1 |
TANG Fangfang, YU Zhaosheng, LI Yang, et al. Catalytic co-pyrolysis behaviors, product characteristics and kinetics of rural solid waste and chlorella vulgaris[J]. Bioresource Technology, 2020, 299: 122636.
|
2 |
奚永兰, 刘洋, 高娣, 等. 农村生活垃圾厌氧发酵产沼气潜力研究[J]. 农业工程学报, 2020, 36(23): 222-228.
|
|
XI Yonglan, LIU Yang, GAO Di, et al. Potential of biogas produced from anaerobic fermentation of rural household wastes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(23): 222-228.
|
3 |
袁彧, 刘研萍, 陆文静, 等. 规模化沼气工程消化效率及碳减排核算[J]. 环境工程学报, 2019, 13(1): 204-212.
|
|
YUAN Yu, LIU Yanping, LU Wenjing, et al. Digestion efficiency and carbon emission reduction accounting for large-scale biogas projects[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 204-212.
|
4 |
LI Yebo, STEPHEN Y P, ZHU Jiying. Solid-state anaerobic digestion for methane production from organic waste[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 821-826.
|
5 |
QIAN Mingyu, ZHANG Yixin, LI Ruihua, et al. Effects of percolate recirculation on dry anaerobic co-digestion of organic fraction of municipal solid waste and corn straw[J]. Energy & Fuels, 2017, 31(11): 12183-12191.
|
6 |
MOMAYEZ F, KARIMI K, TAHERZADEH M. Energy recovery from industrial crop wastes by dry anaerobic digestion: A review[J]. Industrial Crops and Products, 2019, 129: 673-687.
|
7 |
CHEN Chuang, ZHENG Dan, LIU Gangjin, et al. Continuous dry fermentation of swine manure for biogas production[J]. Waste Management, 2015, 38: 436-442.
|
8 |
刘洋, 叶小梅, 王成成, 等. 农村有机生活垃圾与不同原料厌氧共发酵工艺优化[J]. 化工进展, 2022, 41(5): 2770-2777.
|
|
LIU Yang, YE Xiaomei, WANG Chengcheng, et al. Optimization of anaerobic co-digestion process of rural organic household waste with other substrates[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2770-2777.
|
9 |
YAN M, FOTIDIS I, TIAN H, et al. Acclimatization contributes to stable anaerobic digestion of organic fraction of municipal solid waste under extreme ammonia levels: Focusing on microbial community dynamics[J]. Bioresource Technology, 2019, 286: 121376.
|
10 |
PENG Xuya, ZHANG Shangyi, LI Lei, et al. Long-term high-solids anaerobic digestion of food waste: Effects of ammonia on process performance and microbial community[J]. Bioresource Technology, 2018, 262: 148-158.
|
11 |
SHAPOVALOV Y B, ZHADAN S, BOCHMANN G, et al. Dry Anaerobic digestion of chicken manure: A review[J]. Applied Sciences, 2020, 10(21): 7825.
|
12 |
王炯科, 汤晓玉, 王文国. 餐厨垃圾干式厌氧发酵研究进展[J]. 中国沼气, 2021, 39(3): 35-41.
|
|
WANG Jiongke, TANG Xiaoyu, WANG Wenguo. Research progress of dry anaerobic digestion of food waste[J]. China Biogas, 2021, 39(3):35-41.
|
13 |
LIU Yang, XIAO Qingbo, JIA Zhaoyan, et al. Relieving ammonia nitrogen inhibition in high concentration anaerobic digestion of rural organic household waste by Prussian blue analogue nanoparticles addition[J]. Bioresource Technology, 2021, 330: 124979.
|
14 |
高娣. 沛县村镇有机生活垃圾干式厌氧发酵研究[D]. 南京: 南京农业大学, 2020.
|
|
GAO Di. Study on dry anaerobic fermentation of organic domestic waste in Peixian Villages[D]. Nanjing: Nanjing Agricultural University, 2020.
|
15 |
Yura JO, CAYETANO R D, KIM Gi-Beom, et al. The effects of ammonia acclimation on biogas recovery and the microbial population in continuous anaerobic digestion of swine manure[J]. Environmental Research, 2022, 212: 113483.
|
16 |
孟伟, 查金, 张思梦, 等. 餐厨垃圾厌氧消化过程氨氮抑制及缓解办法综述[J]. 环境工程, 2019, 37(12): 177-182.
|
|
MENG Wei, ZHA Jin, ZHANG Simeng, et al. A review of ammonia inhibition and its mitigation methods for anaerobic digestion of food waste[J]. Environmental Engineering, 2019, 37(12): 177-182.
|
17 |
WANG Xiaojiao, YANG Gaihe, FENG Yongzhong, et al. Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw[J]. Bioresource Technology, 2012, 120: 78-83.
|
18 |
ACOSTA N, KANG I DUH, RABAEY K, et al. Cow manure stabilizes anaerobic digestion of cocoa waste[J]. Waste Management, 2021, 126: 508-516.
|
19 |
XING Baoshan, CAO Sifan, HAN Yule, et al. Stable and high-rate anaerobic co-digestion of food waste and cow manure: Optimisation of start-up conditions[J]. Bioresource Technology, 2020, 307: 123195.
|
20 |
高娣, 奚永兰, 刘洋, 等. 江苏徐州沛县大屯街道有机生活垃圾的理化性质分析[J]. 江苏农业学报, 2020, 36(4): 965-970.
|
|
GAO Di, XI Yonglan, LIU Yang, et al. Analysis on physical and chemical properties of organic domestic waste in Datun Street, Pei County, Xuzhou City, Jiangsu Province[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(4): 965-970.
|
21 |
APHA. Standard methods for the examination of water and wastewater[M]. APHA, 2005.
|
22 |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
|
|
BAO Shidan. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000.
|
23 |
XIAO Youqian, DENG L, YANG Hongnan, et al. Alleviation of ammonia inhibition in dry anaerobic digestion of swine manure[J]. Energy, 2022, 253: 124149.
|
24 |
WANG Changzhen, ZHANG Yin, WANG Yongzhao, et al. Comparative studies of non‐noble metal modified mesoporous M‐Ni‐CaO‐ZrO2 (M= Fe, Co, Cu) catalysts for simulated biogas dry reforming[J]. Chinese Journal of Chemistry, 2017, 35(1): 113-120.
|
25 |
吕琛, 袁海荣, 王奎升, 等. 果蔬垃圾与餐厨垃圾混合厌氧消化产气性能[J]. 农业工程学报, 2011, 27(S1): 91-95.
|
|
Chen LYU, YUAN Hairong, WANG Kuisheng, et al. Anaerobic digestion performances of fruit and vegetable waste and kitchen waste[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(S1): 91-95.
|
26 |
焦秀瑶, 黄康祎, 王小铭, 等. 有机生活垃圾多组分联合厌氧降解产甲烷性能研究[J]. 中国环境科学, 2019, 39(3): 1078-1086.
|
|
JIAO Xiuyao, HUANG Kangyi, WANG Xiaoming, et al. Impact of combined anaerobic degradation of multi-component organic domestic waste on methane production performances[J]. China Environmental Science, 2019, 39(3): 1078-1086.
|
27 |
CHOI Yongjun, Jeongwon RYU, LEE Sang Rak. Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion[J]. Journal of Animal Science and Technology, 2020, 62(1): 74-83.
|
28 |
司哺春, 刘凯强, 林新宇, 等. 直接种间电子传递对缓解厌氧消化抑制效应的研究进展[J]. 农业工程学报, 2020, 36(24): 227-235.
|
|
SI Buchun, LIU Kaiqiang, LIN Xinyu, et al. Research progress of the relief of anaerobic digestion inhibitions based on direct interspecies electron transfer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 227-235.
|
29 |
冯晶, 荆勇, 赵立欣, 等. 生物炭强化有机废弃物厌氧发酵技术研究[J]. 农业工程学报, 2019, 35(12): 256-264.
|
|
FENG Jing, JING Yong, ZHAO Lixin, et al. Research progress on biochar enhanced anaerobic fermentation technology of organic wastes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 256-264.
|
30 |
李博文, 朱鸿斌, 郭建斌, 等. 鸟粪石沉淀法脱除氨氮对鸡粪厌氧发酵过程的影响[J]. 农业工程学报, 2021, 37(22): 220-225.
|
|
LI Bowen, ZHU Hongbin, GUO Jianbin, et al. Effect of ammonia nitrogen removal by struvite precipitation method on the anaerobic digestion of chicken manure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 220-225.
|
31 |
于佳动, 赵立欣, 冯晶, 等. 序批式玉米秸秆牛粪混合厌氧干发酵产甲烷工艺优化研究[J]. 农业工程学报, 2018, 34(S1): 86-92.
|
|
YU Jiadong, ZHAO Lixin, FENG Jing, et al. Study on optimal technology of methane production by sequencing batchdry anaerobic digestion with corn straw and cattle manure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S1): 86-92.
|
32 |
HU Yuying, WU Jing, LI Huaizhi, et al. Study of an enhanced dry anaerobic digestion of swine manure: Performance and microbial community property[J]. Bioresource Technology, 2019, 282: 353-360.
|
33 |
TONG J, FANG P, ZHANG Junya, et al. Microbial community evolution and fate of antibiotic resistance genes during sludge treatment in two full-scale anaerobic digestion plants with thermal hydrolysis pretreatment[J]. Bioresource Technology, 2019, 288: 121575.
|
34 |
SHI Xuchuan, GUO Xianglin, ZUO Jiane, et al. A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: process stability and microbial community structure shifts[J]. Waste Management, 2018, 75: 261-269.
|
35 |
ZHANG Le, LI Fanghua, KUROKI A, et al. Methane yield enhancement of mesophilic and thermophilic anaerobic co-digestion of algal biomass and food waste using algal biochar: Semi-continuous operation and microbial community analysis[J]. Bioresource Technology, 2020, 302: 122892.
|