Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (11): 5592-5601.DOI: 10.16085/j.issn.1000-6613.2022-2246
• Chemical processes and equipment • Previous Articles Next Articles
HAN Changliang1,2(), HUANG Yiyan1,2, XU Jianquan1,2()
Received:
2022-12-04
Revised:
2023-03-16
Online:
2023-12-15
Published:
2023-11-20
Contact:
XU Jianquan
通讯作者:
徐建全
作者简介:
韩昌亮(1987—),男,博士,副教授,研究方向为新能源换热器优化设计。E-mail:hanchangliang2022@163.com。
基金资助:
CLC Number:
HAN Changliang, HUANG Yiyan, XU Jianquan. Flow and heat transfer characteristics of supercritical nitrogen in micro-channel with different cavity structures[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5592-5601.
韩昌亮, 黄峄演, 徐建全. 不同结构凹穴微通道内超临界氮气流动与传热特性[J]. 化工进展, 2023, 42(11): 5592-5601.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2246
参数 | 数值 |
---|---|
计算域总长(L)/mm | 540 |
凹穴中心间距(L1)/mm | 78 |
每一侧凹穴个数(N) | 6 |
入口截面高度(H)/mm | 1 |
入口截面宽度(W)/mm | 3 |
圆形凹穴半径(R)/mm | 1.5 |
矩形凹穴宽度(W1)/mm | 3 |
矩形凹穴高度(W2)/mm | 3 |
梯形凹穴宽度(W3)/mm | 1.5 |
梯形凹穴高度(W4)/mm | 1.5 |
参数 | 数值 |
---|---|
计算域总长(L)/mm | 540 |
凹穴中心间距(L1)/mm | 78 |
每一侧凹穴个数(N) | 6 |
入口截面高度(H)/mm | 1 |
入口截面宽度(W)/mm | 3 |
圆形凹穴半径(R)/mm | 1.5 |
矩形凹穴宽度(W1)/mm | 3 |
矩形凹穴高度(W2)/mm | 3 |
梯形凹穴宽度(W3)/mm | 1.5 |
梯形凹穴高度(W4)/mm | 1.5 |
位置 | 边界类型 | 参数设置 |
---|---|---|
微通道入口 | 质量流量入口边界 | Gin=650~950kg/(m2·s); Tin=113K |
微通道出口 | 压力出口边界 | Pout=7.5MPa |
微通道左/右壁面 | 对称面边界 | — |
固体壁面与SCN2交界面 | 无滑移边界 | u=v=w=0 |
微通道上/下壁面 | 恒定热流密度边界 | q=120kW/m2;δ=2mm |
位置 | 边界类型 | 参数设置 |
---|---|---|
微通道入口 | 质量流量入口边界 | Gin=650~950kg/(m2·s); Tin=113K |
微通道出口 | 压力出口边界 | Pout=7.5MPa |
微通道左/右壁面 | 对称面边界 | — |
固体壁面与SCN2交界面 | 无滑移边界 | u=v=w=0 |
微通道上/下壁面 | 恒定热流密度边界 | q=120kW/m2;δ=2mm |
序号 | 网格数目 | 出口温度/K | 出口速度/m·s-1 | 最小单元尺寸/mm |
---|---|---|---|---|
1 | 2044992 | 196.05 | 4.19 | 0.2 |
2 | 2780601 | 189.57 | 3.52 | 0.17 |
3 | 3729528 | 177.78 | 3.05 | 0.15 |
4 | 4224407 | 177.62 | 3.02 | 0.14 |
5 | 5376328 | 177.51 | 3.00 | 0.13 |
序号 | 网格数目 | 出口温度/K | 出口速度/m·s-1 | 最小单元尺寸/mm |
---|---|---|---|---|
1 | 2044992 | 196.05 | 4.19 | 0.2 |
2 | 2780601 | 189.57 | 3.52 | 0.17 |
3 | 3729528 | 177.78 | 3.05 | 0.15 |
4 | 4224407 | 177.62 | 3.02 | 0.14 |
5 | 5376328 | 177.51 | 3.00 | 0.13 |
1 | 袁旭东, 贾磊, 周到, 等. 微通道临界热通量的基础理论与提升技术研究进展[J]. 化工学报, 2021, 72(4): 1796-1814. |
YUAN Xudong, JIA Lei, ZHOU Dao, et al. Research progress on basic theory and improvement technology for critical heat flux of microchannel[J]. CIESC Journal, 2021, 72(4): 1796-1814. | |
2 | DENG Daxiang, ZENG Long, SUN Wei. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121332. |
3 | 陆威, 苗冉, 吴志根, 等. 非牛顿流体在波节套管换热器中流动与换热的实验研究[J]. 化工学报, 2022, 73(7): 2924-2932. |
LU Wei, MIAO Ran, WU Zhigen, et al. Experimental study on flow and heat transfer of non-Newtonian fluid in a corrugated double-tube heat exchanger[J]. CIESC Journal, 2022, 73(7): 2924-2932. | |
4 | 谷家扬, 魏世松, 景宝金, 等. 紧凑高效微通道换热器流动与换热特性研究进展[J]. 江苏科技大学学报(自然科学版), 2020, 34(6): 42-49. |
GU Jiayang, WEI Shisong, JING Baojin, et al. Progress in the research of flow and heat transfer characteristics of printed circuit heat exchangers[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34(6): 42-49. | |
5 | ZHOU Jinzhi, CAO Xiaoling, ZHANG Nan, et al. Micro-channel heat sink: A review[J]. Journal of Thermal Science, 2020, 29(6): 1431-1462. |
6 | 雷丽, 李慧玲, 赵玉婷, 等. 凹穴型微通道液-液两相流动特性[J]. 高校化学工程学报, 2020, 34(6): 1360-1367. |
LEI Li, LI Huiling, ZHAO Yuting, et al. Characteristics of liquid-liquid two-phase flow in microchannels with reentrant cavities[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(6): 1360-1367. | |
7 | 李艺凡, 王志鹏. 带有周期性扰流结构的微通道内流动与传热特性[J]. 化工进展, 2022, 41(6): 2893-2901. |
LI Yifan, WANG Zhipeng. Flow and heat transfer characteristics in microchannels with periodic fluid disturbance structures[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2893-2901. | |
8 | ZHAO Zhongchao, ZHANG Yong, CHEN Xudong, et al. Experimental and numerical investigation of thermal-hydraulic performance of supercritical nitrogen in airfoil fin printed circuit heat exchanger[J]. Applied Thermal Engineering, 2020, 168: 114829. |
9 | CHENG He, YIN Liang, JU Yonglin, et al. Experimental investigation on heat transfer characteristics of supercritical nitrogen in a heated vertical tube[J]. International Journal of Thermal Sciences, 2020, 152: 106327. |
10 | 韩昌亮, 辛镜青, 于广滨, 等. 微通道内超临界氮气三维热流场实验与数值模拟[J]. 化工学报, 2022, 73(2): 653-662. |
HAN Changliang, XIN Jingqing, YU Guangbin, et al. Experimental and numerical simulation on three-dimensional heat flow field of supercritical nitrogen in micro-channel[J]. CIESC Journal, 2022, 73(2): 653-662. | |
11 | LASHKARBOLOKI Mostafa, VAEZIAN Ahmad, HEZAVE Ali Zeinolabedini, et al. Experimental investigation of the influence of supercritical carbon dioxide and supercritical nitrogen injection on tertiary live-oil recovery[J]. The Journal of Supercritical Fluids, 2016, 117: 260-269. |
12 | YU Qinghua, PENG Yuxiang, NEGOESCU Ciprian Constantin, et al. Study on convective heat transfer of supercritical nitrogen in a vertical tube for liquid air energy storage[J]. Energies, 2021, 14(22): 7773. |
13 | DONDAPATI Raja Sekhar. Role of Supercritical Nitrogen (SCN) on the hydraulic and thermal characteristics of futuristic High Temperature Superconducting (HTS) cables[J]. Cryogenics, 2020, 111: 103166. |
14 | CONG Tenglong, WANG Zhenhong, ZHANG Rui, et al. Thermal-hydraulic performance of a PCHE with sodium and sCO2 as working fluids[J]. Annals of Nuclear Energy, 2021, 157: 108210. |
15 | KUROSE Kizuku, WATANABE Naoto, MIYATA Kazushi, et al. Numerical simulation of flow and cooling heat transfer of supercritical pressure refrigerants in chevron-type plate heat exchanger[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121758. |
16 | 白书诚, 吴俐俊, 田梦雨. 波纹板式换热器传热与流动特性分析[J]. 热能动力工程, 2022, 37(6): 114-121. |
BAI Shucheng, WU Lijun, TIAN Mengyu. Analysis of heat transfer and flow characteristics of corrugated plate heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(6): 114-121. | |
17 | 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209. |
XIE Yao, LI Jianrui, HU Haitao. Simulation of supercritical methane flow and heat transfer characteristics in printed circuit heat exchanger[J]. CIESC Journal, 2021, 72(S1): 203-209. | |
18 | XU Minghai, LU Hui, GONG Liang, et al. Parametric numerical study of the flow and heat transfer in microchannel with dimples[J]. International Communications in Heat and Mass Transfer, 2016, 76: 348-357. |
19 | QU Weilin, MALA Gh Mohiuddin, LI Dongqing. Heat transfer for water flow in trapezoidal silicon microchannels[J]. International Journal of Heat and Mass Transfer, 2000, 43(21): 3925-3936. |
20 | CHAI Lei, XIA Guodong, WANG Huasheng. Laminar flow and heat transfer characteristics of interrupted microchannel heat sink with ribs in the transverse microchambers[J]. International Journal of Thermal Sciences, 2016, 110: 1-11. |
21 | 孙文骏. 两种新型微通道散热器结构优化及传热特性的数值研究[D]. 桂林: 桂林理工大学, 2021. |
SUN Wenjun. Numerical study on structural optimization and heat transfer characteristic of two new microchannel heat sinks[D]. Guilin: Guilin university of technology, 2021. | |
22 | 吴秋瑜. 凹穴型微通道换热器结构设计与性能研究[D]. 广州: 华南理工大学, 2017. |
WU Qiuyu. Performance study and structure design of microchannel heat exchanger with fan-shaped cavities[D]. Guangzhou: South China University of Technology, 2017. | |
23 | 高博, 焦永刚, 田玉思, 等. 截面积尺寸对微通道换热器流动特性的影响机理[J]. 石家庄铁道大学学报 (自然科学版), 2021, 34(3): 81-86. |
GAO Bo, JIAO Yonggang, TIAN Yusi, et al. Influence mechanism of cross section size on flow characteristics of microchannel heat exchanger[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2021, 34(3): 81-86. | |
24 | 陈涛, 王桂莲, 吴永进, 等. 交错内肋微通道的流动和传热特性研究[J]. 热能动力工程, 2022, 37(9): 128-135. |
CHEN Tao, WANG Guilian, WU Yongjin, et al. Study on flow and heat transfer characteristics of microchannels with staggered internal ribs[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(9): 128-135. | |
25 | 陈一航, 张引弟, 黄纪琛, 等. 双锥型凹穴微通道超临界CO2流动传热特性研究[J]. 低温工程, 2022 (4): 6-13. |
CHEN Yihang, ZHANG Yindi, HUANG Jichen, et al. Study on heat transfer characteristics of supercritical CO2 flow in double-cone-shaped cavity microchannels[J]. Cryogenics, 2022(4): 6-13. | |
26 | LEMMON Eric W, MCLINDEN Mark O, HUBER Marcia L. NIST standard reference database 23: NIST thermodynamics and transport properties REFPROP, Version 7.0 [S]. 2002. |
27 | HAN Changliang, REN Jingjie, WANG Yanqing, et al. Experimental studies of shell-side fluid flow and heat transfer characteristics in a submerged combustion vaporizer[J]. International Journal of Heat and Mass Transfer, 2016, 101: 436-444. |
28 | HAN Changliang, REN Jingjie, WANG Yanqing, et al. Experimental investigation on fluid flow and heat transfer characteristics of a submerged combustion vaporizer[J]. Applied Thermal Engineering, 2017, 113: 529-536. |
29 | KLINE S J, MCCLINTOCK F A. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75: 3-8. |
[1] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[2] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[3] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[4] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[5] | CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. |
[6] | LI Bogeng, LUO Yingwu, LIU Pingwei. Consideration on research content and method of polymer product engineering [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3905-3909. |
[7] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[8] | ZHAO Jian, ZHUO Zewen, DONG Hang, GAO Wenjian. A new method for observation of microstructure of waxy crude oil and its emulsion system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4372-4384. |
[9] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[10] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[11] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[12] | YUAN Shouzheng, CHEN Xiao, JIANG Ming, YU Yaxiong, ZHOU Qiang. The influence of the wall on the mesoscale drag force in a gas-solid downer [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2272-2281. |
[13] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
[14] | CHEN Weiliang, GAO Xin, LI Hong, LI Xingang. Influence mechanism of skeleton structure of foamed SiC corrugated structured packing on the mass transfer performance [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2289-2297. |
[15] | XU Xian, CUI Louwei, LIU Jie, SHI Junhe, ZHU Yonghong, LIU Jiaojiao, LIU Tao, ZHENG Hua’an, LI Dong. Effect of raw material composition on the development of semicoke mesophase structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2343-2352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |