Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (4): 2060-2067.DOI: 10.16085/j.issn.1000-6613.2021-0819
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
QU Yiyuan(), ZHANG Jingxin(
), HE Yiliang
Received:
2021-04-18
Revised:
2021-08-20
Online:
2022-04-25
Published:
2022-04-23
Contact:
ZHANG Jingxin
通讯作者:
张景新
作者简介:
曲艺源(1995—),女,硕士研究生,研究方向为有机废弃物能源化。E-mail:基金资助:
CLC Number:
QU Yiyuan, ZHANG Jingxin, HE Yiliang. Iron electrode assisted thermophilic anaerobic digestion of kitchen waste and microbial salt tolerance mechanism[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2060-2067.
曲艺源, 张景新, 何义亮. 铁电极辅助餐厨垃圾高温厌氧消化及微生物的耐盐机理[J]. 化工进展, 2022, 41(4): 2060-2067.
材料 | TS/% | VS/% | C/% | N/% | H/% | S/% | C/N | Fe/mg·L-1 |
---|---|---|---|---|---|---|---|---|
餐厨垃圾 | 25.46 | 24.09 | 48.69 | 2.91 | 7.11 | 0.22 | 16.73 | — |
接种污泥 | 5.9 | 5.7 | 45.87 | 9.98 | 7.04 | 1.01 | 4.59 | 0.07 |
材料 | TS/% | VS/% | C/% | N/% | H/% | S/% | C/N | Fe/mg·L-1 |
---|---|---|---|---|---|---|---|---|
餐厨垃圾 | 25.46 | 24.09 | 48.69 | 2.91 | 7.11 | 0.22 | 16.73 | — |
接种污泥 | 5.9 | 5.7 | 45.87 | 9.98 | 7.04 | 1.01 | 4.59 | 0.07 |
功能级别 | 功能预测 | 绝对丰度 | ||
---|---|---|---|---|
HFCE | HFCS | HC | ||
细胞过程 | 细胞生长与死亡 | 157867 | 161245 | 136762 |
运输和分解代谢 | 81013 | 66802 | 54288 | |
环境信息 处理 | 跨膜运输 | 4194643 | 4204212 | 3389308 |
代谢 | 氨基酸代谢 | 3317868 | 2973463 | 2464962 |
碳水化合物代谢 | 3605382 | 3344442 | 2742692 | |
能量代谢 | 2438848 | 2064452 | 1773545 | |
多糖的生物合成和代谢 | 765957 | 641126 | 540513 | |
脂类代谢 | 984766 | 963698 | 767746 | |
辅酶及维生素的代谢 | 1435909 | 1312539 | 1111371 | |
三级功能 分类 | 甲烷代谢;Ko02024 | 768776 | 537022 | 486743 |
蛋白激酶 | 109789 | 101262 | 84753 | |
氧化磷酸化;Ko00190 | 491036 | 458464 | 376250 | |
甘氨酸、丝氨酸和苏氨酸代谢;Ko00260 | 240707 | 242947 | 200962 |
功能级别 | 功能预测 | 绝对丰度 | ||
---|---|---|---|---|
HFCE | HFCS | HC | ||
细胞过程 | 细胞生长与死亡 | 157867 | 161245 | 136762 |
运输和分解代谢 | 81013 | 66802 | 54288 | |
环境信息 处理 | 跨膜运输 | 4194643 | 4204212 | 3389308 |
代谢 | 氨基酸代谢 | 3317868 | 2973463 | 2464962 |
碳水化合物代谢 | 3605382 | 3344442 | 2742692 | |
能量代谢 | 2438848 | 2064452 | 1773545 | |
多糖的生物合成和代谢 | 765957 | 641126 | 540513 | |
脂类代谢 | 984766 | 963698 | 767746 | |
辅酶及维生素的代谢 | 1435909 | 1312539 | 1111371 | |
三级功能 分类 | 甲烷代谢;Ko02024 | 768776 | 537022 | 486743 |
蛋白激酶 | 109789 | 101262 | 84753 | |
氧化磷酸化;Ko00190 | 491036 | 458464 | 376250 | |
甘氨酸、丝氨酸和苏氨酸代谢;Ko00260 | 240707 | 242947 | 200962 |
功能模型 | KEGG 编号 | 描述 | 绝对丰度 | ||
---|---|---|---|---|---|
HFCE | HFCS | HC | |||
M00567,利用H2和CO2产甲烷路径 | K01499 | mch; methenyl tetrahydromethanopterin cyclohydrolase | 3442 | 2915 | 2133 |
K00319 | mtd; methylenetetrahydromethanopterin dehydrogenase | 1193 | 366 | 564 | |
K00320 | mer;coenzyme F420-dependent N5,N10-methenyltetrahydromethanopterin reductase | 5122 | 5233 | 3024 | |
M00357,利用乙酸产甲烷路径 | K00925 | ackA;acetate kinase | 3501 | 7299 | 6548 |
K01895 | acs; acetyl-CoA synthetase | 22727 | 15127 | 12526 | |
M00356,利用甲醇产甲烷路径 | K14080 | mtaA; [methyl-Co(III) methanol-specific corrinoid protein]:coenzyme M methyltransferase | 680 | 8 | 13 |
K04480 | mtaB; methanol-5-hydroxybenzimidazolylcobamide Comethyltransferase | 679 | 11 | 10 | |
K14081 | mtaC; methanol corrinoid protein | 680 | 14 | 12 | |
M00563,利用甲酸等甲基类化合物产甲烷路径 | K14083 | mttB; trimethylamine corrinoid protein Comethyltransferase | 4077 | 5858 | 3486 |
功能模型 | KEGG 编号 | 描述 | 绝对丰度 | ||
---|---|---|---|---|---|
HFCE | HFCS | HC | |||
M00567,利用H2和CO2产甲烷路径 | K01499 | mch; methenyl tetrahydromethanopterin cyclohydrolase | 3442 | 2915 | 2133 |
K00319 | mtd; methylenetetrahydromethanopterin dehydrogenase | 1193 | 366 | 564 | |
K00320 | mer;coenzyme F420-dependent N5,N10-methenyltetrahydromethanopterin reductase | 5122 | 5233 | 3024 | |
M00357,利用乙酸产甲烷路径 | K00925 | ackA;acetate kinase | 3501 | 7299 | 6548 |
K01895 | acs; acetyl-CoA synthetase | 22727 | 15127 | 12526 | |
M00356,利用甲醇产甲烷路径 | K14080 | mtaA; [methyl-Co(III) methanol-specific corrinoid protein]:coenzyme M methyltransferase | 680 | 8 | 13 |
K04480 | mtaB; methanol-5-hydroxybenzimidazolylcobamide Comethyltransferase | 679 | 11 | 10 | |
K14081 | mtaC; methanol corrinoid protein | 680 | 14 | 12 | |
M00563,利用甲酸等甲基类化合物产甲烷路径 | K14083 | mttB; trimethylamine corrinoid protein Comethyltransferase | 4077 | 5858 | 3486 |
1 | EL-FADEL M, SAIKALY P, GHANIMEH S. Startup and stability of thermophilic anaerobic digestion of OFMSW[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(24): 2685-2721. |
2 | LOHANI S P, WANG S, BERGLAND W H, et al. Modeling temperature effects in anaerobic digestion of domestic wastewater[J]. Water-Energy Nexus, 2018, 1(1): 56-60. |
3 | MICOLUCCI F, GOTTARDO M, PAVAN P, et al. Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste[J]. Journal of Cleaner Production, 2018, 171: 1376-1385. |
4 | KJERSTADIUS H, COUR JANSEN J LA, DE VRIEZE J, et al. Hygienization of sludge through anaerobic digestion at 35, 55 and 60℃[J]. Water Science and Technology, 2013, 68(10): 2234-2239. |
5 | CHEN Y J, HE H J, LIU H Y, et al. Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors[J]. Bioresource Technology, 2018, 249: 890-899. |
6 | ZANDVOORT M H, HULLEBUSCH E D VAN, FERMOSO F G, et al. Trace metals in anaerobic granular sludge reactors: bioavailability and dosing strategies[J]. Engineering in Life Sciences, 2006, 6(3): 293-301. |
7 | ZHANG J X, QU Y Y, QI Q X, et al. The bio-chemical cycle of iron and the function induced by ZVI addition in anaerobic digestion: a review[J]. Water Research, 2020, 186: 116405. |
8 | WANG D X, MA W C, HAN H J, et al. Enhanced anaerobic degradation of Fischer-Tropsch wastewater by integrated UASB system with Fe-C micro-electrolysis assisted[J]. Chemosphere, 2016, 164: 14-24. |
9 | ZHAO Z S, ZHANG Y B, LI Y, et al. Comparing the mechanisms of ZVI and Fe3O4 for promoting waste-activated sludge digestion[J]. Water Research, 2018, 144: 126-133. |
10 | QI Q X, SUN C, ZHANG J X, et al. Internal enhancement mechanism of biochar with graphene structure in anaerobic digestion: the bioavailability of trace elements and potential direct interspecies electron transfer[J]. Chemical Engineering Journal, 2021, 406: 126833. |
11 | WEI W, CAI Z Q, FU J, et al. Zero valent iron enhances methane production from primary sludge in anaerobic digestion[J]. Chemical Engineering Journal, 2018, 351: 1159-1165. |
12 | ZHANG J X, ZHANG Y B, QUAN X. Electricity assisted anaerobic treatment of salinity wastewater and its effects on microbial communities[J]. Water Research, 2012, 46(11): 3535-3543. |
13 | CHEN D Y, WANG Z M, ZHANG M L, et al. Effect of increasing salinity and low C/N ratio on the performance and microbial community of a sequencing batch reactor[J]. Environmental Technology, 2021, 42(8): 1213-1224. |
14 | FEIJOO G, SOTO M, MÉNDEZ R, et al. Sodium inhibition in the anaerobic digestion process: antagonism and adaptation phenomena[J]. Enzyme and Microbial Technology, 1995, 17(2): 180-188. |
15 | IBARRA-VILLARREAL A L, GÁNDARA-LEDEZMA A, GODOY-FLORES A D, et al. Salt-tolerant Bacillus species as a promising strategy to mitigate the salinity stress in wheat (Triticum turgidum subsp. durum)[J]. Journal of Arid Environments, 2021, 186: 104399. |
16 | MOERTELMAIER C, LI C R, WINTER J, et al. Fatty acid metabolism and population dynamics in a wet biowaste digester during re-start after revision[J]. Bioresource Technology, 2014, 166: 479-484. |
17 | WANG F, YI W M, ZHANG D L, et al. Anaerobic co-digestion of corn stover and wastewater from hydrothermal carbonation[J]. Bioresource Technology, 2020, 315: 123788. |
18 | TITILADUNAYO I F, MCDONALD A G, FAPETU O P. Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process[J]. Waste and Biomass Valorization, 2012, 3(3): 311-318. |
19 | LIU C Q, SUN D Z, ZHAO Z Q, et al. Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer[J]. Bioresource Technology, 2019, 291: 121877. |
20 | HOLMES D E, SHRESTHA P M, WALKER D J F, et al. Metatranscriptomic evidence for direct interspecies electron transfer between geobacter and methanothrix species in methanogenic rice paddy soils[J]. Applied and Environmental Microbiology, 2017, 83(9): e00223-17. |
21 | ZHANG W, ZHANG F, LI Y X, et al. No difference in inhibition among free acids of acetate, propionate and butyrate on hydrogenotrophic methanogen of Methanobacterium formicicum [J]. Bioresource Technology, 2019, 294: 122237. |
22 | ZHAO Z Q, ZHANG Y B, HOLMES D E, et al. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors[J]. Bioresource Technology, 2016, 209: 148-156. |
23 | DAI K, ZHANG W, ZENG R J, et al. Production of chemicals in thermophilic mixed culture fermentation: mechanism and strategy[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(1): 1-30. |
24 | WEI J, HAO X D, LOOSDRECHT M C M VAN, et al. Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 16-26. |
25 | GUO J H, PENG Y Z, NI B J, et al. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing[J]. Microbial Cell Factories, 2015, 14(1): 1-11. |
26 | LOVLEY D R. Syntrophy goes electric: direct interspecies electron transfer[J]. Annual Review of Microbiology, 2017, 71: 643-664. |
27 | LIN R C, CHENG J, ZHANG J B, et al. Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technology, 2017, 239: 345-352. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[3] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[4] | CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. |
[5] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[6] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[7] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[8] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[9] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[10] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[11] | FENG Jianghan, SONG Fang. Research progress of anion exchange membrane water electrolysis cells [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3501-3509. |
[12] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[13] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[14] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[15] | WANG Lin, XIN Meihua, LI Mingchun, CHEN Qi, MAO Yangfan. Preparation of quaternized/sulfonated chitosan and its anti-biofilm activity [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2577-2585. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 598
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |