Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 1676-1689.DOI: 10.16085/j.issn.1000-6613.2023-0890
• Chemical processes and equipment • Previous Articles
SUN Chao1,2(), AI Shiqin1, LIU Yuechan1
Received:
2023-05-30
Revised:
2023-08-28
Online:
2024-05-13
Published:
2024-04-15
Contact:
SUN Chao
通讯作者:
孙超
作者简介:
孙超(1985—),男,博士,副教授,研究方向为强化换热及高效换热器。E-mail: sc13579@126.com。
基金资助:
CLC Number:
SUN Chao, AI Shiqin, LIU Yuechan. Numerical simulation plate side flow heat transfer new plate-shell heat exchanger with considering physical property changes and shell heat transfer[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1676-1689.
孙超, 艾诗钦, 刘月婵. 考虑物性变化及壳体传热的新型板壳式换热器板程流动传热数值模拟[J]. 化工进展, 2024, 43(4): 1676-1689.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0890
参数 | 尺寸/mm | 参数 | 尺寸/mm |
---|---|---|---|
波纹板外径 | 440 | R1 | 320 |
流体入口直径 | 80 | R2 | 80 |
波纹高度(b) | 2.5 | R3 | 440 |
波纹节距(a) | 11 | R4 | 80 |
倾斜角(β) | 45° | R5 | 320 |
内径与外径边距 | 20 | 板流道高度 | 5.2 |
参数 | 尺寸/mm | 参数 | 尺寸/mm |
---|---|---|---|
波纹板外径 | 440 | R1 | 320 |
流体入口直径 | 80 | R2 | 80 |
波纹高度(b) | 2.5 | R3 | 440 |
波纹节距(a) | 11 | R4 | 80 |
倾斜角(β) | 45° | R5 | 320 |
内径与外径边距 | 20 | 板流道高度 | 5.2 |
波纹高/mm | 波纹量纲为1 参数 | 水力直径Dh/mm | 壁面传热面积/m2 | 垂直于流动方向x=0 截面速度/m·s-1 | 波纹板体积温度/K | 壁面平均温度/K | |
---|---|---|---|---|---|---|---|
1.5 | 0.857 | 1.17 | 2.6 | 0.069 | 0.455 | 313.70 | 305.12 |
2.0 | 1.142 | 1.28 | 3.1 | 0.072 | 0.365 | 313.86 | 304.98 |
2.5 | 1.428 | 1.40 | 3.6 | 0.074 | 0.312 | 313.98 | 304.87 |
3.0 | 1.734 | 1.56 | 3.8 | 0.077 | 0.276 | 314.13 | 304.75 |
3.5 | 2.000 | 1.69 | 4.1 | 0.080 | 0.248 | 314.30 | 304.58 |
波纹高/mm | 波纹量纲为1 参数 | 水力直径Dh/mm | 壁面传热面积/m2 | 垂直于流动方向x=0 截面速度/m·s-1 | 波纹板体积温度/K | 壁面平均温度/K | |
---|---|---|---|---|---|---|---|
1.5 | 0.857 | 1.17 | 2.6 | 0.069 | 0.455 | 313.70 | 305.12 |
2.0 | 1.142 | 1.28 | 3.1 | 0.072 | 0.365 | 313.86 | 304.98 |
2.5 | 1.428 | 1.40 | 3.6 | 0.074 | 0.312 | 313.98 | 304.87 |
3.0 | 1.734 | 1.56 | 3.8 | 0.077 | 0.276 | 314.13 | 304.75 |
3.5 | 2.000 | 1.69 | 4.1 | 0.080 | 0.248 | 314.30 | 304.58 |
1 | HEXONIC. Plate&shell heat exchangers:Jag shield[EB/OL]. 2022. |
2 | BECKEDORFF L, NIEUWENHUIZEN R, BOLWERK T M A J, et al. Flow statistics in plate and shell heat exchangers measured with PTV[J]. International Journal of Heat and Fluid Flow, 2019, 79: 108461. |
3 | BECKEDORFF Leonel, MARTINS Giovani S M, DE PAIVA Kleber V, et al. Chevron angle effect on plate and shell heat exchangers measured with particle tracking velocimetry[J]. Heat Transfer Engineering, 2022, 43(22): 1885-1899. |
4 | SADEGHIANJAHROMI Ali, Polun KUO, WANG Chichuan. Numerical investigation of thermofluid characteristics of shell-and-plate heat exchangers[J]. Journal of Enhanced Heat Transfer, 2022, 29(2): 27-47. |
5 | ABBAS Ali, LEE Howard, SENGUPTA Akash, et al. Numerical investigation of thermal and hydraulic performance of shell and plate heat exchanger[J]. Applied Thermal Engineering, 2020, 167: 114705. |
6 | LEE Howard, SADEGHIANJAHROMI Ali, Polun KUO, et al. Experimental investigation of the thermofluid characteristics of shell-and-plate heat exchangers[J]. Energies, 2020, 13(20): 5304. |
7 | KIM Kibong, SONG Kang Sub, LEE Gilbong, et al. Single-phase heat transfer characteristics of water in an industrial plate and shell heat exchanger under high-temperature conditions[J]. Energies, 2021, 14(20): 6688. |
8 | BECKEDORFF L, SILVA R P P DA, MARTINS G S M, et al. Flow maldistribution and heat transfer characteristics in plate and shell heat exchangers[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123182. |
9 | 徐辉, 苏文献. 板壳式换热器流动与传热的数值模拟[J]. 能源工程, 2018(4): 71-74, 79. |
XU Hui, SU Wenxian. Numerical simulation of flow and heat transfer in a plate heat exchanger[J]. Energy Engineering, 2018(4): 71-74, 79. | |
10 | 蒋燕, 胡艳泳, 王怀振, 等. 板壳式换热器在低温甲醇洗装置贫富液换热工况的应用[J]. 化工设备与管道, 2022, 59(1): 37-42. |
JIANG Yan, HU Yanyong, WANG Huaizhen, et al. Application of plate and shell heat exchanger in rectisol unit under rich and poor liquid condition[J]. Process Equipment & Piping, 2022, 59(1): 37-42. | |
11 | 刘家瑞, 赵巍, 黄晓东, 等. 板壳式换热器传热准则关系式的分析与实验研究[J]. 动力工程学报, 2015, 35(6): 469-475. |
LIU Jiarui, ZHAO Wei, HUANG Xiaodong, et al. Analysis and experimental study on heat transfer formula for plate and shell heat exchangers[J]. Journal of Chinese Society of Power Engineering, 2015, 35(6): 469-475. | |
12 | 刘家瑞, 赵巍, 黄晓东, 等. 一种板壳式换热器壳程物流分配特性的模拟与优化[J]. 化工进展, 2015, 34(10): 3569-3576. |
LIU Jiarui, ZHAO Wei, HUANG Xiaodong, et al. Numerical simulation and optimization on fluid flow distribution performance of plate and shell heat exchanger’s shell-side[J]. Chemical Industry and Engineering Progress, 2015, 34(10): 3569-3576. | |
13 | 袁雨文, 赵巍, 刘家瑞, 等. 板壳式换热器板片流动与传热性能的数值模拟[J]. 能源工程, 2020(3): 39-45. |
YUAN Yuwen, ZHAO Wei, LIU Jiarui, et al. Numerical simulation on the flow and heat transfer characterisitcs of the plate of shell and plate heat exchanger[J]. Energy Engineering, 2020(3): 39-45. | |
14 | 潘书毅, 赵巍, 袁雨文, 等. 板壳式换热器壳程流动与传热性能的数值模拟[J]. 建模与仿真, 2021(2): 554-566. |
PAN Shuyi, ZHAO Wei, YUAN Yuwen, et al. The numerical simulation of the flow and heat transfer on the shell side of the plate and shell heat exchanger[J]. Modeling and Simulation, 2021(2): 554-566. | |
15 | 石迎迎, 赵巍, 袁雨文, 等. 波纹节距对板壳式换热器壳程流动性能和阻力性能的影响[J]. 轻工机械, 2021, 39(5): 32-36. |
SHI Yingying, ZHAO Wei, YUAN Yuwen, et al. Numerical simulation of effect of corrugated pitch on shell-side flow and resistance performance of plate-shell heat exchanger[J]. Light Industry Machinery, 2021, 39(5): 32-36. | |
16 | LUAN H B, KUANG J P, CAO Z, et al. CFD analysis of two types of welded plate heat exchangers[J]. Numerical Heat Transfer, Part A: Applications, 2017, 71(3): 250-269. |
17 | GHERASIM Iulian, GALANIS Nicolas, NGUYEN Cong Tam. Heat transfer and fluid flow in a plate heat exchanger. Part II: Assessment of laminar and two-equation turbulent models[J]. International Journal of Thermal Sciences, 2011, 50(8): 1499-1511. |
18 | BAI Chao, ZHANG Guanmin, QIU Yan, et al. A new method for heat transfer and fluid flow performance simulation of plate heat exchangers[J]. Numerical Heat Transfer, Part B: Fundamentals, 2019, 75(2): 93-110. |
19 | 王茜, 韩怀志, 李炳熙. 板式换热器波纹通道的流动与传热机理[J]. 化工学报, 2017, 68(S1): 71-82. |
WANG Qian, HAN Huaizhi, LI Bingxi. Flow and heat transfer mechanism of corrugated plate heat exchanger[J]. CIESC Journal, 2017, 68(S1): 71-82. | |
20 | 乔晓刚, 李鹏, 崔立棋, 等. 三个关键几何参数对人字形波纹钎焊板式换热器换热性能影响的分析[J]. 制冷与空调, 2011, 11(4):121-128. |
QIAO Xiaogang, LI Peng, CUI Liqi, et al. Study on the effect of three key geometric parameters of chevron corrugated brazed plate heat exchanger on the heat transfer performance[J]. Refrigeration and Air-Conditioning, 2011, 11(4): 121-128. | |
21 | 王斌. 核电用304/316奥氏体不锈钢宽厚板加热和热轧过程的数值模拟[D]. 沈阳: 东北大学,2009. |
WANG Bin. Numerical simulation of reheating and hot rolling processes for 304 and 316 austenitic stainless steel plates used for nuclear power plants[D]. Shenyang: Northeastern University,2009. | |
22 | 吴鹏飞. 板壳式换热器圆形波纹板片间流型与压降特性研究[D]. 北京: 中国石油大学(北京), 2021. |
WU Pengfei. Flow characteristics between corrugated plates of shell and plate heat exchanger[D]. Beijing: China University of Petroleum (Beijing), 2021. | |
23 | DONG Xiangrui, GAO Yisheng, LIU Chaoqun. New normalized Rortex/vortex identification method[J]. Physics of Fluids, 2019, 31(1):011701. |
24 | LIU Chaoqun, WANG Yiqian, YANG Yong, et al. New omega vortex identification method[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(8): 684711. |
25 | GUO Z Y, LI D Y, WANG B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225. |
26 | 陶文铨, 何雅玲. 场协同原理在强化换热与脉管制冷机性能改进中的应用(上)[J]. 西安交通大学学报, 2002, 36(11): 1101-1105. |
TAO Wenquan, HE Yaling. Field synergy principle and its applications in enhancing convective heat transfer and improving performance of pulse tube refreigerator(1)[J]. Journal of Xi’an Jiaotong University, 2002, 36(11): 1101-1105. | |
27 | 陶文铨, 何雅玲. 场协同原理: 它的科学之美及与( )的关系[J]. 中国科学: 技术科学, 2021, 51(10): 1155-1165. |
TAO Wenquan, HE Yaling. Field synergy principle: Its scientific beauty and relationship with entransy theory[J]. Scientia Sinica (Technologica), 2021, 51(10): 1155-1165. | |
28 | 何雅玲, 陶文铨. 强化单相对流换热的基本机制[J]. 机械工程学报, 2009, 45(3): 27-38. |
HE Yaling, TAO Wenquan. Fundamental mechanism of enhancing single-phase convective heat transfer[J]. Journal of Mechanical Engineering, 2009, 45(3): 27-38. | |
29 | 周俊杰, 陶文铨, 王定标. 场协同原理评价指标的定性分析和定量探讨[J]. 郑州大学学报(工学版), 2006, 27(2): 45-47. |
ZHOU Junjie, TAO Wenquan, WANG Dingbiao. Qualitative analysis and quantitative discussion of index for field synergy principle[J]. Journal of Zhengzhou University (Engineering Science), 2006, 27(2): 45-47. | |
30 | 过增元, 黄素逸. 场协同原理与强化传热新技术[M]. 北京: 中国电力出版社, 2004: 290. |
GUO Zengyuan, HUANG Suyi. Field synergy principle and new technology of enhancing heat transfer[M]. Beijing: China Electric Power Press, 2004: 290. |
[1] | DU Yongliang, LIANG Zhuobin, GONG Yaoxu, BI Haojie, XU Zhiyuan, YUAN Hongying. Air gap membrane distillation research status and applications [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1655-1666. |
[2] | ZHANG Qiaoling, MA Zuhao, YU Ziyuan, LIU Zijun, HUANG Biyun, YANG Zhendong, MA Haoran. Convection heat transfer research of supercritical R134a in mini-channel of tube [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1667-1675. |
[3] | YU Yanfang, DING Pengcheng, MENG Huibo, SHI Bowen, YAO Yunjuan. Heat transfer enhancement of non-Newtonian fluid in the blade-type static mixer [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1145-1156. |
[4] | YIN Shaowu, LI Xianxian, HAN Jiawei, LU Ming, TONG Lige, WANG Li. Heat charge and release characteristics of household off-peak electricity thermal storage heating system [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1206-1213. |
[5] | LI Jing, FANG Qing, ZHOU Wenhao, WU Guoliang, WANG Jiahui, ZHANG Hua, NI Hongwei. Effect of baffle configuration on the multiphase flow behaviors of vanadium shale leaching tank [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 619-627. |
[6] | JIAN Yu, CHEN Baoming, GONG Hanyu. Enhanced heat transfer characteristics of phase change heat storage systems based on hierarchically structured skeletons [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 649-658. |
[7] | BIAN Hanqing, ZHANG Xingkai, LIAO Ruiquan, WANG Dong, LI Rui, LUO Xiaochu, HOU Yaodong, BAI Xiaohong, GAN Qingming. Double-parameter measurement method of wet gas in phase-isolation state [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 722-733. |
[8] | HA Wen, YANG Yang, TANG Yu, CAO Di, ZHANG Chao, YANG Bin. Ultrasonic attenuation method for measuring phase holdup in oil-water annular flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 768-780. |
[9] | DENG Lei, YUAN Maobo, YANG Jiahui, YUE Yang, JIANG Jiahao, CHE Defu. High-temperature corrosion prediction model of water-cooled wall for boiler peak regulation [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 925-936. |
[10] | XIE Guangshuo, ZHANG Siliang, HE Song, XIAO Juan, WANG Simin. Global sensitivity analysis for particulate fouling performance based on metamodel of optimal prognosis [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 328-337. |
[11] | FENG Debin, WANG Wen, MA Fanhua. Simulation and analysis for pipeline transportation characteristics of hydrogen-enriched compressed natural gas [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 390-399. |
[12] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[13] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[14] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[15] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |