1 |
黄伟, 熊蔚立, 李石湘, 等. 300MW锅炉高效低NO x 改造的试验研究[J]. 湖南电力, 2004, 24(5): 17-20.
|
|
HUANG Wei, XIONG Weili, LI Shixiang, et al. Experimental study on upgrading of the high-efficiency and low-NO x emission for 300MW boilers[J]. Hunan Electric Power, 2004, 24(5): 17-20.
|
2 |
姚瑶, 吕当振, 邱应军. 分级配风对切圆锅炉NO x 生成与燃烧经济性的影响[J]. 湖南电力, 2015, 35(6): 27-31.
|
|
YAO Yao, Dangzhen LYU, QIU Yingjun. Effects of air staging combustion for a tangential-fired boiler on NO x emission and boiler efficiency[J]. Hunan Electric Power, 2015, 35(6): 27-31.
|
3 |
谢玉仙, 刘涛, 苏胜, 等. 工业窑炉烟气氧含量对钒钛系催化剂NH3-SCR脱硝反应的影响[J]. 化工学报, 2022, 73(10): 4410-4418, 4248.
|
|
XIE Yuxian, LIU Tao, SU Sheng, et al. Influence of oxygen content in industrial kiln flue gas on NH3-SCR denitration reaction of vanadium-titanium catalysts[J]. CIESC Journal, 2022, 73(10): 4410-4418, 4248.
|
4 |
刘亮, 王朝曦, 李鑫龙, 等. 钒钛系脱硝催化剂抗硫酸氢铵中毒改进措施研究进展[J]. 化工进展, 2023, 42(1): 215-225.
|
|
LIU Liang, WANG Zhaoxi, LI Xinlong, et al. Research progress on the improvement of vanadium and titanium denitrification catalysts against ammonium bisulfate poisoning[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 215-225.
|
5 |
朱峰, 郭旭升, 党博文, 等. 燃煤锅炉排烟温差与CO数据模型预测研究[J]. 电工技术, 2020(9): 16-18, 23.
|
|
ZHU Feng, GUO Xusheng, DANG Bowen, et al. Research on exhaust gas temperature difference and CO data model prediction of coal-fired boilers[J]. Electric Engineering, 2020(9): 16-18, 23.
|
6 |
李德波, 沈跃良. 前后对冲旋流燃煤锅炉CO和NO x 分布规律的试验研究[J]. 动力工程学报, 2013, 33(7): 502-506, 554.
|
|
LI Debo, SHEN Yueliang. Experimental study on CO and NO x emission of a swirl-opposed coal-fired boiler[J]. Journal of Chinese Society of Power Engineering, 2013, 33(7): 502-506, 554.
|
7 |
夏文静, 衡丽君, 何长征, 等. 660MW超超临界燃煤锅炉降低CO排放的试验研究[J]. 热能动力工程, 2014, 29(1): 58-64, 108-109.
|
|
XIA Wenjing, HENG Lijun, HE Changzheng, et al. Experimental study of a 660MW ultra-super-critical opposed combustion coal-fired boiler for reducing CO emissions[J]. Journal of Engineering for Thermal Energy and Power, 2014, 29(1): 58-64, 108-109.
|
8 |
WANG Xiaoqiang, LIU Yue, WU Zhongbiao. Temperature-dependent influencing mechanism of carbon monoxide on the NH3-SCR process over ceria-based catalysts[J]. ACS ES&T Engineering, 2021, 1(7): 1131-1139.
|
9 |
LI Zhengling, CHENG Hao, ZHANG Xuebin, et al. The comparative study on the catalytic activity of Cu-M/Ce0.8Zr0.2O2 (M=W, Nb, Cr and Mo) catalysts with dual-function for the simultaneous removal of NO and CO under oxygen-rich conditions[J]. Catalysis Science & Technology, 2021, 11(14): 4987-4995.
|
10 |
ZENG Yiqing, RONG Weilong, ZHANG Shule, et al. Promoting NH3-SCR denitration via CO oxidation over CuO promoted V2O5-WO3/TiO2 catalysts under oxygen-rich conditions[J]. Fuel, 2022, 323: 124357.
|
11 |
LIU Shanshan, WANG Hao, WEI Ying, et al. Morphology-oriented ZrO2-supported vanadium oxide for the NH3-SCR process: Importance of structural and textural properties[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22240-22254.
|
12 |
王乐乐, 杨万荣, 姚燕, 等. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497.
|
|
WANG Lele, YANG Wanrong, YAO Yan, et al. Characteristics and performance influence of SCR denitration catalyst mixed with waste[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497.
|
13 |
LIU Zhiming, LI Yuan, ZHU Tianle, et al. Selective catalytic reduction of NO x by NH3 over Mn-promoted V2O5/TiO2 catalyst[J]. Industrial & Engineering Chemistry Research, 2014, 53(33): 12964-12970.
|
14 |
LIU Fudong, HE Hong, DING Yun, et al. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3 [J]. Applied Catalysis B: Environmental, 2009, 93(1/2): 194-204.
|
15 |
YE Dong, QU Ruiyang, ZHENG Chenghang, et al. Mechanistic investigation of enhanced reactivity of NH4HSO4 and NO on Nb- and Sb-doped VW/Ti SCR catalysts[J]. Applied Catalysis A: General, 2018, 549: 310-319.
|
16 |
LIU Zhiming, LIU Haiyan, ZENG Hui, et al. A novel Ce-Sb binary oxide catalyst for the selective catalytic reduction of NO x with NH3 [J]. Catalysis Science & Technology, 2016, 6(22): 8063-8071.
|
17 |
TROVARELLI ALESSANDRO. Catalytic properties of ceria and CeO2-containing materials[J]. Catalysis Reviews, 1996, 38(4): 439-520.
|
18 |
LIU Yue, GU Tingting, WENG Xiaole, et al. DRIFT studies on the selectivity promotion mechanism of Ca-modified Ce-Mn/TiO2 catalysts for low-temperature NO reduction with NH3 [J]. The Journal of Physical Chemistry C, 2012, 116(31): 16582-16592.
|
19 |
LIU Lijun, LIU Tao, ZHOU Yajin, et al. Inhibitory effect of CO on NH3-SCR of NO over Mn/TiO2 catalyst at low temperature: Inhibitory mechanism investigated by in situ DRIFTS[J]. Applied Surface Science, 2023, 638: 158003.
|
20 |
CHEN Ziyi, WU Xiaomin, NI Kaiwen, et al. Molybdenum-decorated V2O5-WO3/TiO2: Surface engineering toward boosting the acid cycle and redox cycle of NH3-SCR[J]. Catalysis Science & Technology, 2021, 11(5): 1746-1757.
|
21 |
WU Xiaomin, YU Xiaolong, HUANG Zhiwei, et al. MnO x -decorated VO x /CeO2 catalysts with preferentially exposed {110} facets for selective catalytic reduction of NO x by NH3 [J]. Applied Catalysis B: Environmental, 2020, 268: 118419.
|
22 |
CHEN Liang, LI Junhua, GE Maofa. DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NO x with NH3 [J]. Environmental Science & Technology, 2010, 44(24): 9590-9596.
|
23 |
WU Zhongbiao, JIANG Boqiong, LIU Yue, et al. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3 [J]. Environmental Science & Technology, 2007, 41(16): 5812-5817.
|