Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4863-4871.DOI: 10.16085/j.issn.1000-6613.2022-2013
• Resources and environmental engineering • Previous Articles Next Articles
XU Zhongshuo(), ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan()
Received:
2022-10-28
Revised:
2022-12-11
Online:
2023-09-28
Published:
2023-09-15
Contact:
SONG Xinshan
通讯作者:
宋新山
作者简介:
许中硕(1988—),女,硕士,讲师,研究方向为污水生物脱氮。E-mail:xuzhongshuo@dhu.edu.cn。
基金资助:
CLC Number:
XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871.
许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2013
1 | 曲久辉, 赵进才, 任南琪, 等. 城市污水再生与循环利用的关键基础科学问题[J]. 中国基础科学, 2017, 19(1): 6-12. |
QU Jiuhui, ZHAO Jincai, REN Nanqi, et al. Critical fundamental scientific problems in reclamation and reuse of municipal wastewater[J]. China Basic Science, 2017, 19(1): 6-12. | |
2 | 胡洪营. 聚焦矛盾精准施策全面提升污水资源化利用水平[J]. 给水排水, 2021, 57(2): 1-3. |
HU Hongying. Focusing on key issues and precise measures to comprehensively upgrade wastewater utilization[J]. Water & Wastewater Engineering, 2021, 57(2): 1-3. | |
3 | HU Yuansheng, WU Guangxue, LI Ruihua, et al. Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment[J]. Water Research, 2020, 179: 115914. |
4 | YANG Y, CHEN T H, SUMONA M, et al. Utilization of iron sulfides for wastewater treatment: a critical review[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(2): 289-308. |
5 | GARCIA-GIL L J, GOLTERMAN H L. Kinetics of FeS-mediated denitrification in sediments from the Camargue (Rhone delta, southern France)[J]. FEMS Microbiology Ecology, 1993, 13(2): 85-91. |
6 | POSTMA D, BOESEN C, KRISTIANSEN H, et al. Nitrate reduction in an unconfined sandy aquifer: Water chemistry, reduction processes, and geochemical modeling[J]. Water Resources Research, 1991, 27(8): 2027-2045. |
7 | TESORIERO A J, LIEBSCHER H, COX S E. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths[J]. Water Resources Research, 2000, 36(6): 1545-1559. |
8 | GOLTERMAN H L. Influence of FeS on denitrification in shallow waters[J]. SIL Proceedings, 1922-2010, 1991, 24(5): 3025-3028. |
9 | JØRGENSEN C J, JACOBSEN O S, ELBERLING B, et al. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment[J]. Environmental Science & Technology, 2009, 43(13): 4851-4857. |
10 | TORRENTÓ C, URMENETA J, OTERO N, et al. Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite[J]. Chemical Geology, 2011, 287(1/2): 90-101. |
11 | VACLAVKOVA S, JØRGENSEN C J, JACOBSEN O S, et al. The importance of microbial iron sulfide oxidation for nitrate depletion in anoxic danish sediments[J]. Aquatic Geochemistry, 2014, 20(4): 419-435. |
12 | YAN R W, KAPPLER A, HORN M A, et al. Towards a standardized protocol for studying chemolithoautotrophic denitrification with pyrite at circumneutral pH[J]. Applied Geochemistry, 2021, 130: 104995. |
13 | ZHANG Y C, SLOMP C P, BROERS H P, et al. Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer[J]. Chemical Geology, 2012, 300/301: 123-132. |
14 | JAKUS N, MELLAGE A, HÖSCHEN Cet al. Anaerobic neutrophilic pyrite oxidation by a chemolithoautotrophic nitrate-reducing iron(Ⅱ)-oxidizing culture enriched from a fractured aquifer[J]. Environmental Science & Technology, 2021, 55(14): 9876-9884. |
15 | LI Ruihua, GUAN Mengsha, WANG Wei. Simultaneous arsenite and nitrate removal from simulated groundwater based on pyrrhotite autotrophic denitrification[J]. Water Research, 2021, 189: 116662. |
16 | LI Ruihua, NIU Jianmin, ZHAN Xinmin, et al. Simultaneous removal of nitrogen and phosphorus from wastewater by means of FeS-based autotrophic denitrification[J]. Water Science and Technology, 2013, 67(12): 2761-2767. |
17 | XU Zhongshuo, LI Yanan, ZHOU Panpan, et al. New insights on simultaneous nitrate and phosphorus removal in pyrite-involved mixotrophic denitrification biofilter for a long-term operation: Performance change and its underlying mechanism[J]. Science of the Total Environment, 2022, 845: 157403. |
18 | GE Xiaoyan, CAO Xin, SONG Xinshan, et al. Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell[J]. Bioresource Technology, 2020, 296: 122350. |
19 | GE Zhibin, WEI Dongyang, ZHANG Jing, et al. Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland: Three years of pilot study[J]. Water Research, 2019, 148: 153-161. |
20 | XU Zhongshuo, QIAO Wenwen, SONG Xinshan, et al. Pathways regulating the enhanced nitrogen removal in a pyrite based vertical-flow constructed wetland[J]. Bioresource Technology, 2021, 325: 124705. |
21 | CHEN Yifan, SHAO Zhiyu, KONG Zheng, et al. Study of pyrite based autotrophic denitrification system for low-carbon source stormwater treatment[J]. Journal of Water Process Engineering, 2020, 37: 101414. |
22 | CAPUA F D, MASCOLO M C, PIROZZI F, et al. Simultaneous denitrification, phosphorus recovery and low sulfate production in a recirculated pyrite-packed biofilter (RPPB)[J]. Chemosphere, 2020, 255: 126977. |
23 | LIANG Ying, WEI Dongyang, HU Junsong, et al. Glyphosate and nutrients removal from simulated agricultural runoff in a pilot pyrrhotite constructed wetland[J]. Water Research, 2020, 168: 115154. |
24 | KONG Zheng, SONG Yunqian, SHAO Zhiyu, et al. Biochar-pyrite bi-layer bioretention system for dissolved nutrient treatment and by-product generation control under various stormwater conditions[J]. Water Research, 2021, 206: 117737. |
25 | LI Haibo, LI Yaofeng, GUO Jianbo, et al. Effect of calcinated pyrite on simultaneous ammonia, nitrate and phosphorus removal in the BAF system and the Fe2+ regulatory mechanisms: Electron transfer and biofilm properties[J]. Environmental Research, 2021, 194: 110708. |
26 | SI Zhihao, SONG Xinshan, WANG Yuhui, et al. Natural pyrite improves nitrate removal in constructed wetlands and makes wetland a sink for phosphorus in cold climates[J]. Journal of Cleaner Production, 2020: 124304. |
27 | YANG Y, CHEN T H, MORRISON L, et al. Nanostructured pyrrhotite supports autotrophic denitrification for simultaneous nitrogen and phosphorus removal from secondary effluents[J]. Chemical Engineering Journal, 2017, 328: 511-518. |
28 | GARCIA-GIL L J, SALA-GENOHER L, ESTEVA J V, et al. Distribution of iron in Lake Banyoles in relation to the ecology of purple and green sulfur bacteria[J]. Hydrobiologia, 1990, 192(2/3): 259-270. |
29 | HAAIJER S C M, LAMERS L P M, SMOLDERS A J P, et al. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands[J]. Geomicrobiology Journal, 2007, 24(5): 391-401. |
30 | ZHANG Y W, WEI D Y, MORRISON L, et al. Nutrient removal through pyrrhotite autotrophic denitrification: Implications for eutrophication control[J]. Science of the Total Environment, 2019, 662: 287-296. |
31 | 沈思文, 邱江坤, 杨亦诺, 等. 磁黄铁矿和石灰石改性硫磺发泡材料的脱氮除磷性能研究[J]. 环境科学学报, 2022, 42(3): 141-150. |
SHEN Siwen, QIU Jiangkun, YANG Yinuo, et al. Nitrogen and phosphorus removal performance of the pyrrhotite and limestone modified sulfur foaming material[J]. Acta Scientiae Circumstantiae, 2022, 42(3): 141-150. | |
32 | PANG Yunmeng, WANG Jianlong. Insight into the mechanism of chemoautotrophic denitrification using pyrite (FeS2) as electron donor[J]. Bioresource Technology, 2020, 318: 124105. |
33 | TORRENTÓ C, CAMA J, URMENETA J, et al. Denitrification of groundwater with pyrite and Thiobacillus denitrificans [J]. Chemical Geology, 2010, 278(1/2): 80-91. |
34 | WANG Yanfei, WU Guangxue, ZHENG Xiaona, et al. Synergistic ammonia and nitrate removal in a novel pyrite-driven autotrophic denitrification biofilter[J]. Bioresource Technology, 2022, 355: 127223. |
35 | WOLTHERS M, CHARLET L, VAN DER LINDE P R, et al. Surface chemistry of disordered mackinawite (FeS)[J]. Geochimica et Cosmochimica Acta, 2005, 69(14): 3469-3481. |
36 | BELZILE N, CHEN Yuwei, CAI Meifang, et al. A review on pyrrhotite oxidation[J]. Journal of Geochemical Exploration, 2004, 84(2): 65-76. |
37 | MURPHY R, STRONGIN D R. Surface reactivity of pyrite and related sulfides[J]. Surface Science Reports, 2009, 64(1): 1-45. |
38 | PARK J H, KIM S H, DELAUNE R D, et al. Enhancement of nitrate removal in constructed wetlands utilizing a combined autotrophic and heterotrophic denitrification technology for treating hydroponic wastewater containing high nitrate and low organic carbon concentrations[J]. Agricultural Water Management, 2015, 162: 1-14. |
39 | TROUVE C, CHAZAL P M, GUEROUX B, et al. Denitrification by new strains of Thiobacillus denitrificans under non-standard physicochemical conditions. Effect of temperature, pH, and sulphur source[J]. Environmental Technology, 1998, 19(6): 601-610. |
40 | YAN Ruiwen, KAPPLER A, MUEHE E M, et al. Effect of reduced sulfur species on chemolithoautotrophic pyrite oxidation with nitrate[J]. Geomicrobiology Journal, 2018, 36(1): 19-29. |
41 | LI Ruihua, ZHANG Yongwei, GUAN Mengsha. Investigation into pyrite autotrophic denitrification with different mineral properties[J]. Water Research, 2022, 221: 118763. |
42 | 李雅倩, 邹雪华, 刘海波, 等. 不同磁黄铁矿自养反硝化脱氮除磷作用[J]. 环境科学学报, 2022, 42(10): 233-240. |
LI Yaqian, ZOU Xuehua, LIU Haibo, et al. Autotrophic denitrification over different pyrrhotites for simultaneous nitrate and phosphate removal[J]. Acta Scientiae Circumstantiae, 2022, 42(10): 233-240. | |
43 | AQUILINA L, ROQUES C, BOISSON A, et al. Autotrophic denitrification supported by biotite dissolution in crystalline aquifers (1): New insights from short-term batch experiments[J]. Science of the Total Environment, 2018, 619/620: 842-853. |
44 | TONG Shuang, RODRIGUEZ-GONZALEZ L C, PAYNE K A, et al. Effect of pyrite pretreatment, particle size, dose, and biomass concentration on particulate pyrite autotrophic denitrification of nitrified domestic wastewater[J]. Environmental Engineering Science, 2018, 35(8): 875-886. |
45 | CHU Yifan, LIU Wei, TAN Qiyang, et al. Vertical-flow constructed wetland based on pyrite intensification: Mixotrophic denitrification performance and mechanism[J]. Bioresource Technology, 2022, 347: 126710. |
46 | LI Ruihua, MORRISON L, COLLINS G, et al. Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction[J]. Water Research, 2016, 96: 32-41. |
47 | 李金龙. 基于Fe基质生物载体的低C/N比污水自养反硝化脱氮研究[D]. 北京: 北京交通大学, 2018. |
LI Jinlong. Autotrophic denitrification based iron-dependent biocarriers for low C/N wastewater[D]. Beijing: Beijing Jiaotong University, 2018. | |
48 | JAKUS N, BLACKWELL N, OSENBRUCK K, et al. Nitrate removal by a novel lithoautotrophic nitrate-reducing, iron(Ⅱ)-oxidizing culture enriched from a pyrite-rich limestone aquifer[J]. Applied and Environmental Microbiology, 2021, 87(16): e0046021. |
49 | CAPUA F D, LAKANIEMI A M, PUHAKKA J A, et al. High-rate thiosulfate-driven denitrification at pH lower than 5 in fluidized-bed reactor[J]. Chemical Engineering Journal, 2017, 310: 282-291. |
50 | FU Xinrong, HOU Rongrong, YANG Peng, et al. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review[J]. Science of the Total Environment, 2022, 817: 153061. |
51 | 蒲娇阳. 硫铁矿自养反硝化去除地下水中硝酸盐的研究[D]. 北京: 中国地质大学(北京), 2015. |
PU Jiaoyang. Study on nitrate removal from groundwater by pyrite-based autotrophic denitrification[D]. Beijing: China University of Geosciences, 2015. | |
52 | XU Baokun, SHI Liangsheng, ZHONG Hua, et al. The performance of pyrite-based autotrophic denitrification column for permeable reactive barrier under natural environment[J]. Bioresource Technology, 2019, 290: 121763. |
53 | POKORNA D, ZABRANSKA J. Sulfur-oxidizing bacteria in environmental technology[J]. Biotechnology Advances, 2015, 33(6): 1246-1259. |
54 | ZHOU Jun, WANG Hongyu, YANG Kai, et al. Autotrophic denitrification by nitrate-dependent Fe(Ⅱ) oxidation in a continuous up-flow biofilter[J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284. |
55 | KISKIRA K, PAPIRIO S, VAN HULLEBUSCH E D, et al. Fe(Ⅱ)-mediated autotrophic denitrification: A new bioprocess for iron bioprecipitation/biorecovery and simultaneous treatment of nitrate-containing wastewaters[J]. International Biodeterioration & Biodegradation, 2017, 119: 631-648. |
56 | BYRNE-BAILEY K G, WEBER K A, COATES J D. Draft genome sequence of the anaerobic, nitrate-dependent, Fe(Ⅱ)-oxidizing bacterium pseudogulbenkiania ferrooxidans strain 2002[J]. Journal of Bacteriology, 2012, 194(9): 2400-2401. |
57 | SU Junfeng, CHENG Ce, HUANG Tinglin, et al. Characterization of coupling autotrophic denitrification with iron cycle bacterium Enterobacter sp. CC76 and its application of groundwater[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66: 106-114. |
58 | PENG Chao, SUNDMAN A, BRYCE C, et al. Oxidation of Fe(Ⅱ)–organic matter complexes in the presence of the mixotrophic nitrate-reducing Fe(Ⅱ)-oxidizing bacterium Acidovorax sp. BoFeN1 [J]. Environmental Science & Technology, 2018, 52(10): 5753-5763. |
59 | HAAIJER S C M, VAN DER WELLE M E W, SCHMID M C, et al. Evidence for the involvement of betaproteobacterial Thiobacilli in the nitrate-dependent oxidation of iron sulfide minerals[J]. FEMS Microbiology Ecology, 2006, 58(3): 439-448. |
60 | TORRENTÓ C, URMENETA J, EDWARDS K J, et al. Characterization of attachment and growth of Thiobacillus denitrificans on pyrite surfaces[J]. Geomicrobiology Journal, 2012, 29(4): 379-388. |
61 | BOSCH J, LEE K Y, JORDAN G, et al. Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans [J]. Environmental Science & Technology, 2012, 46(4): 2095-2101. |
62 | 周翔, 张玉, 孙超越, 等. 脱氮硫杆菌利用FeS自养反硝化过程研究[J]. 大连理工大学学报, 2019, 59(5): 455-461. |
ZHOU Xiang, ZHANG Yu, SUN Chaoyue, et al. Study of autotrophic denitrification process conducted by Thiobacillus denitrificans utilizing FeS[J]. Journal of Dalian University of Technology, 2019, 59(5): 455-461. | |
63 | 朱良. FeS2驱动的硫自养反硝化深度脱氮除磷技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
ZHU Liang. Advanced denitrification and phosphorus removal by sulfur-based autotrophic dentrification driven by FeS2 [D]. Harbin: Harbin Institute of Technology, 2021. | |
64 | PU Jiaoyang, FENG Chuanping, LIU Ying,et al. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater[J]. Bioresource Technology, 2014, 173: 117-123. |
65 | 刘斌, 何杰, 李学艳. 黄铁矿生物滤池氮磷同步深度处理特性及微生物群落结构[J]. 环境工程, 2022, 40(3): 32-37, 138. |
LIU Bin, HE Jie, LI Xueyan. Characteristics of simultaneous treatment of nitrogen and phosphorus in pyrite biofilter and its microbial community[J]. Environmental Engineering, 2022, 40(3): 32-37, 138. | |
66 | ILBERT M, BONNEFOY V. Insight into the evolution of the iron oxidation pathways[J]. Biochimica et Biophysica Acta: Bioenergetics, 2013, 1827(2): 161-175. |
67 | TOMINSKI C, HEYER H, LÖSEKANN-BEHRENS T, et al. Growth and population dynamics of the anaerobic Fe(Ⅱ)-oxidizing and nitrate-reducing enrichment culture KS[J]. Applied and Environmental Microbiology, 2018, 84(9): 02173-02117. |
68 | PANG Yunmeng, WANG JianLong, LI Shengjie, et al. Activity of autotrophic Fe(Ⅱ)-oxidizing denitrifiers in freshwater lake sediments[J]. ACS ES&T Water, 2021, 1(7): 1566-1576. |
69 | SENKO J M, DEWERS T A, KRUMHOLZ L R. Effect of oxidation rate and Fe(Ⅱ) state on microbial nitrate-dependent Fe(Ⅲ) mineral formation[J]. Applied and Environmental Microbiology, 2005, 71(11): 7172-7177. |
70 | PANG Yunmeng, WANG Jianlong. Various electron donors for biological nitrate removal: A review[J]. Science of the Total Environment, 2021, 794: 148699. |
71 | 褚雨秋. 基于铁自养反硝化微生物的市政污水深度脱氮效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
CHU Yuqiu. Advanced denitrification efficiency of municipal wastewater based on iron autotrophic denitrifying microorganisms[D]. Harbin: Harbin Institute of Technology, 2021. | |
72 | BOSCH J, MECKENSTOCK R U. Rates and potential mechanism of anaerobic nitrate-dependent microbial pyrite oxidation[J]. Biochemical Society Transactions, 2012, 40(6): 1280-1283. |
73 | DONATI E R, SAND W. Mechanisms and biochemical fundamentals of bacterial metal sulfide oxidation[J]. Microbial Processing of Metal Sulfides, 2007: 35-58. |
74 | 武彪, 温建康, 王淀佐. 黄铁矿表面XPS分析与生物浸出机制研究[J]. 稀有金属, 2017, 41(6): 720-724. |
WU Biao, WEN Jiankang, WANG Dianzuo. XPS analysis and mechanism of pyrite biooxidation[J]. Chinese Journal of Rare Metals, 2017, 41(6): 720-724. | |
75 | SHI Liang, DONG Hailiang, REGUERA G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10): 651-662. |
76 | BAKEN S, SALAETS P, DESMET N, et al. Oxidation of iron causes removal of phosphorus and arsenic from streamwater in groundwater-fed lowland catchments[J]. Environmental Science & Technology, 2015, 49(5): 2886-2894. |
77 | LI Ruihua, KELLY C, KEEGAN R, et al. Phosphorus removal from wastewater using natural pyrrhotite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 427: 13-18. |
78 | SAND W, GEHRKE T, JOZSA P G, et al. (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching[J]. Hydrometallurgy, 2001, 59(2/3): 159-175. |
79 | BRANTLEY S L, KUBICKI J D, WHITE A F, et al. Microbiological controls on geochemical kinetics 2: Case study on microbial oxidation of metal sulfide minerals and future prospects[J]. Kinetics of Water: Rock Interaction, 2008: 417-467. |
80 | MOSES C O, NORDSTROM D K, HERMAN J S, et al. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1561-1571. |
81 | LIU Tong, HU Yutian, CHEN Nan, et al. High redox potential promotes oxidation of pyrite under neutral conditions: Implications for optimizing pyrite autotrophic denitrification[J]. Journal of Hazardous Materials, 2021, 416: 125844. |
82 | NORDHOFF M, TOMINSKI C, HALAMA M, et al. Insights into nitrate-reducing Fe(Ⅱ) oxidation mechanisms through analysis of cell-mineral associations, cell encrustation, and mineralogy in the chemolithoautotrophic enrichment culture KS[J]. Applied and Environmental Microbiology, 2017, 83(13): 00752-00717. |
83 | YI Q, WU S L, SOUTHAM G, et al. Acidophilic iron- and sulfur-oxidizing bacteria, Acidithiobacillus ferrooxidans, drives alkaline pH neutralization and mineral weathering in Fe ore tailings[J]. Environmental Science & Technology, 2021, 55(12): 8020-8034. |
84 | CHAKRABORTY A, RODEN E E, SCHIEBER J, et al. Enhanced growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(Ⅱ) oxidation in batch and continuous-flow systems[J]. Applied and Environmental Microbiology, 2011, 77(24): 8548-8556. |
85 | SCHÄDLER S, BURKHARDT C, HEGLER F, et al. Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe( Ⅱ )-oxidizing bacteria[J]. Geomicrobiology Journal, 2009, 26(2): 93-103. |
86 | TIAN Tian, ZHOU Ke, LI Yusheng, et al. Recovery of iron-dependent autotrophic denitrification activity from cell-iron mineral aggregation-induced reversible inhibition by low-intensity ultrasonication[J]. Environmental Science & Technology, 2022, 56(1): 595-604. |
87 | WANG Ru, XU Shaoyi, ZHANG Meng, et al. Iron as electron donor for denitrification: The efficiency, toxicity and mechanism[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110343. |
88 | LIANG Liyuan, MCCARTHY J F, JOLLEY L W, et al. Iron dynamics: Transformation of Fe(Ⅱ)/Fe(Ⅲ) during injection of natural organic matter in a sandy aquifer[J]. Geochimica et Cosmochimica Acta, 1993, 57(9): 1987-1999. |
89 | ZHANG Zhengzhe, CHENG Yafei, ZHOU Yuhuang, et al. A novel strategy for accelerating the recovery of an anammox reactor inhibited by copper(Ⅱ): EDTA washing combined with biostimulation via low-intensity ultrasound[J]. Chemical Engineering Journal, 2015, 279: 912-920. |
90 | YANG Yafei, XIAO Cancan, YU Qing, et al. Using Fe(Ⅱ)/Fe(Ⅲ) as catalyst to drive a novel anammox process with no need of anammox bacteria[J]. Water Research, 2021, 189: 116626. |
[1] | ZHU Zixuan, CHEN Junjiang, ZHANG Xingxing, LI Xiang, LIU Wenru, WU Peng. Research advances on novel wastewater biological nitrogen removal technology by partial denitrification coupled with Anammox [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2091-2100. |
[2] | SU Jingzhen, ZHAN Jian. Research progress of microplastic removal from water environment by biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5445-5458. |
[3] | GUO Zhihan, XU Yunxiang, LI Tianhao, HUANG Zichuan, LIU Wenru, SHEN Yaoliang. Research progress on long-term stable operation of aerobic granular sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2686-2697. |
[4] | LIU Feng, ZHANG Xuezhi, WANG Suqin, FENG Zhen, GE Dandan, YANG Yang. Thiosulfate-driven denitrification coupled with ANAMMOX to enhance total nitrogen removal [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 990-997. |
[5] | CHEN Shiyu, XU Zhicheng, YANG Jing, XU Hao, YAN Wei. Research progress of microbial fuel cell in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 951-963. |
[6] | DAI Xiaojun, CHENG Yan, WANG Xiaohan, HUANG Wenbin, WEI Qiang, ZHOU Yasong. Research progress in the synthesis of small particle-size SAPO-11 molecular sieves [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 191-203. |
[7] | LIU Chang, CHEN Xu, YANG Jiang. Corrosion inhibitors and its application in CO2 corrosion [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6305-6314. |
[8] | GENG Yawen, LIU Feng, FENG Zhen, CHEN Jun, ZHANG Xuezhi. Deep treatment of sucralose wastewater with sulfur autotrophic/heterotrophic synergistic denitrification [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5829-5836. |
[9] | XIAO Kang, WANG Qiong. Progress in research on adsorption for abatement of indoor formaldehyde [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5747-5771. |
[10] | Lijie CHENG, Ningbo GAO, Hua CHU, Cui QUAN, Liheng ZHANG, Xinggang LI. Metabolism and application of perchlorate reducing bacteria in microbial reduction of perchlorate: a review [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 251-261. |
[11] | Huike YE, Qiuzhen WANG, Yaodong HE, Guangyi WANG. Research progress in DHA production by thraustochytrids [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3235-3245. |
[12] | Sisi CHEN, Dianhai YANG, Weihai PANG, Bin DONG, Xiaohu DAI. Advances in research on factors affecting anaerobic conversion of proteinaceous materials in sludge and their promotion strategies [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1992-1999. |
[13] | Sisi CHEN,Dianhai YANG,Weihai PANG,Bin DONG,Xiaohu DAI. Main influencing factors and mechanisms of anaerobic transformation of excess sludge in China [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1511-1520. |
[14] | Yanjun ZHANG,Geping SHU,Xuwen ZHANG,Shansong GAO,Hongxue WANG. Review of research progress on viscosity-temperature characteristics of coal oil slurry [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4003-4011. |
[15] | Shijian LU, Lijuan GAO, Songshui PENG, Dongya ZHAO, Xin WANG, Quanmin ZHU. Optimization of CO2 recovery process [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2515-2520. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |