1 |
宋民航, 赵立新, 徐保蕊, 等. 基于入口分散相重排列的旋流强化分离研究进展[J]. 化工进展, 2022, 42(5): 2219-2232.
|
|
SONG Minhang, ZHAO Lixin, XU Baorui, et al. Research progress of cyclone-enhanced separation based on disperse phase rearrangement at the inlet[J]. Chemical Industry and Engineering Progress, 2022, 42(5): 2219-2232.
|
2 |
赵庆国, 张明贤. 水力旋流器分离技术[M]. 北京: 化学工业出版社, 2003: 20.
|
|
ZHAO Qingguo, ZHANG Mingxian. Separation technology of hydrocyclone[M]. Beijing: Chemical Industry Press, 2003: 20.
|
3 |
褚良银, 陈文梅. 水力旋流器内流体边界层的理论描述和作用[J]. 过滤与分离, 1996, 6(4): 15-18.
|
|
CHU Liangyin, CHEN Wenmei. Theoretical description and function of fluid boundary layer in hydrocyclone[J]. Journal of Filtration & Separation, 1996, 6(4): 15-18.
|
4 |
袁惠新, 陈国金, 俞建峰. 水力旋流器盖下短路流的研究[J]. 流体机械, 2000, 28(12): 10-12.
|
|
YUAN Huixin, CHEN Guojin, YU Jianfeng. A study for short-circuited flow under the top wall of hydrocyclones[J]. Fluid Machinery, 2000, 28(12): 10-12.
|
5 |
汪华林, 付鹏波, 黄渊, 等. 液固旋流分离新技术[M]. 北京: 化学工业出版社, 2019: 43.
|
|
WANG Hualin, FU Pengbo, HUANG Yuan, et al. Advanced hydrocyclone technology for liquid-solid separation[M]. Beijing: Chemical Industry Press, 2019: 43.
|
6 |
XU Jirun, LUO Qian, QIU Jicun. Research on the preseparation space in hydrocyclones[J]. International Journal of Mineral Processing, 1991, 31(1/2): 1-10.
|
7 |
KELSALL D F. A further study of the hydraulic cyclone[J]. Chemical Engineering Science, 1953, 2(6): 254-272.
|
8 |
BLOOR M I G, INGHAM D B. Theoretical investigation of flow in a conical hydrocyclone[J]. Transactions of the Institution of Chemical Engineers, 1973, 51: 36-41.
|
9 |
徐继润, 罗茜. 水力旋流器流场研究新进展[J]. 国外金属矿选矿, 1989, 26(11): 39-45.
|
|
XU Jirun, LUO Qian. New progress in flow field research of hydrocyclone[J]. Metallic Ore Dressing Abroad, 1989, 26(11): 39-45.
|
10 |
王党飞, 王国荣, 邱顺佐, 等. 溢流管结构对天然气水合物用旋流器分离性能的影响[J]. 过程工程学报, 2019, 19(5): 982-988.
|
|
WANG Dangfei, WANG Guorong, QIU Shunzuo, et al. Effect of vortex finder structure on the separation performance of hydrocyclone for natural gas hydrate[J]. The Chinese Journal of Process Engineering, 2019, 19(5): 982-988.
|
11 |
徐冬林, 王长艳, 傅国辉, 等. 溢流管直径对旋流器流场和分离影响研究[J]. 矿产保护与利用, 2019, 39(1): 64-68.
|
|
XU Donglin, WANG Changyan, FU Guohui, et al. Study on influence of vortex finder diameter on flow field and separation performance of hydrocyclone[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1): 64-68.
|
12 |
刘培坤, 许慧林, 张悦刊, 等. 翼翅形溢流管旋流器分离性能研究[J]. 轻金属, 2018(9): 8-12.
|
|
LIU Peikun, XU Huilin, ZHANG Yuekan, et al. Study on separating performance of cyclone with wing-shaped vortex finder[J]. Light Metals, 2018(9): 8-12.
|
13 |
HOFFMANN Alex C, STEIN Louis E. Gas cyclones and swirl tubes: Principles, design and operation[M]. Berlin: Springer, 2002.
|
14 |
LI Feng, LIU Peikun, YANG Xinghua, et al. Numerical analysis of the effect of solid rod on the flow field and separation performance of thick-walled overflow pipe hydrocyclone[J]. Powder Technology, 2021, 388: 261-273.
|
15 |
ZHAO Qiang, CUI Baoyu, WEI Dezhou, et al. Numerical analysis of the flow field and separation performance in hydrocyclones with different vortex finder wall thickness[J]. Powder Technology, 2019, 345: 478-491.
|
16 |
刘鸿雁, 王亚, 韩天龙, 等. 水力旋流器溢流管结构对微细颗粒分离的影响[J]. 化工学报, 2017, 68(5): 1921-1931.
|
|
LIU Hongyan, WANG Ya, HAN Tianlong, et al. Influence of vortex finder configurations on separation of fine particles[J]. CIESC Journal, 2017, 68(5): 1921-1931.
|
17 |
汪显东, 陈晔. 溢流管深度对水力旋流器分离效率的影响[J]. 金属矿山, 2011(5): 123-127.
|
|
WANG Xiandong, CHEN Ye. Affect of depth of overflow pipe to the separation efficiency of hydrocyclone[J]. Metal Mine, 2011(5): 123-127.
|
18 |
耿坤, 孙治谦, 李腾, 等. 级联式气-液旋流分离器流动特性数值研究[J]. 石油学报(石油加工), 2024, 40(1): 193-204.
|
|
GENG Kun, SUN Zhiqian, LI Teng, et al. Numerical study of the flow characteristics in a cascade gas-liquid cyclone separator[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2024, 40(1): 193-204.
|
19 |
宋民航, 赵立新, 徐保蕊, 等. 液-液水力旋流器分离效率深度提升技术探讨[J]. 化工进展, 2021, 40(12): 6590-6603.
|
|
SONG Minhang, ZHAO Lixin, XU Baorui, et al. Discussion on technology of improving separation efficiency of liquid-liquid hydrocyclone[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6590-6603.
|
20 |
SAMELA Dan. The voraxial separator a treatment technology for the 21st century[R]. US: Enviro Voraxial Technology Co., 1997.
|
21 |
SI Zheng, JI Yipeng, CHEN Jiaqing, et al. Design methodology for a low-shear rotating swirler[J]. Separations, 2023, 10(11): 550.
|
22 |
吕凤霞, 杨贺, 袁惠新, 等. 液-液分离水力旋流器油滴破碎与聚并的数值模拟[J]. 石油机械, 2017, 45(11): 71-76.
|
|
Fengxia LYU, YANG He, YUAN Huixin, et al. Numerical simulation of droplet breakup and coalescence in liquid-liquid separation hydrocyclone[J]. China Petroleum Machinery, 2017, 45(11): 71-76.
|
23 |
孙立强, 胡月, 王迪, 等. RSM与LES模拟旋风分离器流场动态特性的对比分析[J]. 化学反应工程与工艺, 2018, 34(4): 289-296.
|
|
SUN Liqiang, HU Yue, WANG Di, et al. Comparative analysis of flow field dynamic characteristics of cyclone separators by RSM and LES simulation[J]. Chemical Reaction Engineering and Technology, 2018, 34(4): 289-296.
|