Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 145-157.DOI: 10.16085/j.issn.1000-6613.2024-0120
• Chemical processes and equipment • Previous Articles Next Articles
QIAO Lei1,2(), ZHANG Yaxin1,2(
), WEI Bo1,2, RAN Wenshen3, MA Jingrong4, WANG Feng4
Received:
2024-01-15
Revised:
2024-04-18
Online:
2025-02-13
Published:
2025-01-15
Contact:
ZHANG Yaxin
乔磊1,2(), 张亚新1,2(
), 魏博1,2, 冉文燊3, 马金荣4, 王峰4
通讯作者:
张亚新
作者简介:
乔磊(1997—),男,硕士研究生,研究方向为设备数值模拟与化工过程强化。E-mail:13893652412@139.com。
基金资助:
CLC Number:
QIAO Lei, ZHANG Yaxin, WEI Bo, RAN Wenshen, MA Jingrong, WANG Feng. Optimization of burner layout parameters and operating parameters of oxy-thermal entrained-flow calcium carbide reactor[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 145-157.
乔磊, 张亚新, 魏博, 冉文燊, 马金荣, 王峰. 氧热法气流床电石反应器烧嘴布置参数及操作参数优化[J]. 化工进展, 2025, 44(1): 145-157.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
反应段总高度H1 | 4.37m | 烧嘴数量n | 4 |
加热区高度H2 | 4.0m | 烧嘴直径d | 0.01m |
加热区直径D1 | 1.5m | 烧嘴高度h | 0.6m |
反应区高度H3 | 0.37m | 轴向夹角α | 30° |
底部直径D2 | 0.8m | 切向夹角β | 0° |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
反应段总高度H1 | 4.37m | 烧嘴数量n | 4 |
加热区高度H2 | 4.0m | 烧嘴直径d | 0.01m |
加热区直径D1 | 1.5m | 烧嘴高度h | 0.6m |
反应区高度H3 | 0.37m | 轴向夹角α | 30° |
底部直径D2 | 0.8m | 切向夹角β | 0° |
动力学参数 | 煤粉非预混燃烧反应 | 电石合成反应 |
---|---|---|
A/s-1 | 2.119×1011 | 983333 |
Ea/J·mol-1 | 2.027×108 | 353000 |
动力学参数 | 煤粉非预混燃烧反应 | 电石合成反应 |
---|---|---|
A/s-1 | 2.119×1011 | 983333 |
Ea/J·mol-1 | 2.027×108 | 353000 |
工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mar | Var | FCar | Aar | Car | Har | Oar | Nar | Sar | |
10.8 | 30.06 | 50.40 | 8.7 | 88.10 | 5.08 | 3.72 | 1.24 | 1.86 |
工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mar | Var | FCar | Aar | Car | Har | Oar | Nar | Sar | |
10.8 | 30.06 | 50.40 | 8.7 | 88.10 | 5.08 | 3.72 | 1.24 | 1.86 |
原料 | CaO/% | MgO/% | SiO2/% | R2O3/% |
---|---|---|---|---|
氧化钙 | 96 | 1.5 | 0.7 | 1.8 |
原料 | CaO/% | MgO/% | SiO2/% | R2O3/% |
---|---|---|---|---|
氧化钙 | 96 | 1.5 | 0.7 | 1.8 |
反应物 | ∆H | ∆S | ∆G |
---|---|---|---|
CaO | -635.09 | 39.75 | -604.3 |
C | 0 | 5.74 | 0 |
CO | -110.525 | 197.674 | -137.168 |
CO2 | -393.509 | 213.74 | -394.359 |
O2 | 0 | 205.138 | 0 |
CaC2 | -59.8 | 69.96 | -64.9 |
反应物 | ∆H | ∆S | ∆G |
---|---|---|---|
CaO | -635.09 | 39.75 | -604.3 |
C | 0 | 5.74 | 0 |
CO | -110.525 | 197.674 | -137.168 |
CO2 | -393.509 | 213.74 | -394.359 |
O2 | 0 | 205.138 | 0 |
CaC2 | -59.8 | 69.96 | -64.9 |
边界 条件 | 温度 /K | 速度 /m·s-1 | 湍流 强度/% | 进料流量 /kg·s-1 | 内部辐射 系数 |
---|---|---|---|---|---|
氧化钙 | 1800 | 0.1 | — | 0.0146 | 0.6 |
煤粉 | 1800 | 0.1 | — | 0.0803 | 0.6 |
氧气入口 | 300 | — | 10 | — | 0.6 |
压力出口 | 300 | — | 0.1 | — | 0.6 |
边界 条件 | 温度 /K | 速度 /m·s-1 | 湍流 强度/% | 进料流量 /kg·s-1 | 内部辐射 系数 |
---|---|---|---|---|---|
氧化钙 | 1800 | 0.1 | — | 0.0146 | 0.6 |
煤粉 | 1800 | 0.1 | — | 0.0803 | 0.6 |
氧气入口 | 300 | — | 10 | — | 0.6 |
压力出口 | 300 | — | 0.1 | — | 0.6 |
网格尺寸/m | 0.04 | 0.05 | 0.06 |
---|---|---|---|
网格数量 | 670796 | 502385 | 419634 |
网格尺寸/m | 0.04 | 0.05 | 0.06 |
---|---|---|---|
网格数量 | 670796 | 502385 | 419634 |
因素 | 编号 | 水平 | ||
---|---|---|---|---|
1 | 2 | 3 | ||
烧嘴轴向夹角/(°) | A1 | 40 | 45 | 50 |
烧嘴切向夹角/(°) | B1 | 20 | 30 | 40 |
烧嘴高度/m | C1 | 0.5 | 0.6 | 0.7 |
因素 | 编号 | 水平 | ||
---|---|---|---|---|
1 | 2 | 3 | ||
烧嘴轴向夹角/(°) | A1 | 40 | 45 | 50 |
烧嘴切向夹角/(°) | B1 | 20 | 30 | 40 |
烧嘴高度/m | C1 | 0.5 | 0.6 | 0.7 |
序号 | A1 | B1 | C1 | YT/% |
---|---|---|---|---|
1 | 45 | 40 | 0.7 | 30.08 |
2 | 45 | 30 | 0.6 | 59.77 |
3 | 45 | 20 | 0.5 | 36.88 |
4 | 40 | 40 | 0.6 | 33.33 |
5 | 45 | 30 | 0.6 | 59.77 |
6 | 40 | 30 | 0.5 | -8.66 |
7 | 50 | 30 | 0.7 | 12.89 |
8 | 50 | 20 | 0.6 | 17.51 |
9 | 45 | 30 | 0.6 | 59.77 |
10 | 45 | 30 | 0.6 | 59.77 |
11 | 45 | 20 | 0.7 | 23.13 |
12 | 40 | 30 | 0.7 | 51.55 |
13 | 50 | 30 | 0.5 | 50.50 |
14 | 50 | 40 | 0.6 | 24.73 |
15 | 40 | 20 | 0.6 | 16.31 |
16 | 45 | 40 | 0.5 | 43.43 |
17 | 45 | 30 | 0.6 | 59.77 |
序号 | A1 | B1 | C1 | YT/% |
---|---|---|---|---|
1 | 45 | 40 | 0.7 | 30.08 |
2 | 45 | 30 | 0.6 | 59.77 |
3 | 45 | 20 | 0.5 | 36.88 |
4 | 40 | 40 | 0.6 | 33.33 |
5 | 45 | 30 | 0.6 | 59.77 |
6 | 40 | 30 | 0.5 | -8.66 |
7 | 50 | 30 | 0.7 | 12.89 |
8 | 50 | 20 | 0.6 | 17.51 |
9 | 45 | 30 | 0.6 | 59.77 |
10 | 45 | 30 | 0.6 | 59.77 |
11 | 45 | 20 | 0.7 | 23.13 |
12 | 40 | 30 | 0.7 | 51.55 |
13 | 50 | 30 | 0.5 | 50.50 |
14 | 50 | 40 | 0.6 | 24.73 |
15 | 40 | 20 | 0.6 | 16.31 |
16 | 45 | 40 | 0.5 | 43.43 |
17 | 45 | 30 | 0.6 | 59.77 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 0.6484 | 9 | 0.072 | 12.02 | 0.0017 |
A1 | 0.0021 | 1 | 0.0021 | 0.3581 | 0.5684 |
B1 | 0.0177 | 1 | 0.0177 | 2.95 | 0.1293 |
C1 | 0.0002 | 1 | 0.0002 | 0.0402 | 0.8467 |
A1B1 | 0.0024 | 1 | 0.0024 | 0.4005 | 0.547 |
A1C1 | 0.2393 | 1 | 0.2393 | 39.92 | 0.0004 |
B1C1 | 2.09×10-6 | 1 | 2.09×10-6 | 0.0003 | 0.9856 |
0.2004 | 1 | 0.2004 | 33.44 | 0.0007 | |
B | 0.0945 | 1 | 0.0945 | 15.77 | 0.0054 |
C | 0.0545 | 1 | 0.0545 | 9.1 | 0.0195 |
残差 | 0.042 | 7 | 0.006 | — | — |
失拟项 | 0.042 | 3 | 0.014 | ||
纯误差 | 0 | 4 | 0 | ||
总和 | 0.6903 | 16 | — |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 0.6484 | 9 | 0.072 | 12.02 | 0.0017 |
A1 | 0.0021 | 1 | 0.0021 | 0.3581 | 0.5684 |
B1 | 0.0177 | 1 | 0.0177 | 2.95 | 0.1293 |
C1 | 0.0002 | 1 | 0.0002 | 0.0402 | 0.8467 |
A1B1 | 0.0024 | 1 | 0.0024 | 0.4005 | 0.547 |
A1C1 | 0.2393 | 1 | 0.2393 | 39.92 | 0.0004 |
B1C1 | 2.09×10-6 | 1 | 2.09×10-6 | 0.0003 | 0.9856 |
0.2004 | 1 | 0.2004 | 33.44 | 0.0007 | |
B | 0.0945 | 1 | 0.0945 | 15.77 | 0.0054 |
C | 0.0545 | 1 | 0.0545 | 9.1 | 0.0195 |
残差 | 0.042 | 7 | 0.006 | — | — |
失拟项 | 0.042 | 3 | 0.014 | ||
纯误差 | 0 | 4 | 0 | ||
总和 | 0.6903 | 16 | — |
因素 | 编号 | 水平 | ||
---|---|---|---|---|
1 | 2 | 3 | ||
进料粒径/μm | A2 | 120 | 140 | 160 |
进料温度/K | B2 | 1200 | 1400 | 1600 |
氧气温度/K | C2 | 500 | 800 | 1100 |
因素 | 编号 | 水平 | ||
---|---|---|---|---|
1 | 2 | 3 | ||
进料粒径/μm | A2 | 120 | 140 | 160 |
进料温度/K | B2 | 1200 | 1400 | 1600 |
氧气温度/K | C2 | 500 | 800 | 1100 |
水平 | A2 | B2 | C2 | Yp/% |
---|---|---|---|---|
1 | 160 | 1600 | 800 | 46.0756 |
2 | 120 | 1400 | 500 | 52.5889 |
3 | 160 | 1400 | 1100 | 43.5116 |
4 | 160 | 1400 | 500 | 51.1943 |
5 | 140 | 1400 | 800 | 55.6441 |
6 | 120 | 1200 | 800 | 41.9578 |
7 | 140 | 1200 | 1100 | 45.1369 |
8 | 140 | 1400 | 800 | 55.6441 |
9 | 140 | 1400 | 800 | 55.6441 |
10 | 140 | 1400 | 800 | 55.6441 |
11 | 160 | 1200 | 800 | 48.5747 |
12 | 140 | 1200 | 500 | 53.1574 |
13 | 140 | 1600 | 500 | 43.979 |
14 | 140 | 1400 | 800 | 55.6441 |
15 | 120 | 1600 | 800 | 48.0226 |
16 | 120 | 1400 | 1100 | 51.9964 |
17 | 140 | 1600 | 1100 | 48.692 |
水平 | A2 | B2 | C2 | Yp/% |
---|---|---|---|---|
1 | 160 | 1600 | 800 | 46.0756 |
2 | 120 | 1400 | 500 | 52.5889 |
3 | 160 | 1400 | 1100 | 43.5116 |
4 | 160 | 1400 | 500 | 51.1943 |
5 | 140 | 1400 | 800 | 55.6441 |
6 | 120 | 1200 | 800 | 41.9578 |
7 | 140 | 1200 | 1100 | 45.1369 |
8 | 140 | 1400 | 800 | 55.6441 |
9 | 140 | 1400 | 800 | 55.6441 |
10 | 140 | 1400 | 800 | 55.6441 |
11 | 160 | 1200 | 800 | 48.5747 |
12 | 140 | 1200 | 500 | 53.1574 |
13 | 140 | 1600 | 500 | 43.979 |
14 | 140 | 1400 | 800 | 55.6441 |
15 | 120 | 1600 | 800 | 48.0226 |
16 | 120 | 1400 | 1100 | 51.9964 |
17 | 140 | 1600 | 1100 | 48.692 |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 330.43 | 9 | 36.71 | 6.41 | 0.0114 |
A2 | 3.39 | 1 | 3.39 | 0.5922 | 0.4667 |
B2 | 0.5292 | 1 | 0.5292 | 0.0924 | 0.7700 |
C2 | 16.77 | 1 | 16.77 | 2.93 | 0.1308 |
A2B2 | 18.34 | 1 | 18.34 | 3.20 | 0.1167 |
A2C2 | 12.57 | 1 | 12.57 | 2.19 | 0.1821 |
B2C2 | 40.54 | 1 | 40.54 | 7.08 | 0.0325 |
A | 57.72 | 1 | 57.72 | 10.08 | 0.0156 |
B | 140.86 | 1 | 140.86 | 24.59 | 0.0016 |
C | 18.90 | 1 | 18.90 | 3.30 | 0.1121 |
残差 | 40.10 | 7 | 5.73 | ||
失拟项 | 40.10 | 3 | 13.37 | ||
纯误差 | 0.0000 | 4 | 0.0000 | ||
总和 | 370.53 | 16 | — |
方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 |
---|---|---|---|---|---|
模型 | 330.43 | 9 | 36.71 | 6.41 | 0.0114 |
A2 | 3.39 | 1 | 3.39 | 0.5922 | 0.4667 |
B2 | 0.5292 | 1 | 0.5292 | 0.0924 | 0.7700 |
C2 | 16.77 | 1 | 16.77 | 2.93 | 0.1308 |
A2B2 | 18.34 | 1 | 18.34 | 3.20 | 0.1167 |
A2C2 | 12.57 | 1 | 12.57 | 2.19 | 0.1821 |
B2C2 | 40.54 | 1 | 40.54 | 7.08 | 0.0325 |
A | 57.72 | 1 | 57.72 | 10.08 | 0.0156 |
B | 140.86 | 1 | 140.86 | 24.59 | 0.0016 |
C | 18.90 | 1 | 18.90 | 3.30 | 0.1121 |
残差 | 40.10 | 7 | 5.73 | ||
失拟项 | 40.10 | 3 | 13.37 | ||
纯误差 | 0.0000 | 4 | 0.0000 | ||
总和 | 370.53 | 16 | — |
1 | 任其龙. 低阶煤高值转化制备基础化工原料关键技术及应用[J]. 化工进展, 2016, 35(12): 4101-4102. |
REN Qilong. Key technologies and application of producing basic chemical materials from low-rank coal[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4101-4102. | |
2 | HUO Hailong, LIU Xunliang, WEN Zhi, et al. Case study of a novel low rank to calcium carbide process based on techno-economic assessment[J]. Energy, 2021, 228: 120566. |
3 | 王秋鸣, 李树莹, 耿书阳, 等. 电石熔炼过程单颗粒模型与球团新工艺强化机制[J]. 科学通报, 2021, 66(21): 2766-2774. |
WANG Qiuming, LI Shuying, GENG Shuyang, et al. The single-particle model of calcium carbide production and strengthening mechanism of the novel pelletizing process[J]. Chinese Science Bulletin, 2021, 66(21): 2766-2774. | |
4 | 刘振宇, 刘清雅, 唐旭博, 等. 一种电石生产方法: CN 101327928A[P]. 2008-12-24. |
LIU Zhenyu, LIU Qingya, TANG Xubo, et al. A calcium carbide production method: CN 101327928A[P]. 2008-12-24. | |
5 | 刘陆. 氧热法电石生产反应工艺及反应器设计研究[D]. 北京: 北京化工大学, 2012. |
LIU Lu. Study on reactors for calcuim carbide produced in oxygen-fuel method[D]. Beijing: Beijing University of Chemical Technology, 2012. | |
6 | 于洋, 李文涛, 窦雅玲, 等. 氧热法电石生产气流床反应器性能的数值模拟[J]. 北京化工大学学报(自然科学版), 2013, 40(03): 27-31. |
YU Yang, LI Wentao, DOU Yaling, et al. Simulation of the reaction performance of a fluid bed reactor for oxygen-heated calcium carbide production[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2013, 40(03): 27-31. | |
7 | 李文涛, 于洋, 窦雅玲, 等. 氧热法电石生产复合床反应器预热区的设计计算[J]. 北京化工大学学报(自然科学版), 2014, 41(01): 24-28. |
LI Wentao, YU Yang, DOU Yaling, et al. Design of the preheated area in a combined bed reactor for oxygen-heating production of calcium carbid[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2014, 41(01): 24-28. | |
8 | 赵欣磊, 祁娟, 马艺桠, 等. 复合床电石反应器用固体布料器性能实验[J]. 北京化工大学学报(自然科学版), 2015, 42(3): 28-32. |
ZHAO Xinlei, QI Juan, MA Yiya, et al. Performance of a solid particle distribution device used in a multi-bed reactor for calcium carbide production[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2015, 42(3): 28-32. | |
9 | 祁娟. 氧热法电石生产复合移动床反应器模型化设计研究[D]. 北京: 北京化工大学, 2015. |
QI Juan. Study on hybrid composite reactor for oxygen-heatinging calcium carbide production. [D]. Beijing: Beijing University of Chemical Technology, 2015. | |
10 | 马艺桠. 氧热法制备电石过程中复合原料颗粒的热质传递和反应性能研究[D]. 北京: 北京化工大学, 2015. |
MA Yiya. Study on the transfer and reaction performance of composite particle in the process of oxygen-heating CaC2 production[D]. Beijing: Beijing University of Chemical Technology, 2015. | |
11 | 徐才福, 陈雪枫, 徐建民, 等. 氧热法反应制备电石和合成气的方法及电石反应器: CN102153085B[P]. 2013-10-16. |
XU Caifu, CHEN Xuefeng, XU Jianmin, et al. The method of preparing calcium carbide and synthesis gas by oxygen thermal reaction and calcium carbide reactor: CN102153085B[P]. 2013-10-16. | |
12 | 徐婉怡, 王红霞, 崔小迷, 等. 电石制备清洁生产和工程化研究进展[J]. 化工进展, 2021, 40(10): 5337-5347. |
XU Wanyi, WANG Hongxia, CUI Xiaomi, et al. Research progress on cleaner production and engineering of calcium carbide preparation[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5337-5347. | |
13 | 李国栋. 粉状焦炭和粉状氧化钙制备碳化钙新工艺的基础研究[D]. 北京: 北京化工大学, 2011. |
LI Guodong. Fundamental study on a novel technology of CaC2 production from fine coke and fine CaO[D]. Beijing: Beijing University of Chemical Technology, 2011. | |
14 | 刘陆, 杨鹏远, 刘辉. 氧热法电石合成的反应平衡和热匹配分析[J]. 北京化工大学学报(自然科学版), 2012, 39(2): 1-6. |
LIU Lu, YANG Yuanpeng, LIU hui. Thermodynamic analysis of calcium carbide synthesis and its thermal coupling with coke combustion[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2012, 39(2): 1-6. | |
15 | JI Leiming, LIU Qingya, LIU Zhenyu. Thermodynamic analysis of calcium carbide production[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2537-2543. |
16 | WANG Renxing, LIU Zhenyu, JI Leiming, et al. Reaction kinetics of CaC2 formation from powder and compressed feeds[J]. Frontiers of Chemical Science and Engineering, 2016, 10(4): 517-525. |
17 | Ni Lijuan, WANG Renxing, LIU Qingya, et al. SiO2 promoted CaO diffusion to C phase at 1500 and 1700℃[J]. Energies 2021, 14, 587. |
18 | GONG Xuzhong, ZHANG Junqiang, WANG Zhi, et al. Development of calcium coke for CaC2 production using calcium carbide slag and coking coal[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28: 76-87. |
19 | ZHANG Xuankai, TONG Zixiang, HE Yaling, et al. Influence of feed architecture on heat and mass transfer in calcium carbide electric furnace[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120593. |
20 | LI Renxi, MA Shuo, MA Hongting, et al. Numerical simulation of heat transfer and chemical reaction of CaO-C porous pellets in the reaction layer of calcium carbide furnace[J]. Applied Thermal Engineering, 2020, 181: 115877. |
21 | YOU Xiaomin, SHE Xuefeng, WANG Jingsong, et al. Preparation of CaO-containing carbon pellets from coking coal and calcium oxide: Effects of temperature, pore distribution and carbon structure on compressive strength in pyrolysis furnace[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(7): 153-1163. |
22 | YOU Xiaomin, WANG Jingsong, SHE Xuefeng, et al. Comparison of new two-step calcium carbide production process and traditional production process using numerical simulation of heat transfer and chemical reaction[J]. Chemical Engineering Research and Design, 2022, 187: 516-28. |
23 | XU Qian, LI Yinshi, DENG Shipei, et al. Modeling of multiprocess behavior for feedstock-mixed porous pellet: Heat and mass transfer, chemical reaction, and phase change[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12510-12519. |
24 | 万凯迪. 煤粉热解、燃烧及碱金属释放与反应特性的大涡模拟[D]. 杭州: 浙江大学, 2017. |
WAN Kaidi. Large-eddy simulation of pulverized-coal pyrolysis, combustion, and alkali metal release and reacting dynamics[D]. Hangzhou: Zhejiang University, 2017. | |
25 | 刘丽萍. 四角切圆煤粉炉炉内燃烧及配风的数值模拟[D]. 大连: 大连理工大学, 2009. |
LIU Liping. Numerical simulation of combustion process and air distribution of tangentially pulverized coal-fired boiler[D]. Dalian: Dalian University of Technology, 2009. | |
26 | 苏鹏翼. 循环流化床煤气化炉关键部件试验研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2020. |
SU Pengyi. Experimental study on key components of CFB gasifier[D]. Beijing: The Institute of Engineering Thermophysics Chinese Academy of Sciences, 2020. | |
27 | CHOI Choengryul, KIM Changnyung. Numerical investigation on the flow, combustion and NO x emission characteristics in a 500 MWe tangentially fired pulverized-coal boiler[J]. Fuel, 2009, 88(9): 1720-1731. |
28 | 高正阳, 崔伟春, 杨毅栎, 等. 火焰中心高度对W型火焰锅炉燃烧影响的数值模拟研究[J]. 热力发电, 2009, 38(11): 23-27. |
GAO Zhengyang, CUI Weichun, YANG Yile, et al. Study on numerical simulation concerning influence of flame centre height upon combustion in W-shaped flame boiler[J]. Thermal Power Generation, 2009, 38(11): 23-27. | |
29 | WANG Xiaoxiao, XU Shisen, WANG Yibin, et al. Numerical simulation on the effect of burner bias angles on the performance of a two-stage entrained-flow gasifier[J]. ACS omega, 2022, 7(8): 6640-6654. |
30 | 胡莹超. 水煤浆气化喷嘴冷态模化试验研究与新型喷嘴开发研究[D]. 杭州: 浙江大学, 2011. |
HU Yingchao. Research on cold modeling experimental of CWS burner for gasification and development of new burner[D]. Hangzhou: Zhejiang University, 2011. | |
31 | STADLER Hannes, TOPOROV Dobrin, FOERSTER Malte, et al. On the influence of the char gasification reactions on NO formation in flameless coal combustion[J]. Combustion & Flame, 2009, 156(9): 1755-1763. |
32 | SU Li, FENG Shengdan, LI Ping, et al. Study on simulation of pulverized coal gasification process in the GSP gasifier[J]. Canadian Journal of Chemical Engineering, 2016, 95(4): 688-697. |
33 | ZHANG Hai, YUE Guangxi, LU Junfu, et al. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2779-2785. |
34 | CHOI Youngchan, LI Xiangyang, PARK Taejun, et al. Numerical study on the coal gasification characteristics in an entrained flow coal gasifier[J]. Fuel, 2001(15): 80. |
35 | 张志, 李振山, 蔡宁生. 煤粉燃烧中焦炭燃烧模型的比较与分析[J]. 燃烧科学与技术, 2014, 20(5): 393-400. |
ZHANG Zhi, LI Zhenshan, CAI Ningsheng. Comparison and analysis of different models of pulverized coal char combustion[J]. Journal of Combustion Science and Technology, 2014, 20(5): 393-400. | |
36 | LI Ruijiang, ZHU Zibin. Investigations on hydrodynamics of multilayer Π-type radial flow reactors[J]. Asia-Pacific Journal of Chemical Engineering, 2012, 7(4): 517-527. |
37 | 张金星, 张样, 黄志甲, 等. 基于响应曲面法的高炉煤气CO2吸收工艺参数优化[J]. 过程工程学报, 2021, 21(8): 985-992. |
ZHANG Jinxing, ZHANG Xiang, HUANG Zhijia, et al. Optimization of CO2 absorption process parameters of blast furnace gas based on response surface methodology[J]. The Chinese Journal of Process Engineering, 2021, 21(8): 985-992. |
[1] | CHEN Kexin, LI Xi, CHANG Fucheng, WU Xiaoyi, LOU Jiacheng, LI Huixiong. Investigation on pressure drop and characteristics of flow-pattern transition of steam-water two-phase flows in helically coiled tubes [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 613-624. |
[2] | LIU Fazhi, ZHANG Pengwei, LIU Tao, XIE Yuxian, HE Jianle, SU Sheng, XU Jun, XIANG Jun. Mechanism of anti-CO poisoning of Sb-modified vanadium-titanium SCR denitrification catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1129-1137. |
[3] | HU Panpan, XIAO Mengyao, WANG Na, SHI Jiping, LIU Li. Optimization of multi-enzyme collaborative pretreatment of kitchen waste [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1138-1146. |
[4] | XIONG Siheng, HUANG Dongmei, XIAO Yuan, HUANG Xiaohuang, YI Zhikang, CUI Guomin. Novel continuous non-structural model for mass exchanger network synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 635-645. |
[5] | SU Xuanhe, MENG Shida, KE Jiekun, LU Wei. Analyses of performance and energy consumption for a multistage gas separation system based on molecular exchange flow [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 109-120. |
[6] | XIAO Yuan, CHEN Yi, LIU Siqi, CUI Guomin. Mass-heat analogy and global optimization of mass exchange network based on generalized heat exchanger network [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 121-134. |
[7] | YU Hai, LUAN Zhiyong, JI Yipeng, AN Shenfa, CHEN Jiaqing, SI Zheng, REN Qiang, SUN Fengxu, SONG Zerun. Calculation method and impact analysis of short-circuit flow in dynamic hydrocyclone [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 135-144. |
[8] | XING Lei, ZHOU Xiaoqing, JIANG Minghu, ZHAO Lixin, LI Xinya, CHEN Dehai. Motion behavior and deformation characteristics of discrete oil droplets in a sudden contraction and sudden expansion round pipe [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 27-37. |
[9] | LI Hao, SUN Yunan, LI Jian, TAO Junyu, CHENG Zhanjun, YAN Beibei, CHEN Guanyi. Co-gasification characteristics of excavated waste and municipal solid waste blends [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 525-537. |
[10] | SUN Jianchen, YANG Jie, LI Jun, SUN Huidong, NIU Junmin, LIAO Yifei, REN Junying, SHANG Hui. Effect of catalyst particle arrangements on microwave heating [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 57-65. |
[11] | ZHU Rukai, CHENG Xiao, LIU Jinya, WU Huiying. Flow and heat transfer characteristics and multi-objective optimization of pin-fin multi inclined jet microchannels [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 86-99. |
[12] | DAI Zhengshu, ZUO Yuanhao, CHEN Xiaoluo, ZHANG Li, ZHAO Gen, ZHANG Xuejun, ZHANG Hua. Process in the application of machine learning in ejector research [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 1-12. |
[13] | ZHANG Tianhao, LI Shuangxi, JIA Xiangji, HU Dingguo, CUI Ruizhuo, LI Shicong. Analysis of the effect of thermal deformation and friction wear of reinforced DLC film on the end face of high-speed mechanical seals [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 121-133. |
[14] | MAO Ningxuan, WAN Xiaowei, JU Jie, HU Yanjie, JIANG Hao. Numerical simulation and structural optimization of flow field in industrial gas-solid fluidized beds based on CFD-PBM [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 13-20. |
[15] | ZHANG Weiye, ZHU Xiaowu, LUO Yonghao, WANG Zhi. Numerical simulation of mixing performance of composite phyllotaxy microfluidic channel [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 154-165. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 13
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |