alcohols from syngas catalyzed by iron nitrides[J]. ChemCatChem, 2020, 12(7): 1939-1943. |
| 26 | ZENG Zhuang, LI Zhuoshi, KANG Li, et al. A monodisperse ε′-(Co x Fe1- x )2.2C bimetallic carbide catalyst for direct conversion of syngas to higher alcohols[J]. ACS Catalysis, 2022, 12(10): 6016-6028. |
| 27 | ZENG Feng, MEBRAHTU Chalachew, XI Xiaoying, et al. Catalysts design for higher alcohols synthesis by CO2 hydrogenation: Trends and future perspectives[J]. Applied Catalysis B: Environmental, 2021, 291: 120073. |
| 28 | 王康明, 张海涛, 李涛. CuFe(100)及(110)面上合成气制低碳醇碳链增长机理研究[J]. 华东理工大学学报(自然科学版), 2022, 48(2): 139-147. |
| WANG Kangming, ZHANG Haitao, LI Tao. Carbon chain growth mechanism of higher alcohols formation from syngas on CuFe(100) and(110)[J]. Journal of East China University of Science and Technology, 2022, 48(2): 139-147. | |
| 29 | QIAN Weixin, WANG Hao, XU Yanbo, et al. In situ DRIFTS study of homologous reaction of methanol and higher alcohols synthesis over Mn promoted Cu-Fe catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6288-6297. |
| 30 | LU Yongwu, CAO Baobao, YU Fei, et al. High selectivity higher alcohols synthesis from syngas over three-dimensionally ordered macroporous Cu-Fe catalysts[J]. ChemCatChem, 2014, 6(2): 473-478. |
| 31 | LU Yongwu, ZHANG Riguang, CAO Baobao, et al. Elucidating the copper-Hägg iron carbide synergistic interactions for selective CO hydrogenation to higher alcohols[J]. ACS Catalysis, 2017, 7(8): 5500-5512. |
| 32 | WANG Yang, WANG Kangzhou, ZHANG Baizhang, et al. Direct conversion of CO2 to ethanol boosted by intimacy-sensitive multifunctional catalysts[J]. ACS Catalysis, 2021, 11(18): 11742-11753. |
| 33 | HE Yiming, MÜLLER Fabian H, PALKOVITS Regina, et al. Tandem catalysis for CO2 conversion to higher alcohols: A review[J]. Applied Catalysis B: Environment and Energy, 2024, 345: 123663. |
| 34 | PRIETO Gonzalo. Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates: Thermodynamic and kinetic bounds and progress with heterogeneous and homogeneous catalysis[J]. ChemSusChem, 2017, 10(6): 1056-1070. |
| 35 | XIAO Kang, BAO Zhenghong, QI Xingzhen, et al. Structural evolution of CuFe bimetallic nanoparticles for higher alcohol synthesis[J]. Journal of Molecular Catalysis A: Chemical, 2013, 378: 319-325. |
| 36 | XIAO Kang, QI Xingzhen, BAO Zhenghong, et al. CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas: A comparative study[J]. Catalysis Science & Technology, 2013, 3(6): 1591-1602. |
| 37 | XIAO Kang, BAO Zhenghong, QI Xingzhen, et al. Unsupported CuFe bimetallic nanoparticles for higher alcohol synthesis via syngas[J]. Catalysis Communications, 2013, 40: 154-157. |
| 38 | HAN Xinyou, FANG Kegong, SUN Yuhan. Effects of metal promotion on CuMgFe catalysts derived from layered double hydroxides for higher alcohol synthesis via syngas[J]. RSC Advances, 2015, 5(64): 51868-51874. |
| 39 | HAN Xinyou, FANG Kegong, ZHOU Juan, et al. Synthesis of higher alcohols over highly dispersed Cu-Fe based catalysts derived from layered double hydroxides[J]. Journal of Colloid and Interface Science, 2016, 470: 162-171. |
| 40 | BAO Zhenghong, XIAO Kang, QI Xingzhen, et al. Higher alcohol synthesis over Cu-Fe composite oxides with high selectivity to C2+OH[J]. Journal of Energy Chemistry, 2013, 22(1): 107-113. |
| 41 | GUO Haijun, ZHANG Hairong, PENG Fen, et al. Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2015, 503: 51-61. |
| 42 | BAI Nan, GAO Zhihua, HAO Chunyao, et al. Complete liquid-phase preparation of CuFe-based catalysts and their application in the synthesis of higher alcohols from syngas[J]. ChemistrySelect, 2020, 5(22): 6585-6593. |
| 43 | 宁珣. Co基双金属催化剂催化合成气转化制备乙醇和高级醇[D]. 北京: 北京化工大学, 2016. |
| NING Xun. Co-based bimetallic catalyst for synthesis of ethanol and higher alcohols from syngas[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
| 44 | ZHU Jie, MU Minchen, LIU Yi, et al. Unveiling the promoting effect of potassium on the structural evolution of iron catalysts during CO2 hydrogenation[J]. Chemical Engineering Science, 2023, 282: 119228. |
| 45 | LIN Tiejun, QI Xingzhen, WANG Xinxing, et al. Direct production of higher oxygenates by syngas conversion over a multifunctional catalyst[J]. Angewandte Chemie International Edition, 2019, 58(14): 4627-4631. |
| 46 | XU Di, DING Mingyue, HONG Xinlin, et al. Mechanistic aspects of the role of K promotion on Cu-Fe-based catalysts for higher alcohol synthesis from CO2 hydrogenation[J]. ACS Catalysis, 2020, 10(24): 14516-14526. |
| 47 | SI Zhiyan, AMOO Cederick Cyril, HAN Yu, et al. Sputtering FeCu nanoalloys as active sites for alkane formation in CO2 hydrogenation[J]. Journal of Energy Chemistry, 2022, 70: 162-173. |
| 48 | DING Mingyue, TU Junling, QIU Minghuang, et al. Impact of potassium promoter on Cu-Fe based mixed alcohols synthesis catalyst[J]. Applied Energy, 2015, 138: 584-589. |
| 49 | DING Mingyue, MA Longlong, ZHANG Qian, et al. Enhancement of conversion from bio-syngas to higher alcohols fuels over K-promoted Cu-Fe bimodal pore catalysts[J]. Fuel Processing Technology, 2017, 159: 436-441. |
| 50 | HUANG Jiamin, ZHANG Guanghui, ZHU Jie, et al. Boosting the production of higher alcohols from CO2 and H2 over Mn- and K-modified iron carbide[J]. Industrial & Engineering Chemistry Research, 2022, 61(21): 7266-7274. |
| 51 | XI Xiaoying, ZENG Feng, ZHANG Heng, et al. CO2 hydrogenation to higher alcohols over K-promoted bimetallic Fe-In catalysts on a Ce-ZrO2 support[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6235-6249. |
| 52 | GOUD Devender, CHURIPARD Sathyapal R, BAGCHI Debabrata, et al. Strain-enhanced phase transformation of iron oxide for higher alcohol production from CO2 [J]. ACS Catalysis, 2022, 12(18): 11118-11128. |
| 53 | XU Di, DING Mingyue, HONG Xinlin, et al. Selective C2+ alcohol synthesis from direct CO2 hydrogenation over a Cs-promoted Cu-Fe-Zn catalyst[J]. ACS Catalysis, 2020, 10(9): 5250-5260. |
| 54 | LIANG Jie, WANG Xinyu, GAO Xinhua, et al. Effect of Na promoter and reducing atmosphere on phase evolution of Fe-based catalyst and its CO2 hydrogenation performance[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1573-1580. |
| 55 | ZENG Zhuang, LI Zhuoshi, GUAN Tong, et al. CoFe alloy carbide catalysts for higher alcohols synthesis from syngas: Evolution of active sites and Na promoting effect[J]. Journal of Catalysis, 2022, 405: 430-444. |
| 56 | YAO Ruwei, WEI Jian, GE Qingjie, et al. Monometallic iron catalysts with synergistic Na and S for higher alcohols synthesis via CO2 hydrogenation[J]. Applied Catalysis B: Environmental, 2021, 298: 120556. |
| 57 | 王昊, 钱炜鑫, 马宏方, 等. 不同Mn含量Cu-Fe基催化剂合成低碳醇的原位红外光谱及反应性能研究[J]. 天然气化工(C1化学与化工), 2018, 43(6): 34-38. |
| WANG Hao, QIAN Weixin, MA Hongfang, et al. In situ DRFTIR and reaction performance investigation of Cu-Fe based catalysts with different content of Mn for higher alcohols synthesis[J]. Natural Gas Chemical Industry, 2018, 43(6): 34-38. | |
| 58 | XU Yanbo, MA Hongfang, ZHANG Haitao, et al. Cu-promoted iron catalysts supported on nanorod-structured Mn-Ce mixed oxides for higher alcohol synthesis from syngas[J]. Catalysts, 2020, 10(10): 1124. |
| 59 | 周瑶. Fe基多金属催化剂的制备及CO2加氢制取低碳醇的性能研究[D]. 银川: 宁夏大学, 2023. |
| ZHOU Yao. Preparation of Fe-based polymetallic catalysts and study on the performance of CO2 hydrogenation to produce low carbon alcohols[D]. Yinchuan: Ningxia University, 2023. | |
| 60 | GE Yuzhen, ZOU Tangsheng, MARTÍN Antonio J, et al. ZrO2-promoted Cu-Co, Cu-Fe and Co-Fe catalysts for higher alcohol synthesis[J]. ACS Catalysis, 2023, 13(15): 9946-9959. |
| 61 | YANG Yanzhang, WANG Lei, XIAO Kang, et al. Elucidation of reaction network of higher alcohol synthesis over modified FT catalysts by probe molecule experiments[J]. Catalysis Science & Technology, 2015, 5(8): 4224-4232. |
| 62 | ZHANG Qian, WANG Sen, SHI Xuerong, et al. Conversion of CO2 to higher alcohols on K-CuZnAl/Zr-CuFe composite[J]. Applied Catalysis B: Environment and Energy, 2024, 346: 123748. |
| 63 | LIAO Peiyi, ZHANG Chen, ZHANG Lijun, et al. Effect of promoter and CO2 content in the feed on the performance of CuFeZr catalyst in the synthesis of higher alcohol from syngas[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 547-555. |
| 64 | 沈亚星. CuFe浆状催化剂低温合成低碳醇性能的研究[D]. 太原: 太原理工大学, 2022. |
| SHEN Yaxing. Study on Cu Fe slurry catalyst performance for higher alcohol synthesis at low temperature[D]. Taiyuan: Taiyuan University of Technology, 2022. | |
| 65 | 李印文. CuFe基二元催化剂的制备及合成气转化制长链醇的性能研究[D]. 北京: 北京化工大学, 2019. |
| LI Yinwen. Preparation of CuFe binary catalysts towards syngas conversion to long-chain alcohol[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
| 66 | ZENG Zhuang, LI Zhuoshi, GUO Shaoxia, et al. Janus Au-Fe2.2C catalyst for direct conversion of syngas to higher alcohols[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(33): 11258-11268. |
| 67 | 夏万东, 高洪成. 镧改性Cu-Fe/SiO2催化剂催化合成气制备低碳醇[J]. 精细化工, 2018, 35(4): 603-607. |
| XIA Wandong, GAO Hongcheng. Synthesis of higher alcohols from syngas over lanthanum modified Cu-Fe/SiO2 [J]. Fine Chemicals, 2018, 35(4): 603-607. | |
| 68 | ZHANG Qian, WANG Sen, GENG Rui, et al. Hydrogenation of CO2 to higher alcohols on an efficient Cr-modified CuFe catalyst[J]. Applied Catalysis B: Environmental, 2023, 337: 123013. |
| 69 | CAPARRÓS Francisco J, SOLER Lluís, ROSSELL Marta D, et al. Remarkable carbon dioxide hydrogenation to ethanol on a palladium/iron oxide single-atom catalyst[J]. ChemCatChem, 2018, 10(11): 2365-2369. |
| 70 | SHI Xinping, YU Haibing, GAO Shan, et al. Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu-Fe catalyst for the synthesis of higher alcohols from syngas[J]. Fuel, 2017, 210: 241-248. |
| 71 | JIA Yazhen, WANG Bin, WEN Yueli, et al. Mechanism of stability and deactivation of N-doped CuFeZn catalysts for C2+ alcohols synthesis by hydrogenation of CO2 [J]. Fuel Processing Technology, 2023, 250: 107901. |
| 72 | WANG Yanqiu, ZHANG Xinxin, HONG Xinlin, et al. Sulfate-promoted higher alcohol synthesis from CO2 hydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(27): 8980-8987. |
| 73 | YANG Wanliang, CHEN Meng, ZHOU Jiayuan, et al. Preparation and evaluation of highly dispersed HHSS supported Cu-Fe bimetallic catalysts for higher alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2020, 608: 117868. |
| 74 | DING Mingyue, TU Junlin, TSUBAKI Noritatsu, et al. Design of bimodal pore Cu-Fe based catalyst with enhanced performances for higher alcohols synthesis[J]. Energy Procedia, 2015, 75: 767-772. |
| 75 | GONG Nana, WU Yingquan, MA Qingxiang, et al. A simple strategy stabilizing for a CuFe/ SiO2 catalyst and boosting higher alcohols’ synthesis from syngas[J]. Catalysts, 2023, 13(2): 237. |
| 76 | 胡伟. 合成气制低碳醇Cu-Fe催化剂的制备及改性机制研究[D]. 上海: 华东理工大学, 2017. |
| HU Wei. Preparation of Cu-Fe catalysts for low carbon alcohols and mechanism research[D]. Shanghai: East China University of Science and Technology, 2017. | |
| 77 | 黄乐. 合成气制高碳醇CuFe催化剂研究[D]. 上海: 华东理工大学, 2021. |
| HUANG Le. Study on CuFe catalysts for higher alcohols synthesis from syngas[D]. Shanghai: East China University of Science and Technology, 2021. | |
| 78 | GUO Haijun, ZHANG Hairong, PENG Fen, et al. Mixed alcohols synthesis from syngas over activated palygorskite supported Cu-Fe-Co based catalysts[J]. Applied Clay Science, 2015, 111: 83-89. |
| 79 | ZHANG J, LI Y. Higher alcohols from syngas with graphite oxide modified CuFeMn catalyst with low CO2 selectivity[J]. Kinetics and Catalysis, 2020, 61(6): 861-868. |
| 80 | GAO Wa, ZHAO Yufei, CHEN Haoran, et al. Core-shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas[J]. Green Chemistry, 2015, 17(3): 1525-1534. |
| 81 | DU Hong, ZHU Hejun, ZHAO Ziang, et al. Effects of impregnation strategy on structure and performance of bimetallic CoFe/AC catalysts for higher alcohols synthesis from syngas[J]. Applied Catalysis A: General, 2016, 523: 263-271. |
| 82 | 王新略, 穆晓亮, 韩念琛, 等. 制备方法对CuFe负载介孔SiO2催化剂合成气制低碳醇催化性能的影响[J]. 天然气化工—C1化学与化工, 2022, 47(4): 57-65. |
| WANG Xinlue, MU Xiaoliang, HAN Nianchen, et al. Effect of preparation methods on catalytic performance of CuFe supported mesoporous SiO2 catalyst for syngas to higher alcohols[J]. Natural Gas Chemical Industry, 2022, 47(4): 57-65. | |
| 83 | SUN Chao, MAO Dongsen, HAN Lupeng, et al. Effect of impregnation sequence on performance of SiO2 supported Cu-Fe catalysts for higher alcohols synthesis from syngas[J]. Catalysis Communications, 2016, 84: 175-178. |
| 84 | HE Shun, WANG Wei, SHEN Zheng, et al. Carbon nanotube-supported bimetallic Cu-Fe catalysts for syngas conversion to higher alcohols[J]. Molecular Catalysis, 2019, 479: 110610. |
| 85 | GUO Haijun, LI Qinglin, ZHANG Hairong, et al. Attapulgite supported Cu-Fe-Co based catalyst combination system for CO hydrogenation to lower alcohols[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1346-1356. |
| 86 | 高娃. 铜基催化剂双活性位结构调控及其协同催化作用机制研究[D]. 北京: 北京化工大学, 2016. |
| GAO Wa. Modulation of double active sites in Cu-based catalysts and corresponding cooperative catalysis mechanism[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
| 87 | LI Yinwen, GAO Wa, PENG Mi, et al. Interfacial Fe5C2-Cu catalysts toward low-pressure syngas conversion to long-chain alcohols[J]. Nature Communications, 2020, 11(1): 61. |
| 88 | HOU Bin, HAN Xinyou, LIN Minggui, et al. Preparation of SiO2-coated CuFe catalysts for synthesis of higher alcohols from CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(2): 217-224. |
| 89 | CHEN Yanping, MA Lixuan, ZHANG Riguang, et al. Carbon-supported Fe catalysts with well-defined active sites for highly selective alcohol production from Fischer-Tropsch synthesis[J]. Applied Catalysis B: Environmental, 2022, 312: 121393. |
| 90 | XU Di, YANG Hengquan, HONG Xinlin, et al. Tandem catalysis of direct CO2 hydrogenation to higher alcohols[J]. ACS Catalysis, 2021, 11(15): 8978-8984. |
| 91 | CAO Ang, YANG Qilei, WEI Ying, et al. Synthesis of higher alcohols from syngas over CuFeMg-LDHs/CFs composites[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17425-17434. |
| 92 | HAN Tong, ZHAO Lin, LIU Guilong, et al. Rh-Fe alloy derived from YRh0.5Fe0.5O3/ZrO2 for higher alcohols synthesis from syngas[J]. Catalysis Today, 2017, 298: 69-76. |
| 93 | YANG Chen, WANG Bin, WEN Yueli, et al. Composition control of CuFeZn catalyst derived by PDA and its effect on synthesis of C2+ alcohols from CO2 [J]. Fuel, 2022, 327: 125055. |
| 94 | KIM Tae-Wan, KLEITZ Freddy, Jong Won JUN, et al. Catalytic conversion of syngas to higher alcohols over mesoporous perovskite catalysts[J]. Journal of Industrial and Engineering Chemistry, 2017, 51: 196-205. |
| 95 | STEIN Andreas, LI Fan, DENNY Nicholas R. Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles[J]. Chemistry of Materials, 2008, 20(3): 649-666. |
| [1] | TAO Jinquan, JIA Yijing, BAI Tianyu, YAO Rongpeng, HUANG Wenbin, CUI Yan, ZHOU Yasong, WEI Qiang. Synthesis and catalytic MTP performance of Silicalite-1 zeolite with low cost [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1550-1558. |
| [2] | DU Jingjing, JIANG Jun, XU Xinwu, SHAO Lupeng, XU Zhaoyang, MEI Changtong. Effects of different polymerization degrees on the formation, structure and property of polyvinyl alcohol films [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1588-1598. |
| [3] | HU Jiawei, LIU Yan, WANG Cong, LIU Meijing. Development and effect analysis of a double-layer granular reagent for treating high hardness water [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1695-1705. |
| [4] | ZHANG Yi, YAO Qiuxiang, SUN Ming. Adsorption performance of natural clinoptilolite based analcime and its modifications on Pb2+ [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1726-1738. |
| [5] | ZHANG Xin’er, PEI Liujun, ZHOU Yudie, JIN Kaili, WANG Jiping. Progress of TiO2-based photocatalysts for hydrogen production by water splitting with solar energy [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1298-1308. |
| [6] | LIU Junjie, WU Jianmin, SUN Qiwen, WANG Jiancheng, SUN Yan. Research of metallocene catalysts for linear α-olefins polymerization to obtain high molecular weight products [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1309-1322. |
| [7] | SU Liangjian, XIAO Junyan, ZHANG Chunguang, ZHAO Yuansheng, YANG Xu. Deep regeneration of fixed-bed HDCCR catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 728-734. |
| [8] | LI Zhuoyu, YU Meiqi, CHEN Xiaoyan, HU Ruohui, WANG Qinghong, CHEN Chunmao, ZHAN Yali. Effects and mechanism on the removal of nitrobenzene from water by adsorption of refining waste catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1076-1087. |
| [9] | LI Xiaoqian, REN Shenyong, LIU Lu, YANG Chi, SHEN Baojian, XU Chunming. Modulation of NiMo-based catalysts by Fe species and its effect on catalytic hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 867-878. |
| [10] | ZHANG Huanling, MA Huixia, ZHOU Feng, ZHAO Chenghao, ZHU Xiaolin, WANG Guowei, LI Chunyi. Effect of introduced In species on propane dehydrogenation over Ge/SiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 879-886. |
| [11] | ZHANG Haibing, LIU Yun’e, HUANG Zhihao, SHEN Rong. Electrocatalytic reduction of NO3--N by the prepared Ti foam-Ni-Sn/Bi cathode [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1100-1109. |
| [12] | LIU Fazhi, ZHANG Pengwei, LIU Tao, XIE Yuxian, HE Jianle, SU Sheng, XU Jun, XIANG Jun. Mechanism of anti-CO poisoning of Sb-modified vanadium-titanium SCR denitrification catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1129-1137. |
| [13] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, FENG Bo, JIANG Zhihui, LYU Yijun, MEN Zhuowu. Advances in Co-based catalysts for syngas to higher alcohol [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 773-787. |
| [14] | JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833. |
| [15] | LIAO Xu, WANG Wei, HUANG Wenting, XIONG Wentao, WANG Zeyu, QIN Zuodong, LIN Jinqing. Research progress in biomass-based catalysts in the conversion of carbon dioxide into cyclic carbonates [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 834-846. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |