Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4882-4893.DOI: 10.16085/j.issn.1000-6613.2022-1894
• Resources and environmental engineering • Previous Articles Next Articles
LI Dongze1(), ZHANG Xiang2, TIAN Jian2,3, HU Pan2, YAO Jie4, ZHU Lin5, BU Changsheng1, WANG Xinye1()
Received:
2022-10-12
Revised:
2023-01-01
Online:
2023-09-28
Published:
2023-09-15
Contact:
WANG Xinye
李东泽1(), 张祥2, 田键2,3, 胡攀2, 姚杰4, 朱林5, 卜昌盛1, 王昕晔1()
通讯作者:
王昕晔
作者简介:
李东泽(1997—),男,硕士研究生,研究方向为燃烧污染物控制。E-mail:dongze.li@foxmail.com。
基金资助:
CLC Number:
LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893.
李东泽, 张祥, 田键, 胡攀, 姚杰, 朱林, 卜昌盛, 王昕晔. 基于水泥窑脱硝的碳基还原NO x 研究进展[J]. 化工进展, 2023, 42(9): 4882-4893.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1894
实施范围 | 氮氧化物 (以NO2计) | 氨① | 现有企业执行时间 | 新建企业执行时间 | 标准号 | 备注 |
---|---|---|---|---|---|---|
全国 | 400 | 10 | 2015年07月01日起 | 2014年03月01日起 | GB 4915—2013[ | |
重点地区 | 320 | 8 | 依地区制定② | 依地区制定② | GB 4915—2013[ | |
安徽省 | 100 | 8 | 2020年10月01日起 | 2020年03月14日起 | DB 34/3576—2020[ | |
江苏省 | 100 | 8 | 2022年07月01日起 | DB 32/4149—2021[ | 阶段Ⅰ | |
江苏省 | 50 | 8 | 2024年01月01日起 | 2022年07月01日起 | DB 32/4149—2021[ | 阶段Ⅱ |
河南省 | 100 | 8 | 2021年01月01日起 | 2020年06月01日起 | DB 41/1953—2020[ | |
河南省 | 50 | 8 | 分阶段分环节③ | 分阶段分环节③ | 征求意见稿[ | 超低排放标准 |
河北省 | 100 | 8 | 2021年10月01日起 | 2020年03月04日起 | DB 13/2167—2020[ | 超低排放标准 |
宁夏回族自治区 | 100 | 8 | 2022年底前实现 | 2022年底前实现 | 电子通告[ | 超低排放标准 |
浙江省 | 100 | 2020年12月15日起④ | 2020年12月15日起④ | 改造实施方案[ | 超低排放标准 | |
浙江省 | 50 | 2025年6月底前 | 2025年6月前 | 改造实施方案[ | 超低排放标准 | |
山西省 | 50 | 5 | 分阶段分地区⑤ | 分阶段分地区⑤ | 改造实施方案[ | 超低排放标准 |
实施范围 | 氮氧化物 (以NO2计) | 氨① | 现有企业执行时间 | 新建企业执行时间 | 标准号 | 备注 |
---|---|---|---|---|---|---|
全国 | 400 | 10 | 2015年07月01日起 | 2014年03月01日起 | GB 4915—2013[ | |
重点地区 | 320 | 8 | 依地区制定② | 依地区制定② | GB 4915—2013[ | |
安徽省 | 100 | 8 | 2020年10月01日起 | 2020年03月14日起 | DB 34/3576—2020[ | |
江苏省 | 100 | 8 | 2022年07月01日起 | DB 32/4149—2021[ | 阶段Ⅰ | |
江苏省 | 50 | 8 | 2024年01月01日起 | 2022年07月01日起 | DB 32/4149—2021[ | 阶段Ⅱ |
河南省 | 100 | 8 | 2021年01月01日起 | 2020年06月01日起 | DB 41/1953—2020[ | |
河南省 | 50 | 8 | 分阶段分环节③ | 分阶段分环节③ | 征求意见稿[ | 超低排放标准 |
河北省 | 100 | 8 | 2021年10月01日起 | 2020年03月04日起 | DB 13/2167—2020[ | 超低排放标准 |
宁夏回族自治区 | 100 | 8 | 2022年底前实现 | 2022年底前实现 | 电子通告[ | 超低排放标准 |
浙江省 | 100 | 2020年12月15日起④ | 2020年12月15日起④ | 改造实施方案[ | 超低排放标准 | |
浙江省 | 50 | 2025年6月底前 | 2025年6月前 | 改造实施方案[ | 超低排放标准 | |
山西省 | 50 | 5 | 分阶段分地区⑤ | 分阶段分地区⑤ | 改造实施方案[ | 超低排放标准 |
反应温度/℃ | NO体积分数/% | CO体积分数/% | H2O体积分数/% | CO2体积分数/% | 停留时间 | NO还原率/% | 参考文献 |
---|---|---|---|---|---|---|---|
950 | 0.03 | 0.5 | 0 | 0 | 13~16ms | 0 | 李竞岌等[ |
975 | 0.05 | 0.2 | 0 | 0 | <55s | 0 | 付梦龙等[ |
900 | 0.1 | 4 | 2 | 15 | <3s | 55 | 杨建蒙等[ |
900 | 0.1 | 4 | 2 | 25 | 1.42s | 29 | 孙立超[ |
900 | 0.1 | 1 | 2 | 15 | 1.42s | 0 | 李森等[ |
900 | 0.1 | 4 | 2 | 15 | 1.42s | 29 | 李森等[ |
900 | 0.1 | 5 | 2 | 15 | 1.42s | 38 | 李森等[ |
反应温度/℃ | NO体积分数/% | CO体积分数/% | H2O体积分数/% | CO2体积分数/% | 停留时间 | NO还原率/% | 参考文献 |
---|---|---|---|---|---|---|---|
950 | 0.03 | 0.5 | 0 | 0 | 13~16ms | 0 | 李竞岌等[ |
975 | 0.05 | 0.2 | 0 | 0 | <55s | 0 | 付梦龙等[ |
900 | 0.1 | 4 | 2 | 15 | <3s | 55 | 杨建蒙等[ |
900 | 0.1 | 4 | 2 | 25 | 1.42s | 29 | 孙立超[ |
900 | 0.1 | 1 | 2 | 15 | 1.42s | 0 | 李森等[ |
900 | 0.1 | 4 | 2 | 15 | 1.42s | 29 | 李森等[ |
900 | 0.1 | 5 | 2 | 15 | 1.42s | 38 | 李森等[ |
1 | 刘作毅. 水泥产量变化解读(上)[J]. 中国建材, 2021, 70(8): 101-107. |
LIU Zuoyi. Interpretation of changes in cement annual output (part1)[J]. China Building Materials, 2021, 70 (8): 101-107. | |
2 | 胡和兵, 王牧野, 吴勇民, 等. 氮氧化物的污染与治理方法[J]. 环境保护科学, 2006, 32(4): 5-9. |
HU Hebing, WANG Muye, WU Yongmin, et al. Pollution of nitrogen oxides and its treating method[J]. Environmental Protection Science, 2006, 32(4): 5-9. | |
3 | 余其俊, 陈容, 张同生, 等. 水泥工业烟气脱硫脱硝技术研究进展[J]. 硅酸盐通报, 2020, 39(7): 2015-2032. |
YU Qijun, CHEN Rong, ZHANG Tongsheng, et al. Recent development of flue gas de-SO2 and de-NO x technology for cement industry[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2015-2032. | |
4 | 贾华平. 概论水泥窑脱硝的技术路线[J]. 中国水泥, 2022(3): 60-64. |
JIA Huaping. The introduction about the technical route of denitrification in cement kiln[J]. China Cement, 2022(3): 60-64. | |
5 | 王建, 龚志军, 孟昭磊, 等. 白云鄂博稀土尾矿催化CO还原NO实验研究[J]. 稀有金属与硬质合金, 2020, 48(3): 38-44. |
WANG Jian, GONG Zhijun, MENG Zhaolei, et al. Experimental study on catalytic reduction of NO with CO by Bayan Obo rare earth tailings[J]. Rare Metals and Cemented Carbides, 2020, 48(3): 38-44. | |
6 | 高密军, 罗振. 我国水泥厂脱硝技术现状问题及展望[C]//2017水泥工业污染防治最佳使用技术研讨会会议文集. 合肥: 中国建材集团水泥科技培训中心, 2017: 234-237. |
GAO Mijun, LUO Zhen. Technical problems and prospects of denitrification in China’s cement plant[C]//2017 Reference Document on Best Available Techniques for Cement Industries Pollution Prevention and Control. Hefei: China Building Materials Group Cement Technology Training Center, 2017: 234-237. | |
7 | 崔恒波, 陈杰, 鲍玉进, 等. 水泥窑分级燃烧CO还原NO研究[J]. 水泥, 2021(10): 29-30. |
CUI Hengbo, CHEN Jie, BAO Yujin, et al. Research on NO reduction of the staged combustion about CO in cement kiln[J]. Cement, 2021(10): 29-30. | |
8 | 吾慧星. 水泥窑炉煤基-NO x 深度还原特性试验研究[D]. 北京: 中国科学院大学, 2021. |
WU Huixing. Experimental study on deep reduction characteristic of NO x with coal-based reductant in a cement kiln[D]. Beijing: University of Chinese Academy of Sciences, 2021. | |
9 | 胡芝娟. 分解炉氮氧化物转化机理及控制技术研究[D]. 武汉: 华中科技大学, 2004. |
HU Zhijuan. The study on mechanism of nitrogen oxides transformation and control technology for precalciner[D]. Wuhan: Huazhong University of Science and Technology, 2004. | |
10 | 赵睿敏, 于永现, 凌金辉, 等. 脱硝分解炉的设计及实际应用[J]. 水泥技术, 2022(2): 40-45. |
ZHAO Ruimin, YU Yongxian, LING Jinhui, et al. Design and practical application of denitration calciner[J]. Cement Technology, 2022(2): 40-45. | |
11 | 王新频, 赵娇, 乔彬, 等. 国内外水泥熟料生产线降氮脱硝技术及应用(上)[J]. 中国水泥, 2016(6): 87-92. |
WANG Xinpin, ZHAO Jiao, QIAO Bin, et al. Technology and application of nitrogen reduction and denitrification in cement production line at home and abroad[J]. China Cement, 2016(6): 87-92. | |
12 | 江梅, 李晓倩, 纪亮, 等. 我国水泥工业大气污染物排放标准的修订历程与思考[J]. 环境科学, 2014, 35(12): 4759-4766. |
JIANG Mei, LI Xiaoqian, JI Liang, et al. Revision process and thinking of emission standard of air pollutants for cement industry[J]. Environmental Science, 2014, 35(12): 4759-4766. | |
13 | 环境保护部. 国家质量监督检验检疫总局. 水泥工业大气污染物排放标准: [S]. 北京: 中国环境科学出版社, 2013. |
Ministry of Ecology and Environment of the People’s Republic of China, General Administration of Quality Supervision. Emission standard of air pollutants for cement industry: [S]. Beijing: China Environmental Science Press, 2013. | |
14 | 安徽省市场监督管理局. 水泥工业大气污染物排放标准: [S]. |
Administration for Market Regulation Anhui Province. Emission standard of air pollutants for cement industry: [S]. | |
15 | 江苏省生态环境厅, 江苏省市场监督管理局. 水泥工业大气污染物排放标准: [S]. |
Department of Ecology and Environment of Jiangsu Province, Administration for Market Regulation Jiangsu Province. Emission standard of air pollutants for cement industry: [S]. | |
16 | 河南省生态环境厅, 河南省市场监督管理局. 水泥工业大气污染物排放标准: [S]. |
Department of Ecology and Environment of Henan Province, Administration for Market Regulation Henan Province. Emission standard of air pollutants for cement industry: [S]. | |
17 | 河南省生态环境厅. 河南省水泥行业超低排放改造实施方案(征求意见稿)[EB/OL]. (2020-04-27) [2022-06-26]. . |
Department of Ecology and Environment of Henan Province. Implementation plan for ultra low emission technical transformation of Henan cement industry (Draft for comments)[EB/OL]. (2020-04-27) [2022-06-26]. . | |
18 | 河北省生态环境厅, 河北省市场监督管理局. 水泥工业大气污染物超低排放标准: [S]. |
Department of Ecology and Environment of Hebei Province, Administration for Market Regulation Hebei Province. Ultra low emission standard of air pollutants for cement industry: [S]. | |
19 | 宁夏回族自治区生态环境厅. 水泥行业烟气超低排放改造实施方案[EB/OL]. (2021-02-23) [2022-06-26]. . |
Department of Ecology and Environment of Ningxia Hui Autonomous Region. Implementation plan for ultra low emission technical transformation of cement industry[EB/OL]. (2021-02-23) [2022-06-26]. . | |
20 | 浙江省生态环境厅. 浙江省水泥行业超低排放改造实施方案(征求意见稿)[EB/OL]. (2020-07-23) [2022-06-26]. . |
Department of Ecology and Environment of Zhejiang Province. Implementation plan for ultra low emission technical transformation of Zhejiang province cement industry (Draft for comments)[EB/OL]. (2020-07-23) [2022-06-26]. . | |
21 | 山西省生态环境厅. 山西省水泥行业超低排放改造实施方案[EB/OL]. (2021-12-21) [2022-06-26]. . |
Department of Ecology and Environment of Shanxi Province. Implementation plan for ultra low emission technical transformation of Shanxi province cement industry[EB/OL]. (2021-12-21) [2022-06-26]. . | |
22 | 中国水泥协会. 水泥工业大气污染物超低排放标准: T/CCAS 022—2022 [S]. 北京: 中国标准出版社, 2022. |
China Cement Association. Ultra low emission standard of air pollutants for cement industry: T/CCAS 022—2022 [S]. Beijing: Standards Press of China, 2022. | |
23 | 何艳, 王连勇, 王睿. 水泥窑低氮燃烧技术的发展现状[C]//第十一届全国能源与热工学术年会论文集. 马鞍山: 中国金属学会能源与热工分会, 2021: 44-47. |
HE Yan, WANG Lianyong, WANG Rui. Development status of low-nitrogen combustion in cement rotary kiln[C]//The 11th National Annual Conference on Energy and Thermal Engineering. Ma’anshan: Energy and Thermal Engineering Branch of the Chinese Metal Society, 2021: 44-47. | |
24 | 孙立超. 水泥分解炉NO x 脱除机制研究[D]. 北京: 华北电力大学, 2018. |
SUN Lichao. Study on mechanism of NO x Reduction in cement calciner[D]. Beijing: North China Electric Power University, 2018. | |
25 | 张聚伟. 高温条件下NO-焦炭反应动力学的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. |
ZHANG Juwei. Kinetic study on NO-char reaction at high temperature[D]. Harbin: Harbin Institute of Technology, 2009. | |
26 | 陈萍. 煤燃烧过程中NO x 前驱物析出特性及焦炭-NO/N2O异相还原机理研究[D]. 马鞍山: 安徽工业大学, 2020. |
CHEN Ping. Study on the precipitation characteristics of NO x precursor and the heterogeneous reduction mechanism of char-NO/N2O during coal combustion[D]. Ma’anshan: Anhui University of Technology, 2020. | |
27 | 戎旭. 水泥分解炉CO脱硝实验及机理研究[D]. 北京: 华北电力大学, 2019. |
RONG Xu. Study on experiment and mechanism of denitrification by CO in cement precalciner[D]. Beijing: North China Electric Power University, 2019. | |
28 | 王晓伟, 蔡军, 任强强, 等. 水泥窑炉窑尾烟气NO x 碳热还原数值模拟研究[J/OL]. 北京: 中国电机工程学报, (2022-04-07) [2022-06-26]. . |
WANG Xiaowei, CAI Jun, REN Qiangqiang, et al. Numerical simulation on carbothermal reduction of NO x in flue gas from cement kiln[J/OL]. Beijing: Proceedings of the CSEE, (2022-04-07) [2022-06-26]. . | |
29 | WU Huixing, REN Qiangqiang, CAI Jun, et al. Research on the dynamic process of NO heterogeneous and homogeneous reduction with cement raw meal in vertical tubular reactor[J]. Journal of the Energy Institute, 2019, 93(3): 878-888. |
30 | TENG Hsisheng, SUUBERG Eric M, CALO Joseph M. Studies on the reduction of nitric oxide by carbon: The NO-carbon gasification reaction[J]. Energy & Fuels, 1992, 6(4): 398-406. |
31 | LI Y H, RADOVIC L R, LU G Q, et al. A new kinetic model for the NO-carbon reaction[J]. Chemical Engineering Science, 1999, 54: 4125-4136. |
32 | 方晓晴, 范垂钢, 都林, 等. 煤焦直接还原脱除烟道气氮氧化物[J]. 化工学报, 2014, 65(6): 2249-2255. |
FANG Xiaoqing, FAN Chuigang, DU Lin, et al. Reduction of nitric oxide in flue gas by coal char[J]. CIESC Journal, 2014, 65(6): 2249-2255. | |
33 | 周志军, 陈瑶姬, 杨卫娟, 等. 无烟煤焦炭对NO的还原率[J]. 燃烧科学与技术, 2011, 17(6): 477-482. |
ZHOU Zhijun, CHEN Yaoji, YANG Weijuan, et al. Anthracite-char activities to NO reduction[J]. Journal of Combustion Science and Technology, 2011, 17(6): 477-482. | |
34 | YI Baojun, ZHANG Liqi, MAO Zhihui, et al. Effect of the particle size on combustion characteristics of pulverized coal in an O2/CO2 atmosphere[J]. Fuel Processing Technology, 2014, 128: 17-27. |
35 | YIN Yanshan, ZHANG Jun, SHENG Changdong. Effect of pyrolysis temperature on the char micro-structure and reactivity of NO reduction[J]. Korean Journal of Chemical Engineering, 2009, 26(3): 895-901. |
36 | JONES J M, PATTERSON P M, POURKASHANIAN M, et al. Approaches to modelling heterogeneous char NO formation/destruction during pulverised coal combustion[J]. Carbon, 1999, 37(10): 1545-1552. |
37 | AARNA Indrek, SUUBERG Eric M. A review of the kinetics of the nitric oxide-carbon reaction[J]. Fuel, 1997, 76(6): 475-491. |
38 | SONG Yih H, BEÉR Janos M, SAROFIM Adel F. Reduction of nitric oxide by coal char at temperatures of 1250—1750K[J]. Combustion Science and Technology, 1981, 25: 237-240. |
39 | CHAMBRION Philippe, ORIKASA Hironori, SUZUKI Takeshi, et al. A study of the C—NO reaction by using isotopically labelled C and NO[J]. Fuel, 1997, 76(6): 493-498. |
40 | CHAMBRION Ph, KYOTANI T, TOMITA A. Role of N-containing surface species on NO reduction by Carbon[J]. Energy & Fuels, 1998, 12(2): 416-421. |
41 | Mark THOMAS K. The release of nitrogen oxides during char combustion[J]. Fuel, 1997, 76(6): 457-473. |
42 | 陈晓淇, 朱晓, 齐建荟, 等. 焦炭-NO异相还原的密度泛函理论研究进展[J]. 燃料化学学报, 2022, 50(3): 257-267. |
CHEN Xiaoqi, ZHU Xiao, QI Jianhui, et al. Research progress in density functional theory study of char-NO heterogeneous reduction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 257-267. | |
43 | 张秀霞, 周志军, 周俊虎, 等. 煤粉再燃中煤焦异相还原NO机理的量化研究[J]. 燃烧科学与技术, 2011, 17(2): 155-159. |
ZHANG Xiuxia, ZHOU Zhijun, ZHOU Junhu, et al. A quantum chemistry study of heterogeneous reduction mechanisms of NO on the surface of char during pulverized coal reburning[J]. Journal of Combustion Science and Technology, 2011, 17(2): 155-159. | |
44 | ZHOU Sai, LIU Hu, YU Pengfei, et al. Application of density functional theory on the NO-char heterogeneous reduction mechanism in the presence of CO2 [J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1231-1238. |
45 | KYOTANI Takashi, TOMITA Akira. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory[J]. The Journal of Physical Chemistry B, 1999, 103: 3434-3441. |
46 | ZHAO Tong, SONG Wenli, FAN Chuigang, et al. Density functional theory study of the role of an carbon-oxygen single bond group in the NO-char reaction[J]. Energy & Fuels, 2018, 32(7): 7734-7744. |
47 | ZHANG Hai, LIU Jiaxun, WANG Xiaoye, et al. DFT study on the C(N)-NO reaction with isolated and contiguous active sites[J]. Fuel, 2017, 203: 715-724. |
48 | 李竞岌, 张翼, 杨海瑞, 等. 煤中灰成分对CO还原NO反应影响的动力学研究[J]. 煤炭学报, 2016, 41(10): 2448-2453. |
LI Jingji, ZHANG Yi, YANG Hairui, et al. Study of the effect of ash composition in coal on the kinetic parameters of NO reduction reaction by CO[J]. Journal of China Coal Society, 2016, 41(10): 2448-2453. | |
49 | 付梦龙, 张伟, 李逵, 等. 焦炭催化CO-NO反应的动力学实验研究[J]. 钢铁研究学报, 2022, 34(2): 126-132. |
FU Menglong, ZHANG Wei, LI Kui, et al. Experimental study on kinetics of CO-NO reaction catalyzed by coke[J]. Journal of Iron and Steel Research, 2022, 34(2): 126-132. | |
50 | 杨建蒙, 戎旭, 李森, 等. 水泥分解炉高CaO/CO2环境CO还原NO机制[J]. 化学工程, 2019, 47(1): 1-5. |
YANG Jianmeng, RONG Xu, LI Sen, et al. Mechanism of NO reduction by CO in high CaO/CO2 environment of cement precalciner[J]. Chemical Engineering, 2019, 47(1): 1-5. | |
51 | 李森, 方立军, 孙立超, 等. 水泥分解炉中CO还原NO试验研究[J]. 洁净煤技术, 2020, 26(5): 64-69. |
LI Sen, FANG Lijun, SUN Lichao, et al. Experimental study on NO reduction by CO in cement precalciner[J]. Clean Coal Technology, 2020, 26(5): 64-69. | |
52 | 阮丹, 齐砚勇, 李会东. 高温无催化剂条件下CO还原NO数值模拟研究[J]. 硅酸盐通报, 2016, 35(6): 1674-1681. |
RUAN Dan, QI Yanyong, LI Huidong. Numerical simulation research of the reduction of NO by CO at high temperature without catalyst[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(6): 1674-1681. | |
53 | LI Sen, WEI Xiaolin, GUO Xiaofeng. Effect of H2O vapor on NO reduction by CO: Experimental and kinetic modeling study[J]. Energy & Fuels, 2012, 26: 4277-4283. |
54 | 刘栗, 邱朋华, 吴少华. 煤热解挥发分还原NO的反应过程分析[J]. 工程热物理学报, 2010, 31(2): 331-334. |
LIU Li, QIU Penghua, WU Shaohua. Analysis of NO reduction mechanism by volatiles from coal pyrolysis[J]. Journal of Engineering Thermophysics, 2010, 31(2): 331-334. | |
55 | 许紫阳, 岳爽, 王春波, 等. 焦炭催化CO还原NO的反应机理研究[J]. 燃料化学学报, 2020, 48(3): 266-274. |
XU Ziyang, YUE Shuang, WANG Chunbo, et al. Reaction mechanism of NO reduction with CO catalyzed by char[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 266-274. | |
56 | TSUJIMURA Motoki, FURUSAWA Takehiko, KUNII Daizo. Catalytic reduction of nitric oxide by carbon monoxide over calcined limestone[J]. Journal of Chemical Engineering of Japan, 1983, 16: 132-136. |
57 | HANSEN P F B, DAM-JOHANSEN K, JOHNSSON J E, et al. Catalytic reduction of NO and N2O on limestone during sulfur capture under fluidized bed combustion conditions[J]. Chemical Engineering Science, 1992, 47: 2419-2424. |
58 | ACKE Filip, Dan STRÖMBERG. Apparent activation energies for the reduction of NO by CO and H2 over calcined limestone and CaO surfaces[J]. Energy & Fuels, 1998, 12: 945-948. |
59 | ZHAO Zongbin, QIU Jieshan, LI Wen, et al. Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion[J]. Fuel, 2003, 82: 949-957. |
60 | LISSIANSKI Vitali V, MALY Peter M, ZAMANSKY Vladimir M, et al. Utilization of iron additives for advanced control of NO x emissions from stationary combustion sources[J]. Industrial & Engineering Chemistry Research, 2001, 40: 3287-3293. |
61 | 梁秀进, 仲兆平, 金保升, 等. CO对选择性非催化还原脱硝工艺影响的试验研究和模拟[J]. 动力工程, 2009, 29(5): 481-486. |
LIANG Xiujin, ZHONG Zhaoping, JIN Baosheng, et al. Experimental study and simulation on effect of CO on selective non-catalytic reduction denitration process[J]. Chinese Journal of Power Engineering, 2009, 29(5): 481-486. | |
62 | 吕洪坤, 杨卫娟, 周俊虎, 等. CO含量对烟气选择性非催化还原反应的影响[J]. 化工学报, 2009, 60(7): 1773-1780. |
Hongkun LYU, YANG Weijuan, ZHOU Junhu, et al. Effects of CO content on selective non-catalytic reduction of NO x [J]. Journal of Chemical Industry and Engineering (China), 2009, 60(7): 1773-1780. | |
63 | 王林伟, 段钰锋, 姚婷, 等. SNCR脱硝及添加CO对其特性的影响[J]. 热力发电, 2016, 45(5): 41-47. |
WANG Linwei, DUAN Yufeng, YAO Ting, et al. Experimental study on SNCR process of the effect of CO additive on denitration performance[J]. Thermal Power Generation, 2016, 45(5): 41-47. | |
64 | 王俊杰, 房晶瑞, 雷本喜, 等. 水泥窑炉SNCR反应机制及优化运行[J]. 水泥, 2018: 52-55. |
WANG Junjie, FANG Jingrui, LEI Benxi, et al. SNCR reaction mechanism and optimization on cement kiln[J]. Cement, 2018: 52-55. | |
65 | ALZUETA Maria U, Hanne RØJEL, KRISTENSEN Per G, et al. Laboratory study of the CO/NH3/NO/O2 system: Implications for hybrid reburn/SNCR strategies[J]. Energy & Fuels, 1997, 11: 716-723. |
66 | TAYYEB JAVED M, IRFAN Naseem, GIBBS B M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction[J]. Journal of Environmental Management, 2007, 83: 251-289. |
[1] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[5] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[6] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[7] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[8] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[9] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[10] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[11] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
[12] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[13] | BAI Zhihua, ZHANG Jun. Oxidative removal of NO in DTPMPA/Fenton system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4967-4973. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |