Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 1667-1675.DOI: 10.16085/j.issn.1000-6613.2023-1273
• Chemical processes and equipment • Previous Articles
ZHANG Qiaoling1(), MA Zuhao1, YU Ziyuan2, LIU Zijun1, HUANG Biyun1, YANG Zhendong1, MA Haoran1
Received:
2023-07-24
Revised:
2023-12-09
Online:
2024-05-13
Published:
2024-04-15
Contact:
ZHANG Qiaoling
张巧玲1(), 马祖浩1, 于子元2, 刘梓俊1, 黄铋匀1, 杨振东1, 马浩然1
通讯作者:
张巧玲
作者简介:
张巧玲(1982—),女,博士,副教授,研究方向为多相流体动力学理论与应用。E-mail:zqling@xaut.edu.cn。
基金资助:
CLC Number:
ZHANG Qiaoling, MA Zuhao, YU Ziyuan, LIU Zijun, HUANG Biyun, YANG Zhendong, MA Haoran. Convection heat transfer research of supercritical R134a in mini-channel of tube[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1667-1675.
张巧玲, 马祖浩, 于子元, 刘梓俊, 黄铋匀, 杨振东, 马浩然. 微小通道内超临界R134a流动传热特性[J]. 化工进展, 2024, 43(4): 1667-1675.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1273
参数 | 范围 | 精度 |
---|---|---|
高压恒流泵P1000+ | 0~1000mL/min | ±3% |
T型热电偶 | 0~500℃ | ±0.2℃ |
T型热电偶丝 | 0~1000℃ | ±0.2℃ |
CX-M5型齿轮流量计 | 0~1000mL/min | ±0.5% |
罗斯蒙特3051TG4压力传感器 | 0~6MPa | ±0.075% |
罗斯蒙特3051CD3差压变送器 | 0~20kPa | ±0.075% |
参数 | 范围 | 精度 |
---|---|---|
高压恒流泵P1000+ | 0~1000mL/min | ±3% |
T型热电偶 | 0~500℃ | ±0.2℃ |
T型热电偶丝 | 0~1000℃ | ±0.2℃ |
CX-M5型齿轮流量计 | 0~1000mL/min | ±0.5% |
罗斯蒙特3051TG4压力传感器 | 0~6MPa | ±0.075% |
罗斯蒙特3051CD3差压变送器 | 0~20kPa | ±0.075% |
参数 | 不确定度 |
---|---|
质量流速G/kg·m-2·s | 0.51% |
压力p/MPa | 0.11% |
压差∆p/kPa | 0.54% |
热流密度q/kW·m-2 | 2.13% |
内壁温度Tw,in/℃ | ±0.5℃ |
换热系数h/W·m-2·K-1 | 7.98% |
参数 | 不确定度 |
---|---|
质量流速G/kg·m-2·s | 0.51% |
压力p/MPa | 0.11% |
压差∆p/kPa | 0.54% |
热流密度q/kW·m-2 | 2.13% |
内壁温度Tw,in/℃ | ±0.5℃ |
换热系数h/W·m-2·K-1 | 7.98% |
测点 | 外壁温T1w,out/℃ | 外壁温T2w,out/℃ | 外壁温T3w,out/℃ |
---|---|---|---|
1 | 48.2 | 48.2 | 48.2 |
2 | 138.4 | 138.2 | 138.2 |
3 | 133.9 | 133.7 | 133.7 |
4 | 153.6 | 153.7 | 153.9 |
5 | 150.5 | 151.2 | 151.0 |
6 | 162.9 | 164.1 | 163.5 |
7 | 159.2 | 160.1 | 159.7 |
8 | 168.6 | 169.9 | 168.9 |
9 | 164.7 | 165.8 | 164.8 |
10 | 178.8 | 179.7 | 178.7 |
测点 | 外壁温T1w,out/℃ | 外壁温T2w,out/℃ | 外壁温T3w,out/℃ |
---|---|---|---|
1 | 48.2 | 48.2 | 48.2 |
2 | 138.4 | 138.2 | 138.2 |
3 | 133.9 | 133.7 | 133.7 |
4 | 153.6 | 153.7 | 153.9 |
5 | 150.5 | 151.2 | 151.0 |
6 | 162.9 | 164.1 | 163.5 |
7 | 159.2 | 160.1 | 159.7 |
8 | 168.6 | 169.9 | 168.9 |
9 | 164.7 | 165.8 | 164.8 |
10 | 178.8 | 179.7 | 178.7 |
参数 | 公式 |
---|---|
电加热效率η | |
热流密度q/kW·m-2 | |
质量流量G/kg·s-1 | |
流体焓值Hb/kJ·kg-1 | |
内壁温度Tw,in/℃ | |
平均换热系数h/W·m-2·K-1 | |
浮升力数 |
参数 | 公式 |
---|---|
电加热效率η | |
热流密度q/kW·m-2 | |
质量流量G/kg·s-1 | |
流体焓值Hb/kJ·kg-1 | |
内壁温度Tw,in/℃ | |
平均换热系数h/W·m-2·K-1 | |
浮升力数 |
传热关联式 | 公式形式 | 适用工质 |
---|---|---|
Kang关联式 | R134a | |
Jackson & Hall关联式 | 水和CO2 | |
Bishop关联式 | 水和CO2 |
传热关联式 | 公式形式 | 适用工质 |
---|---|---|
Kang关联式 | R134a | |
Jackson & Hall关联式 | 水和CO2 | |
Bishop关联式 | 水和CO2 |
1 | 孙铭泽, 马宁, 李浩然, 等. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388. |
SUN Mingze, MA Ning, LI Haoran, et al. Thermodynamic analysis of Brayton cycle of medium and low temperature supercritical CO2 and its mixed working medium[J]. CIESC Journal, 2022, 73(3): 1379-1388. | |
2 | 李子航, 王占博, 苗政, 等. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495. |
LI Zihang, WANG Zhanbo, MIAO Zheng, et al. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle[J]. CIESC Journal, 2021, 72(9): 4487-4495. | |
3 | 韩中合, 杜燕, 王智. 有机朗肯循环低温余热回收系统的工质选择[J]. 化工进展, 2014, 33(9): 2279-2285. |
HAN Zhonghe, DU Yan, WANG Zhi. Medium selection of organic Rankine cycle(ORC) in low temperature waste heat[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2279-2285. | |
4 | 高天泽. 跨临界压力下碳氢化合物传热特性实验研究[D]. 大连: 大连理工大学, 2021. |
GAO Tianze. Experimental study on heat transfer characteristics of hydrocarbons at trans-and supercritical pressures[D]. Dalian: Dalian University of Technology, 2021. | |
5 | 崔亚林, 王怀信. R134a超临界压力下管内换热特性实验研究[J]. 中国电机工程学报, 2018, 38(8): 2376-2383, 2547. |
CUI Yalin, WANG Huaixin. In-tube convection heat transfer research of R134a under supercritical pressures[J]. Proceedings of the CSEE, 2018, 38(8): 2376-2383, 2547. | |
6 | CHENG X, YANG Y H, HUANG S F. A simplified method for heat transfer prediction of supercritical fluids in circular tubes[J]. Annals of Nuclear Energy, 2009, 36(8): 1120-1128. |
7 | JONATHAN Fewster. Mixed forced and free convective heat transfer to supercritical pressure fluids flowing in vertical pipes[D]. Manchester, North West England, UK: University of Manchester, 1976. |
8 | SHEN Zhi, YANG Dong, WANG Siyang, et al. Experimental and numerical analysis of heat transfer to water at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1676-1688. |
9 | WANG Han, BI Qincheng, YANG Zhendong, et al. Experimental and numerical investigation of heat transfer from a narrow annulus to supercritical pressure water[J]. Annals of Nuclear Energy, 2015, 80: 416-428. |
10 | BISHOP A A, SANDBERG R, TONG L. Forced-convection heat transfer to water at near-critical temperatures and supercritical pressures[C]. Joint Meeting of the American Institute of Chemical Engineers and the British Institution of Chemical Engineers, United States, 1964. |
11 | JACKSON J D. Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors[C]. Pacific Regional Nuclear Energy Conference, 2002. |
12 | YANG Zenan, LUO Xiaobo, WANG Ge, et al. Numerical study on the effects of supercritical CO2-based nanofluid on heat transfer deterioration[J]. Numerical Heat Transfer A: Applications, 2022, 82(5): 193-216. |
13 | YUN Rin, HWANG Yunho, RADERMACHER Reinhard. Convective gas cooling heat transfer and pressure drop characteristics of supercritical CO2/oil mixture in a minichannel tube[J]. International Journal of Heat and Mass Transfer, 2007, 50(23/24): 4796-4804. |
14 | GU Hongfang, LI Hongzhi, WANG Haijun, et al. Experimental investigation on convective heat transfer from a horizontal miniature tube to methane at supercritical pressures[J]. Applied Thermal Engineering, 2013, 58(1/2): 490-498. |
15 | JIANG Peixue, ZHAO Chenru, SHI Runfu, et al. Experimental and numerical study of convection heat transfer of CO2 at super-critical pressures during cooling in small vertical tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 4748-4756. |
16 | DANG Chaobin, HIHARA Eiji. Numerical study on in-tube laminar heat transfer of supercritical fluids[J]. Applied Thermal Engineering, 2010, 30(13): 1567-1573. |
17 | DANG Chaobin, HIHARA Eiji. In-tube cooling heat transfer of supercritical carbon dioxide. Part 1. Experimental measurement[J]. International Journal of Refrigeration, 2004, 27(7): 736-747. |
18 | YOON Seok Ho, KIM Ju Hyok, HWANG Yun Wook, et al. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region[J]. International Journal of Refrigeration, 2003, 26(8): 857-864. |
19 | 冯龙龙, 钟珂, 张羽森, 等. 水平管内R1234yf的流动沸腾换热特性[J]. 化工进展, 2022, 41(7): 3502-3509. |
FENG Longlong, ZHONG Ke, ZHANG Yusen, et al. Flow boiling heat transfer characteristics of R1234yf in horizontal microchannel[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3502-3509. | |
20 | 杨梦, 张华, 秦延斌, 等. 混合制冷剂R134a/R1234yf(R513A)与R134a热力学性能对比及实验[J]. 化工进展, 2019, 38(3): 1182-1189. |
YANG Meng, ZHANG Hua, QIN Yanbin, et al. Thermodynamic performance comparison and experimental study of mixed refrigerant R134a/R1234yf(R513A) and R134a[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1182-1189. | |
21 | DOBSON M K, CHATO J C. Condensation in smooth horizontal tubes[J]. Journal of Heat Transfer, 1998, 120(1): 193-213. |
22 | TANG Liangyou, OHADI Michael, JOHNSON Arthur T. Flow condensation in smooth and micro-fin tubes with HCFC-22, HFC-134a and HFC-410 refrigerants. Part Ⅱ: Design equations[J]. Journal of Enhanced Heat Transfer, 2000, 7(5): 311-325. |
23 | CAVALLINI A, CENSI G, DEL COL D, et al. Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube[J]. International Journal of Refrigeration, 2001, 24(1): 73-87. |
24 | JIANG Peixue, ZHAO Chenru, LIU Bo. Flow and heat transfer characteristics of R22 and ethanol at supercritical pressures[J]. The Journal of Supercritical Fluids, 2012, 70: 75-89. |
25 | KANG Kyoung-Ho, CHANG Soon-Heung. Experimental study on the heat transfer characteristics during the pressure transients under supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 4946-4955. |
26 | 姜文全,李琳,杨帆,等. 变物性比下无量纲力对超临界压力甲烷混合对流换热影响[J]. 中国石油大学学报(自然科学版), 2022, 46(3): 140-147. |
JIANG Wenquan, LI Lin, YANG Fan, et al. Effects of dimensionless forces on mixed convection heat transfer of supercritical pressure methane under variable thermophysical property ratio[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(3): 140-147. | |
27 | 宿诗雨,姜文全,李琳,等. U形竖管内超临界甲烷传热异常行为机理研究[J]. 推进技术, 2023, 44(11): 175-182. |
SU Shiyu, JIANG Wenquan, LI Lin, et al. Mechanism analysis of abnormal heat transfer behavior of supercritical methane in a u-tube [J]. Journal of Propulsion Technology, 2023, 44(11): 175-182. | |
28 | 李辉,汝卓霖,邹正平,等. 微小尺度通道内超临界甲烷传热特性研究[J]. 南京航空航天大学学报, 2021, 53(4): 513-520. |
LI Hui, RU Zhuolin, ZOU Zhengping, et al. Investigation on heat transfer characteristic of supercritical methane in a microtube[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(4): 513-520. | |
29 | 谷家扬,陈代飞,魏世松,等. 流道截面形状对超临界甲烷在微通道中流动换热特性影响研究[J]. 舰船科学技术, 2023, 45(13): 53-58. |
GU Jiayang, CHEN Daifei, WEI Shisong, et al. Flow channel cross section shape for supercritical methane in microchannels Study on the influence of flow heat transfer characteristics[J]. Ship Science and Technology, 2023, 45(13): 53-58. | |
30 | 孙会芹,韩昌亮,李泽宇,等. 水平圆管内超临界甲烷非均匀流场的对流传热特性[J]. 哈尔滨理工大学学报, 2021, 26(3): 51-57. |
SUN Huiqin, HAN Changliang, LI Zeyu, et al. Non-uniform flow field of convection heat transfer characteristics of supercritical methane in a horizontal tube[J]. Journal of Harbin University of Science and Technology, 2021, 26(3): 51-57. | |
31 | PIORO Igor L, KHARTABIL Hussam F, DUFFEY Romney B. Heat transfer to supercritical fluids flowing in channels—Empirical correlations (survey)[J]. Nuclear Engineering and Design, 2004, 230(1/2/3): 69-91. |
32 | XIAO Runfeng, TIAN Gui, CHEN Liang, et al. A dimensionless correlation to predict the onset of heat transfer deterioration of supercritical fluids in upward circular tubes[J]. Nuclear Engineering and Design, 2022, 392: 111763. |
[1] | HAN Changliang, HUANG Yiyan, XU Jianquan. Flow and heat transfer characteristics of supercritical nitrogen in micro-channel with different cavity structures [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5592-5601. |
[2] | LI Dan, YANG Siyu, QIAN Yu. Syngas cryogenic separation process combined with lithium bromide absorption refrigeration and organic Rankine cycle [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5236-5246. |
[3] | YANG Guang, SHAO Weiwei. Review of optimization and heat transfer correlations of printed circuit heat exchanger [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 13-26. |
[4] | LI Xinguo, MI Huihui, WU Xiaosong, GAO Guanyi. Analysis of adjusting pinch point of heat transfer to improve the performance of organic Rankine cycle [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2517-2525. |
[5] | LUO Xiaoping, YANG Wan, WANG Mengyuan, HOU Qun. Analysis of Ledinegg instability of micro-channels with corrugated wall [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1325-1333. |
[6] | LIU Guanglin, XU Jinliang, MIAO Zheng. Exergy analysis of two stage organic Rankine cycle generation power system with co-condenser [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6656-6662. |
[7] | Guanglin LIU, Shuang CAO, Huan LIU, Zheng MIAO, Jinliang XU. Performance analysis of regenerative and non-regenerative organic Rankine cycle using single-screw expander [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2626-2632. |
[8] | Zhihong WANG, Xiaoming DING, Ming’ou WU, Xiaoyan SHEN. Application of organic Rankine cycle in multi-grade waste heat power generation [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2189-2196. |
[9] | Yuxin YANG, Hongguang ZHANG, Rui ZHAO, Jian LI, Tenglong ZHAO, Mengru ZHANG. Effects of variable operating conditions of working fluid pumps on the performance of organic Rankine cycle system [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 851-857. |
[10] | YAO Yuting, LI Shiyu. A study on high flux heat exchanger used for low-temperature cogeneration system [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3737-3743. |
[11] | WANG Mingtao, LIU Qiyi, ZHANG Baihao. Effects of condensation condition on cycle performance of the organic Rankine cycle (ORC) for recovering waste heat of engine using zeotropic mixtures [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 2927-2934. |
[12] | YANG Deming, ZHU Biyun, GU Qiang, WANG Zhenguang, YIN Yifan, GAO Xiaoxin. Double solvent synergistic extractive distillation for methyl acetate-methanol-water based on MVR and ORC technology [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 2010-2015. |
[13] | LUO Xiaoping, WANG Wen, LIAO Zhengbiao, GUO Feng, WU Di, ZHANG Lin. Experimental study on onset of nucleate boiling(ONB)in different wettability micro-channels [J]. Chemical Industry and Engineering Progress, 2018, 37(03): 884-892. |
[14] | CAO Shuang, LIU Xiulong, ZHANG Ming, XU Jinliang. Experimental study of organic Rankine cycle power generation system under various operating conditions [J]. Chemical Industry and Engineering Progress, 2018, 37(01): 88-95. |
[15] | WANG Changliang, JIN Zunlong, WANG Yongqing, WANG Dingbiao. Research progress of gas-liquid two-phase flow in micro-channels [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |