Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4872-4881.DOI: 10.16085/j.issn.1000-6613.2022-2009
• Resources and environmental engineering • Previous Articles Next Articles
CHEN Xiangyu1,2(), BIAN Chunlin3, XIAO Benyi1,2()
Received:
2022-10-27
Revised:
2023-01-09
Online:
2023-09-28
Published:
2023-09-15
Contact:
XIAO Benyi
通讯作者:
肖本益
作者简介:
陈翔宇(1998—),男,博士研究生,主要研究方向为污泥资源化。E-mail:xychen1_st@rcees.ac.cn。
基金资助:
CLC Number:
CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881.
陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2009
基质类型 | 高温前相 | 中温后相 | 整个系统 | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
沼气产量 /L·L-1·d-1 | 气体产率 /mL·g-1 | 甲烷含量 /% | 沼气产量 /L·L-1·d-1 | 气体产率 /mL·g-1 | 甲烷含量 /% | 沼气产量 /L·L-1·d-1 | 气体产率 /mL·g-1 | 甲烷含量 /% | ||
污泥 | 0.39 | 0.07 | 39.4 | 0.40 | 0.27 | 67.7 | 0.40 | 330 | 63.3 | [ |
污泥 | 0.65±0.01 | 31±0.56 | 44.3±2.9 | 0.39±0.01 | 183±2.08 | 54.4±3.2 | 0.52 | 214±3 | 53.2 | [ |
牛粪 | 2.2 | 286 | 58.0 | 0.82 | 265 | 59.0 | 1.40 | 278 | 58.7 | [ |
牛粪 | 1.18±0.19 | 179 | 15.2 | 2.58±0.11 | 192 | 84.8 | 2.11 | 186 | 46.2 | [ |
餐厨垃圾 | 10.40 | 145 | 41.0 | 4.70 | 330 | 70.0~80.0 | 5.84 | 275 | 47.0 | [ |
餐厨垃圾 | 0 | 0 | 0 | 3.18 | 1016±135 | 59.9 | 2.54 | 965±560 | 59.9 | [ |
有机垃圾 | 3.47 | 9 | — | 1.58 | 13 | — | 2.53 | 11 | — | [ |
混合污泥 | 0.95±0.30 | — | 61.0±1.0 | 0.87±0.23 | — | 71.0±1.0 | 0.90 | — | 66.5 | [ |
污泥与有机垃圾混合物 | — | 163±14 | 44.8±1.6 | — | 172±13 | 58.7±2.2 | — | 335±18 | 57.4 | [ |
污泥与有机垃圾混合物 | 3.30±0.70 | 75±17 | 48.0±3.0 | 1.20±0.30 | 495±110 | 63.0±2.0 | 2.30 | 285±16 | 55.5 | [ |
甜菜渣与污泥混合物 | 1.56 | 190 | — | 2.03 | 325 | — | 1.80 | 258 | — | [ |
基质类型 | 高温前相 | 中温后相 | 整个系统 | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
沼气产量 /L·L-1·d-1 | 气体产率 /mL·g-1 | 甲烷含量 /% | 沼气产量 /L·L-1·d-1 | 气体产率 /mL·g-1 | 甲烷含量 /% | 沼气产量 /L·L-1·d-1 | 气体产率 /mL·g-1 | 甲烷含量 /% | ||
污泥 | 0.39 | 0.07 | 39.4 | 0.40 | 0.27 | 67.7 | 0.40 | 330 | 63.3 | [ |
污泥 | 0.65±0.01 | 31±0.56 | 44.3±2.9 | 0.39±0.01 | 183±2.08 | 54.4±3.2 | 0.52 | 214±3 | 53.2 | [ |
牛粪 | 2.2 | 286 | 58.0 | 0.82 | 265 | 59.0 | 1.40 | 278 | 58.7 | [ |
牛粪 | 1.18±0.19 | 179 | 15.2 | 2.58±0.11 | 192 | 84.8 | 2.11 | 186 | 46.2 | [ |
餐厨垃圾 | 10.40 | 145 | 41.0 | 4.70 | 330 | 70.0~80.0 | 5.84 | 275 | 47.0 | [ |
餐厨垃圾 | 0 | 0 | 0 | 3.18 | 1016±135 | 59.9 | 2.54 | 965±560 | 59.9 | [ |
有机垃圾 | 3.47 | 9 | — | 1.58 | 13 | — | 2.53 | 11 | — | [ |
混合污泥 | 0.95±0.30 | — | 61.0±1.0 | 0.87±0.23 | — | 71.0±1.0 | 0.90 | — | 66.5 | [ |
污泥与有机垃圾混合物 | — | 163±14 | 44.8±1.6 | — | 172±13 | 58.7±2.2 | — | 335±18 | 57.4 | [ |
污泥与有机垃圾混合物 | 3.30±0.70 | 75±17 | 48.0±3.0 | 1.20±0.30 | 495±110 | 63.0±2.0 | 2.30 | 285±16 | 55.5 | [ |
甜菜渣与污泥混合物 | 1.56 | 190 | — | 2.03 | 325 | — | 1.80 | 258 | — | [ |
基质 | 高温前相 | 中温后相 | 整个系统 | 参考文献 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
基质类型 | 总固体含量 | RT /d | 温度 /℃ | OLR /g·L-1·d-1 | pH | VS 去除率/% | COD 去除率/% | RT /d | 温度 /℃ | OLR /g·L-1·d-1 | pH | VS 去除率/% | COD 去除率/% | VS 去除率/% | COD 去除率/% | |
污泥 | 4.61%±0.07% | 6 | 70 | - | 6.4 | 33.0±6.0 | 43.0±2.0 | 24 | 35 | - | - | 44.0±10.0 | 42.0±17.0 | 52.0±15.0 | 53.0±17.0 | [ |
污泥 | 5.41%±0.03% | 2 | 55 | 26.09±0.25 | 6.2 | 24.5±4.4 | 21.0±2.2 | 13 | 35 | 2.3 | 7.2 | 46.7±4.8 | 48.3±2.5 | 64.8 | 59.7 | [ |
牛粪 | 14.54% | 4 | 55 | 7.70 | 7.5 | 21.8±1.9 | - | 10 | 35 | 3.1 | 7.7 | 9.5±1.0 | - | 29.3±2.1 | - | [ |
牛粪 | 5.10% | 3 | 68 | - | 6.5 | 28.1±1.5 | - | 12 | 55 | - | 7.5 | 7.9±2.4 | - | 36.1±1.4 | - | [ |
餐厨垃圾 | 33.80% | 1.3 | 55 | 38.40 | 5.5 | 77.1 | 64.4 | 5 | 35 | 6.6 | 7.5 | 88.0 | 83.3 | 95.7 | 93.2 | [ |
餐厨垃圾 | 10.69%±0.36% | 6 | 55 | 3.22 | 3.8 | 3.8±3.9 | 3.7±3.9 | 24 | 37 | 0.9 | 7.8 | 77.9±3.9 | 74.1±2.8 | 78.6±4.6 | 77.9±2.3 | [ |
有机垃圾 | 8.97% | 4 | 55 | 22.41 | 7.0 | - | - | 10 | 37 | 9.0 | 7.5 | - | - | - | 63.5 | [ |
混合污泥 | 32.19g/L | 8 | 55 | 3.16 | 7.1 | 41.0±13.0 | 43.0±2.0 | 12 | 37 | 2.1 | 7.2 | 41.0±8.0 | 42.0±17.0 | 50.0±10.0 | 53.0±17.0 | [ |
污泥与有机垃圾混合物 | 42.20~44.40g/L | 3 | 55 | - | 7.0 | 27.3±7.8 | 45.4±6.5 | 10 | 35 | - | 7.2 | - | - | 65.1±4.4 | 63.8±8.9 | [ |
污泥与有机垃圾混合物 | 37.30g/L | 1 | 55 | 44.57±5.08 | 7.2 | 28.4 | - | 9 | 35 | 2.3±0.2 | 8.1 | 48.6 | - | 77.0 | - | [ |
甜菜渣与 污泥混合物 | 17.50g/L | 10 | 55 | - | 7.5 | - | - | 10 | 35 | 2.2 | 7.2 | - | - | 77.2 | 82.8 | [ |
基质 | 高温前相 | 中温后相 | 整个系统 | 参考文献 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
基质类型 | 总固体含量 | RT /d | 温度 /℃ | OLR /g·L-1·d-1 | pH | VS 去除率/% | COD 去除率/% | RT /d | 温度 /℃ | OLR /g·L-1·d-1 | pH | VS 去除率/% | COD 去除率/% | VS 去除率/% | COD 去除率/% | |
污泥 | 4.61%±0.07% | 6 | 70 | - | 6.4 | 33.0±6.0 | 43.0±2.0 | 24 | 35 | - | - | 44.0±10.0 | 42.0±17.0 | 52.0±15.0 | 53.0±17.0 | [ |
污泥 | 5.41%±0.03% | 2 | 55 | 26.09±0.25 | 6.2 | 24.5±4.4 | 21.0±2.2 | 13 | 35 | 2.3 | 7.2 | 46.7±4.8 | 48.3±2.5 | 64.8 | 59.7 | [ |
牛粪 | 14.54% | 4 | 55 | 7.70 | 7.5 | 21.8±1.9 | - | 10 | 35 | 3.1 | 7.7 | 9.5±1.0 | - | 29.3±2.1 | - | [ |
牛粪 | 5.10% | 3 | 68 | - | 6.5 | 28.1±1.5 | - | 12 | 55 | - | 7.5 | 7.9±2.4 | - | 36.1±1.4 | - | [ |
餐厨垃圾 | 33.80% | 1.3 | 55 | 38.40 | 5.5 | 77.1 | 64.4 | 5 | 35 | 6.6 | 7.5 | 88.0 | 83.3 | 95.7 | 93.2 | [ |
餐厨垃圾 | 10.69%±0.36% | 6 | 55 | 3.22 | 3.8 | 3.8±3.9 | 3.7±3.9 | 24 | 37 | 0.9 | 7.8 | 77.9±3.9 | 74.1±2.8 | 78.6±4.6 | 77.9±2.3 | [ |
有机垃圾 | 8.97% | 4 | 55 | 22.41 | 7.0 | - | - | 10 | 37 | 9.0 | 7.5 | - | - | - | 63.5 | [ |
混合污泥 | 32.19g/L | 8 | 55 | 3.16 | 7.1 | 41.0±13.0 | 43.0±2.0 | 12 | 37 | 2.1 | 7.2 | 41.0±8.0 | 42.0±17.0 | 50.0±10.0 | 53.0±17.0 | [ |
污泥与有机垃圾混合物 | 42.20~44.40g/L | 3 | 55 | - | 7.0 | 27.3±7.8 | 45.4±6.5 | 10 | 35 | - | 7.2 | - | - | 65.1±4.4 | 63.8±8.9 | [ |
污泥与有机垃圾混合物 | 37.30g/L | 1 | 55 | 44.57±5.08 | 7.2 | 28.4 | - | 9 | 35 | 2.3±0.2 | 8.1 | 48.6 | - | 77.0 | - | [ |
甜菜渣与 污泥混合物 | 17.50g/L | 10 | 55 | - | 7.5 | - | - | 10 | 35 | 2.2 | 7.2 | - | - | 77.2 | 82.8 | [ |
基质 类型 | 前相细菌 | 前相古菌 | 后相细菌 | 后相古菌 | 参考 文献 |
---|---|---|---|---|---|
活性 污泥 | Clostridium(49.2%) Hydrogenophilus(24.6%) Sphingobacterium(1.7%) Bacteroides(0.8%) | Methanosarcina(44.4%) Methanosaeta(1.6%) Methanoculleus(54%) | Clostridium(8.9%) Hydrogenophilus(22.0%) Sphingobacterium(13.0%) Bacteroides(2.4%) Chloroflexi(1.7%) | Methanosarcina(54.1%) Methanosaeta(14.8%) Methanoculleus(9.8%) Methanothermobacter(3.3%) Methanolinea(16.4%) | [ |
市政 污泥 | Clostridium(8.0%) Thermoanaerobacterales(23.2%) Bacteroides(7.6%) Hydrogenophilus | Methanosarcina(9.9%) Methanobacterium(9.9%) Methanobrevibacter(1.8%) Methanothermobacter(3.4%) | Clostridium(5.0%) Thermoanaerobacterales(13.2%) Bacteroides(26.8%) Hydrogenophilus | Methanosarcina(73.3%) Methanobacterium(26.1%) Methanothermobacte(0.3%) | [ |
混合 污泥 | — | Methanosarcina Methanosaeta Methanobacterium Methanobrevibacter Methanothermobacter | — | Methanosarcin Methanosaeta Methanobacterium Methanobrevibacter Methanothermobacter | [ |
秸秆和 猪粪 | Thermoanaero-Bacteroidetes Clostridium(7.7%) Ruminococcus(6.92%) | Methanothermobacter Methanosarcina Methanobrevibacter | Bacteroidetes (28.9%) Dojkabacteria(12.2%) Clostridium | Methanosaeta Bathyarchaeia | [ |
牛粪 | — | Methanosarcina Methanobacterium | — | Methanosarcina Methanosaeta Methanobacterium | [ |
牛粪与 废乳制品 | Bacteroidetes Synergistetes Thermotogales | Methanosarcina(12.1%) Methanobacterium(6.5%) Methanoculleus(65.2%) Methanobrevibacter(5.0%) Methanosphaera(0.7%) | Bacteroides Clostridium Spirochaetes Aminobacterium | Methanosarcina(47.3%) Methanobacterium(21.0%) Methanoculleus(1.0%) Methanobrevibacter(24.0%) Methanosphaera(4.1%) | [ |
有机 垃圾 | Bacteroidetes(10.0%) Clostridium(61.0%) Bacilli Thermotogales | Methanosarcina. Methanoculleus Methanobacterium | Bacteroidetes(36.0%) Clostridium(28.0%) Bacilli Thermotoga | Methanospirillum Methanoculleus Methanosarcina Methanomethylovorans | [ |
基质 类型 | 前相细菌 | 前相古菌 | 后相细菌 | 后相古菌 | 参考 文献 |
---|---|---|---|---|---|
活性 污泥 | Clostridium(49.2%) Hydrogenophilus(24.6%) Sphingobacterium(1.7%) Bacteroides(0.8%) | Methanosarcina(44.4%) Methanosaeta(1.6%) Methanoculleus(54%) | Clostridium(8.9%) Hydrogenophilus(22.0%) Sphingobacterium(13.0%) Bacteroides(2.4%) Chloroflexi(1.7%) | Methanosarcina(54.1%) Methanosaeta(14.8%) Methanoculleus(9.8%) Methanothermobacter(3.3%) Methanolinea(16.4%) | [ |
市政 污泥 | Clostridium(8.0%) Thermoanaerobacterales(23.2%) Bacteroides(7.6%) Hydrogenophilus | Methanosarcina(9.9%) Methanobacterium(9.9%) Methanobrevibacter(1.8%) Methanothermobacter(3.4%) | Clostridium(5.0%) Thermoanaerobacterales(13.2%) Bacteroides(26.8%) Hydrogenophilus | Methanosarcina(73.3%) Methanobacterium(26.1%) Methanothermobacte(0.3%) | [ |
混合 污泥 | — | Methanosarcina Methanosaeta Methanobacterium Methanobrevibacter Methanothermobacter | — | Methanosarcin Methanosaeta Methanobacterium Methanobrevibacter Methanothermobacter | [ |
秸秆和 猪粪 | Thermoanaero-Bacteroidetes Clostridium(7.7%) Ruminococcus(6.92%) | Methanothermobacter Methanosarcina Methanobrevibacter | Bacteroidetes (28.9%) Dojkabacteria(12.2%) Clostridium | Methanosaeta Bathyarchaeia | [ |
牛粪 | — | Methanosarcina Methanobacterium | — | Methanosarcina Methanosaeta Methanobacterium | [ |
牛粪与 废乳制品 | Bacteroidetes Synergistetes Thermotogales | Methanosarcina(12.1%) Methanobacterium(6.5%) Methanoculleus(65.2%) Methanobrevibacter(5.0%) Methanosphaera(0.7%) | Bacteroides Clostridium Spirochaetes Aminobacterium | Methanosarcina(47.3%) Methanobacterium(21.0%) Methanoculleus(1.0%) Methanobrevibacter(24.0%) Methanosphaera(4.1%) | [ |
有机 垃圾 | Bacteroidetes(10.0%) Clostridium(61.0%) Bacilli Thermotogales | Methanosarcina. Methanoculleus Methanobacterium | Bacteroidetes(36.0%) Clostridium(28.0%) Bacilli Thermotoga | Methanospirillum Methanoculleus Methanosarcina Methanomethylovorans | [ |
1 | NIE Erqi, HE Pinjing, ZHANG Hua, et al. How does temperature regulate anaerobic digestion?[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111453. |
2 | GAO Meng, YANG Jiahui, LI Siqi, et al. Effects of incineration leachate on anaerobic digestion of excess sludge and the related mechanisms[J]. Journal of Environmental Management, 2022, 311: 114831. |
3 | POHLAND F G, GHOSH S. Developments in anaerobic stabilization of organic wastes—The two-phase concept[J]. Environmental Letters, 1971, 1(4): 255-266. |
4 | DAGUE R R, HARRIS W L, KAISER S K. Temperature-phased anaerobic waste treatment process: US5746919[P]. 1998-05-05. |
5 | ZHANG Dian, SANTHA H, PALLANSCH K, et al. Repurposing pre-pasteurization as an in situ thermal hydrolysis pretreatment process for enhancing anaerobic digestion of municipal sludge: A horizontal comparison between temperature-phased and standalone thermophilic or mesophilic anaerobic digestion[J]. Environmental Science: Water Research & Technology, 2020, 6(12): 3316-3325. |
6 | LANKO I, HEJNIC J, ŘÍHOVÁ-AMBROŽOVÁ J, et al. Digested sludge quality in mesophilic, thermophilic and temperature-phased anaerobic digestion systems[J]. Water, 2021, 13(20): 2839. |
7 | CHEN Hong, ZHANG Wenzhe, WU Jun, et al. Improving two-stage thermophilic-mesophilic anaerobic co-digestion of swine manure and rice straw by digestate recirculation[J]. Chemosphere, 2021, 274: 129787. |
8 | Wen LYU, SCHANBACHER F L, YU Zhongtang. Putting microbes to work in sequence: Recent advances in temperature-phased anaerobic digestion processes[J]. Bioresource Technology, 2010, 101(24): 9409-9414. |
9 | LIU Huan, LI Xuan, ZHANG Zehao, et al. Urine pretreatment significantly promotes methane production in anaerobic waste activated sludge digestion[J]. Science of the Total Environment, 2022, 853: 158684. |
10 | SCHMIT K H, ELLIS T G. Comparison of temperature-phased and two-phase anaerobic co-digestion of primary sludge and municipal solid waste[J]. Water Environment Research, 2001, 73(3): 314-321. |
11 | 蔡伟娜, 陆小青. 温度对污泥厌氧发酵产酸过程的影响[J]. 净水技术, 2011, 30(4): 9-12. |
CAI Weina, LU Xiaoqing. Effects of temperature on acidogenic process in anaerobic fermentation for sewage sludge[J]. Water Purification Technology, 2011, 30(4): 9-12. | |
12 | RIAU V, DE LA RUBIA M A, PÉREZ M. Temperature-phased anaerobic digestion (TPAD) to obtain Class A biosolids: A semi-continuous study[J]. Bioresource Technology, 2010, 101(8): 2706-2712. |
13 | RUBIO-LOZA L A, NOYOLA A. Two-phase (acidogenic-methanogenic) anaerobic thermophilic/mesophilic digestion system for producing Class A biosolids from municipal sludge[J]. Bioresource Technology, 2010, 101(2): 576-585. |
14 | JIANG Y, XIE S H, DENNEHY C, et al. Inactivation of pathogens in anaerobic digestion systems for converting biowastes to bioenergy: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109654. |
15 | SONG Young-Chae, KWON Sang-Jo, Jung-Hui WOO. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge[J]. Water Research, 2004, 38(7): 1653-1662. |
16 | ALONSO R M, DEL RÍO R S, GARCÍA M P. Thermophilic and mesophilic temperature phase anaerobic co-digestion (TPAcD) compared with single-stage co-digestion of sewage sludge and sugar beet pulp lixiviation[J]. Biomass and Bioenergy, 2016, 93: 107-115. |
17 | AMODEO C, HATTOU S, BUFFIERE P, et al. Temperature phased anaerobic digestion (TPAD) of organic fraction of municipal solid waste (OFMSW) and digested sludge (DS): Effect of different hydrolysis conditions[J]. Waste Management, 2021, 126: 21-29. |
18 | QIN Yu, HIGASHIMORI A, WU Lijie, et al. Phase separation and microbial distribution in the hyperthermophilic-mesophilic-type temperature-phased anaerobic digestion (TPAD) of waste activated sludge (WAS)[J]. Bioresource Technology, 2017, 245: 401-410. |
19 | COELHO N M G, DROSTE R L, KENNEDY K J. Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge[J]. Water Research, 2011, 45(9): 2822-2834. |
20 | SUNG Shihwu, SANTHA H. Performance of temperature-phased anaerobic digestion (TPAD) system treating dairy cattle wastes[J]. Water Research, 2003, 37(7): 1628-1636. |
21 | NIELSEN H B, MLADENOVSKA Z, AHRING B K. Bioaugmentation of a two-stage thermophilic (68℃/55℃) anaerobic digestion concept for improvement of the methane yield from cattle manure[J]. Biotechnology and Bioengineering, 2007, 97(6): 1638-1643. |
22 | CHU Chunfeng, LI Yuyou, XU Kaiqin, et al. A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste[J]. International Journal of Hydrogen Energy, 2008, 33(18): 4739-4746. |
23 | XIAO Benyi, QIN Yu, ZHANG Wenzhe, et al. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance[J]. Bioresource Technology, 2018, 249: 826-834. |
24 | FERNÁNDEZ-RODRÍGUEZ J, PÉREZ M, ROMERO L I. Semicontinuous temperature-phased anaerobic digestion (TPAD) of organic fraction of municipal solid waste (OFMSW). Comparison with single-stage processes[J]. Chemical Engineering Journal, 2016, 285: 409-416. |
25 | SAMARAS V G, STASINAKIS A S, THOMAIDIS Nikolaos S, et al. Fate of selected emerging micropollutants during mesophilic, thermophilic and temperature co-phased anaerobic digestion of sewage sludge[J]. Bioresource Technology, 2014, 162: 365-372. |
26 | BOROWSKI S. Temperature-phased anaerobic digestion of the hydromechanically separated organic fraction of municipal solid waste with sewage sludge[J]. International Biodeterioration & Biodegradation, 2015, 105: 106-113. |
27 | 张文哲, 陈静, 刘玉, 等. 中温和高温厌氧消化的比较[J]. 化工进展, 2018, 37(12): 4853-4861. |
ZHANG Wenzhe, CHEN Jing, LIU Yu, et al. Comparison of mesophilic and thermophilic anaerobic digestion[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4853-4861. | |
28 | CHEN Huibin, CHANG Sheng. Dissecting methanogenesis for temperature-phased anaerobic digestion: Impact of temperature on community structure, correlation, and fate of methanogens[J]. Bioresource Technology, 2020, 306: 123104. |
29 | QIN Yu, WU Jing, XIAO Benyi, et al. Strategy of adjusting recirculation ratio for biohythane production via recirculated temperature-phased anaerobic digestion of food waste[J]. Energy, 2019, 179: 1235-1245. |
30 | SILLERO L, PÉREZ M, SOLERA R. Temperature-phased enhanced the single-stage anaerobic co-digestion of sewage sludge, wine vinasse and poultry manure: Perspetives for the circular economy[J]. Fuel, 2023, 331: 125761. |
31 | LIU Rongzhan, CHEN Xiangyu, ZHANG Ke, et al. Effect of mixing ratio and total solids content on temperature-phased anaerobic codigestion of rice straw and pig manure: Biohythane production and microbial structure[J]. Bioresource Technology, 2022, 344: 126173. |
32 | LI Lu, KONG Zhe, QIN Yu, et al. Temperature-phased anaerobic co-digestion of food waste and paper waste with and without recirculation: Biogas production and microbial structure[J]. Science of the Total Environment, 2020, 724: 138168. |
33 | LIU Xiaohui, LEE Changmin, KIM Jae Young. Comparison of mesophilic and thermophilic anaerobic digestions of thermal hydrolysis pretreated swine manure: Process performance, microbial communities and energy balance[J]. Journal of Environmental Sciences (China), 2023, 126: 222-233. |
34 | 董仁杰, 张紫嘉, 刘晟, 等. 水热预处理对猪粪厌氧消化及沼液生态安全性的影响[J]. 农业工程学报, 2022, 38(6): 193-203. |
DONG Renjie, ZHANG Zijia, LIU Sheng, et al. Effects of hydrothermal pretreatments on the anaerobic digestion of pig manure and ecological safety of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 193-203. | |
35 | BOLZONELLA D, PAVAN P, ZANETTE M, et al. Two-phase anaerobic digestion of waste activated sludge: Effect of an extreme thermophilic prefermentation[J]. Industrial & Engineering Chemistry Research, 2007, 46(21): 6650-6655. |
36 | GE Huoqing, JENSEN P D, BATSTONE D J. Pre-treatment mechanisms during thermophilic-mesophilic temperature phased anaerobic digestion of primary sludge[J]. Water Research, 2010, 44(1): 123-130. |
37 | 蔚静雯, 郑明霞, 王凯军, 等. 剩余污泥温度分级-生物分相(TSBP)厌氧消化系统运行研究[J]. 给水排水, 2012, 48(12): 39-44. |
WEI Jingwen, ZHENG Mingxia, WANG Kaijun, et al. Study on the operation of anaerobic digestion system of residual sludge temperature classification-biological phase separation (TSBP)[J]. Water & Wastewater Engineering, 2012, 48(12): 39-44. | |
38 | GABY J C, ZAMANZADEH M, HORN S J. The effect of temperature and retention time on methane production and microbial community composition in staged anaerobic digesters fed with food waste[J]. Biotechnology for Biofuels, 2017, 10(1): 1-13. |
39 | DUGBA P N, ZHANG Ruihong. Treatment of dairy wastewater with two-stage anaerobic sequencing batch reactor systems— Thermophilic versus mesophilic operations[J]. Bioresource Technology, 1999, 68(3): 225-233. |
40 | SILLERO L, SOLERA R, PÉREZ M. Thermophilic-mesophilic temperature phase anaerobic co-digestion of sewage sludge, wine vinasse and poultry manure: Effect of hydraulic retention time on mesophilic-methanogenic stage[J]. Chemical Engineering Journal, 2023, 451: 138478. |
41 | LI Yueh-Fen, ABRAHAM C, NELSON M C, et al. Effect of organic loading on the microbiota in a temperature-phased anaerobic digestion (TPAD) system co-digesting dairy manure and waste whey[J]. Applied Microbiology and Biotechnology, 2015, 99(20): 8777-8792. |
42 | KIM H W, HAN S K, SHIN H S. Anaerobic co-digestion of sewage sludge and food waste using temperature-phased anaerobic digestion process[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2004, 50(9): 107-114. |
43 | 郑祥, 许海朋, 范庆文, 等. 餐厨垃圾厌氧消化处理技术研究进展[J]. 现代化工, 2022, 42(2): 10-14, 18. |
ZHENG Xiang, XU Haipeng, FAN Qingwen, et al. Research progress on anaerobic digestion treatment technology for kitchen waste[J]. Modern Chemical Industry, 2022, 42(2): 10-14, 18. | |
44 | 李慧莉, 何芙蓉, 刘鹏程, 等. 外源酶强化秸秆污泥混合厌氧消化条件优化[J]. 中国给水排水, 2020, 36(15): 6-12. |
LI Huili, HE Furong, LIU Pengcheng, et al. Optimization of anaerobic co-digestion conditions of straw and sludge enhanced by exogenous enzymes[J]. China Water & Wastewater, 2020, 36(15): 6-12. | |
45 | Wen LYU, ZHANG Wenfei, YU Zhongtang. Evaluation of system performance and microbial communities of a temperature-phased anaerobic digestion system treating dairy manure: Thermophilic digester operated at acidic pH[J]. Bioresource Technology, 2013, 142: 625-632. |
46 | WANG Guopeng, DAI Xiaohu, ZHANG Dong, et al. Two-phase high solid anaerobic digestion with dewatered sludge: Improved volatile solid degradation and specific methane generation by temperature and pH regulation[J]. Bioresource Technology, 2018, 259: 253-258. |
47 | CHEN Hong, HUANG Rong, WU Jun, et al. Biohythane production and microbial characteristics of two alternating mesophilic and thermophilic two-stage anaerobic co-digesters fed with rice straw and pig manure[J]. Bioresource Technology, 2021, 320: 124303. |
48 | HAMEED S A, RIFFAT R, LI Baoqiang, et al. Microbial population dynamics in temperature-phased anaerobic digestion of municipal wastewater sludge[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(6): 1816-1831. |
49 | LEVÉN L, ERIKSSON A R B, SCHNÜRER A. Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste[J]. FEMS Microbiology Ecology, 2007, 59(3): 683-693. |
50 | LI Yan, XU Haipeng, HUA Dongliang, et al. Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources[J]. Science of the Total Environment, 2020, 699: 134226. |
51 | SINGH S, CHAKRABORTY S. Biochemical treatment of coal mine drainage in constructed wetlands: Influence of electron donor, biotic–abiotic pathways and microbial diversity[J]. Chemical Engineering Journal, 2022, 440: 135986. |
52 | 李叶青, 景张牧, 江皓, 等. 微生物组学及其在厌氧消化中的研究进展[J]. 生物技术通报, 2021, 37(1): 90-101. |
LI Yeqing, JING Zhangmu, JIANG Hao, et al. Microbiome and its research progress of anaerobic digestion[J]. Biotechnology Bulletin, 2021, 37(1): 90-101. | |
53 | PERMAN E, SCHNÜRER A, BJÖRN A, et al. Serial anaerobic digestion improves protein degradation and biogas production from mixed food waste[J]. Biomass and Bioenergy, 2022, 161: 106478. |
54 | STAMS A J M, SOUSA D Z, KLEEREBEZEM R, et al. Role of syntrophic microbial communities in high-rate methanogenic bioreactors[J]. Water Science and Technology, 2012, 66(2): 352-362. |
55 | GAGLIANO M C, BRAGUGLIA C M, GIANICO A, et al. Thermophilic anaerobic digestion of thermal pretreated sludge: Role of microbial community structure and correlation with process performances[J]. Water Research, 2015, 68: 498-509. |
56 | BHATT A H, TAO Ling. Economic perspectives of biogas production via anaerobic digestion[J]. Bioengineering, 2020, 7(3): 74. |
57 | 宋新新, 刘杰, 林甲, 等. 碳中和时代下我国能量自给型污水处理厂发展方向及工程实践[J]. 环境科学学报, 2022, 42(4): 53-63. |
SONG Xinxin, LIU Jie, LIN Jia, et al. The development direction and practice of energy self-sufficiency sewage treatment plants in China under Carbon Neutral Era[J]. Acta Scientiae Circumstantiae, 2022, 42(4): 53-63. | |
58 | PUCHAJDA B, OLESZKIEWICZ J. Impact of sludge thickening on energy recovery from anaerobic digestion[J]. Water Science and Technology, 2008, 57(3): 395-401. |
59 | 阮敏, 孙宇桐, 黄忠良, 等. 污泥预处理-厌氧消化体系的能源经济性评价[J]. 化工进展, 2022, 41(3): 1503-1516. |
RUAN Min, SUN Yutong, HUANG Zhongliang, et al. Energy economy evaluation of sludge pretreatment-anaerobic digestion system[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1503-1516. | |
60 | OLES J, DICHTL N, H-H NIEHOFF. Full scale experience of two stage thermophilic/mesophilic sludge digestion[J]. Water Science and Technology, 1997, 36(6/7): 449-456. |
61 | 翟一杰, 张天祚, 申晓旭, 等. 生命周期评价方法研究进展[J]. 资源科学, 2021, 43(3): 446-455. |
ZHAI Yijie, ZHANG Tianzuo, SHEN Xiaoxu, et al. Development of life cycle assessment method[J]. Resources Science, 2021, 43(3): 446-455. | |
62 | LANKO I, FLORES L, GARFÍ M, et al. Life cycle assessment of the mesophilic, thermophilic, and temperature-phased anaerobic digestion of sewage sludge[J]. Water, 2020, 12(11): 3140. |
[1] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[2] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[3] | SHI Yu, ZHAO Yunchao, FAN Zhixuan, JIANG Dahua. Experimental study on the optimum phase change temperature of phase change roofs in hot summer and cold winter areas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4828-4836. |
[4] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[5] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[6] | ZHAO Jian, ZHUO Zewen, DONG Hang, GAO Wenjian. A new method for observation of microstructure of waxy crude oil and its emulsion system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4372-4384. |
[7] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[8] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[9] | ZHANG Xuewei, HUANG Yaji, XU Yueyang, CHENG Haoqiang, ZHU Zhicheng, LI Jinlei, DING Xueyu, WANG Sheng, ZHANG Rongchu. Adsorption characteristics of SO3 from coal flue gas by alkaline adsorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3855-3864. |
[10] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[11] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[12] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[13] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[14] | XU Xian, CUI Louwei, LIU Jie, SHI Junhe, ZHU Yonghong, LIU Jiaojiao, LIU Tao, ZHENG Hua’an, LI Dong. Effect of raw material composition on the development of semicoke mesophase structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2343-2352. |
[15] | DAI Hang, GAO Ruixue, LI Yiguo, ZHU Jin, WANG Jinggang. Research progress on the synthesis of excellent impact and transparency polyesters with high glass transition temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2555-2565. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |