Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1145-1156.DOI: 10.16085/j.issn.1000-6613.2023-0375
• Chemical processes and equipment • Previous Articles
YU Yanfang1(), DING Pengcheng1, MENG Huibo2(), SHI Bowen1, YAO Yunjuan1
Received:
2023-03-13
Revised:
2023-04-24
Online:
2024-04-11
Published:
2024-03-10
Contact:
MENG Huibo
禹言芳1(), 丁鹏程1, 孟辉波2(), 石博文1, 姚云娟1
通讯作者:
孟辉波
作者简介:
禹言芳(1979—),女,博士,副教授,研究方向为化工过程强化。E-mail:taroyy@163.com。
基金资助:
CLC Number:
YU Yanfang, DING Pengcheng, MENG Huibo, SHI Bowen, YAO Yunjuan. Heat transfer enhancement of non-Newtonian fluid in the blade-type static mixer[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1145-1156.
禹言芳, 丁鹏程, 孟辉波, 石博文, 姚云娟. 非牛顿流体在叶片式静态混合器中的传热强化特性[J]. 化工进展, 2024, 43(3): 1145-1156.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0375
边界层数 | 网格数 | Nu | Nu偏差 | f | f偏差 |
---|---|---|---|---|---|
0 | 919807 | 996.122 | 11.62% | 0.757 | 2.70% |
3 | 1143039 | 945.407 | 5.93% | 0.751 | 1.84% |
5 | 1272864 | 918.358 | 2.90% | 0.749 | 1.55% |
7 | 1388014 | 901.314 | 0.10% | 0.745 | 1.09% |
9 | 1485011 | 895.443 | 0.03% | 0.742 | 0.06% |
11 | 1565209 | 892.453 | — | 0.737 | — |
边界层数 | 网格数 | Nu | Nu偏差 | f | f偏差 |
---|---|---|---|---|---|
0 | 919807 | 996.122 | 11.62% | 0.757 | 2.70% |
3 | 1143039 | 945.407 | 5.93% | 0.751 | 1.84% |
5 | 1272864 | 918.358 | 2.90% | 0.749 | 1.55% |
7 | 1388014 | 901.314 | 0.10% | 0.745 | 1.09% |
9 | 1485011 | 895.443 | 0.03% | 0.742 | 0.06% |
11 | 1565209 | 892.453 | — | 0.737 | — |
1 | SALMAN B H, MOHAMMED H A, MUNISAMY K M, et al. Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 28: 848-880. |
2 | Selim GÜRGEN, FERNANDES Fábio A O, DE SOUSA Ricardo J Alves, et al. Development of eco-friendly shock-absorbing cork composites enhanced by a non-Newtonian fluid[J]. Applied Composite Materials, 2021, 28(1): 165-179. |
3 | RIOS-IRIBE Erika Y, CERVANTES-GAXIOLA Maritza E, Eusiel RUBIO-CASTRO, et al. Heat transfer analysis of a non-Newtonian fluid flowing through a plate heat exchanger using CFD[J]. Applied Thermal Engineering, 2016, 101: 262-272. |
4 | 胡波, 庞明军. 特征时间对剪切稀化流体气泡上浮特性的影响[J]. 化工进展, 2021, 40(5): 2440-2451. |
HU Bo, PANG Mingjun. Effects of characteristic time on bubble dynamic in shear thinning fluids[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2440-2451. | |
5 | 关集俱, 陈锦松, 吕涛, 等. 碳纳米管复合物纳米流体切削液的稳定性与强化换热[J]. 化工进展, 2019, 38(10): 4674-4683. |
GUAN Jiju, CHEN Jinsong, Tao LYU, et al. Stability and heat transfer enhancement of machining use nanofluids prepared by carbon nanotube composite[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4674-4683. | |
6 | MOZAFARIE Seyed Shahab, JAVAHERDEH Kourosh. Numerical design and heat transfer analysis of a non-Newtonian fluid flow for annulus with helical fins[J]. Engineering Science and Technology, an International Journal, 2019, 22(4): 1107-1115. |
7 | MALVANDI A, MOSHIZI S A, SOLTANI E G, et al. Modified Buongiorno’s model for fully developed mixed convection flow of nanofluids in a vertical annular pipe[J]. Computers & Fluids, 2014, 89: 124-132. |
8 | JAFARMADAR Samad, AZIZINIA Nazli, RAZMARA Nayyer, et al. Thermal analysis and entropy generation of pulsating heat pipes using nanofluids[J]. Applied Thermal Engineering, 2016, 103: 356-364. |
9 | VALIZADEH Kamran, FARAHBAKHSH Soroush, BATENI Amir, et al. A parametric study to simulate the non-Newtonian turbulent flow in spiral tubes[J]. Energy Science & Engineering, 2020, 8(1): 134-149. |
10 | 陆威, 苗冉, 吴志根, 等. 非牛顿流体在波节套管换热器中流动与换热的实验研究[J]. 化工学报, 2022, 73(7): 2924-2932. |
LU Wei, MIAO Ran, WU Zhigen, et al. Experimental study on flow and heat transfer of non-Newtonian fluid in a corrugated double-tube heat exchanger[J]. CIESC Journal, 2022, 73(7): 2924-2932. | |
11 | NADERIFAR Afshin, NIKIAN Mohammad, JAVAHERDEH Kourosh, et al. Numerical investigation of the effect of fins on heat transfer enhancement of a laminar non-Newtonian nanofluid flow through a corrugated channel[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(17): 9779-9791. |
12 | MORAVEJI Mostafa Keshavarz, HADDAD Seyyed Mohammad Hossein, DARABI Mehdi. Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics[J]. International Communications in Heat and Mass Transfer, 2012, 39(7): 995-999. |
13 | ZHANG Di, ZHENG Lu, XIE Gongnan, et al. An experimental study on heat transfer enhancement of non-newtonian fluid in a rectangular channel with dimples/protrusions[J]. Journal of Electronic Packaging, 2014, 136(2): 682-694. |
14 | 禹言芳, 陈雅鑫, 孟辉波, 等. Lightnin静态混合器内纳米流体湍流传热特性分析[J]. 化工进展, 2021, 40(S2): 30-39. |
YU Yanfang, CHEN Yaxin, MENG Huibo, et al. Analysis of turbulent heat transfer characteristics of nanofluids in the Lightnin static mixer[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 30-39. | |
15 | JI Wentao, JACOBI Anthony M, HE Yaling, et al. Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow[J]. International Journal of Heat and Mass Transfer, 2015, 88: 735-754. |
16 | ZHENG Nianben, LIU Peng, SHAN Feng, et al. Sensitivity analysis and multi-objective optimization of a heat exchanger tube with conical strip vortex generators[J]. Applied Thermal Engineering, 2017, 122: 642-652. |
17 | LIU Peng, ZHENG Nianben, SHAN Feng, et al. An experimental and numerical study on the laminar heat transfer and flow characteristics of a circular tube fitted with multiple conical strips inserts[J]. International Journal of Heat and Mass Transfer, 2018, 117: 691-709. |
18 | MANGLIK R M, BERGLES A E. Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: Part Ⅰ—Laminar flows[J]. Journal of Heat Transfer, 1993, 115(4): 881-889. |
19 | MANGLIK R M, BERGLES A E. Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: Part Ⅱ—Transition and turbulent flows[J]. Journal of Heat Transfer, 1993, 115(4): 890-896. |
20 | GUO Jian, FAN Aiwu, ZHANG Xiaoyu, et al. A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape[J]. International Journal of Thermal Sciences, 2011, 50(7): 1263-1270. |
21 | BHATTACHARYYA Suvanjan, SAHA Subhankar, SAHA Sujoy Kumar. Laminar flow heat transfer enhancement in a circular tube having integral transverse rib roughness and fitted with centre-cleared twisted-tape[J]. Experimental Thermal and Fluid Science, 2013, 44: 727-735. |
22 | LI Pengxiao, LIU Zhichun, LIU Wei, et al. Numerical study on heat transfer enhancement characteristics of tube inserted with centrally hollow narrow twisted tapes[J]. International Journal of Heat and Mass Transfer, 2015, 88: 481-491. |
23 | ZHENG Nianben, LIU Peng, SHAN Feng, et al. Heat transfer enhancement in a novel internally grooved tube by generating longitudinal swirl flows with multi-vortexes[J]. Applied Thermal Engineering, 2016, 95: 421-432. |
24 | KURNIA Jundika C, CHAEDIR Benitta, WIJAYANTA Agung T, et al. Convective heat transfer enhancement of laminar Herschel-Bulkley non-Newtonian fluid in straight and helical heat exchangers with twisted tape inserts[J]. Industrial & Engineering Chemistry Research, 2022, 61(1): 814-844. |
25 | KURNIA Jundika C, SASMITO Agus P, MUJUMDAR Arun S. Laminar heat transfer performance of power law fluids in coiled square tube with various configurations[J]. International Communications in Heat and Mass Transfer, 2014, 57: 100-108. |
26 | POURSHARIF Zohreh, SALARIAN Hesamoddin, JAVAHERDEH Kourosh, et al. Heat transfer investigation of non-Newtonian fluid flow in anannular pipe embedded with porous discs: A turbulent study[J]. Journal of Thermal Engineering, 2022, 8(2): 235-248. |
27 | THAKUR R K, VIAL C H, NIGAM K D P, et al. Static mixers in the process industries—A review[J]. Chemical Engineering Research and Design, 2003, 81(7): 787-826. |
28 | GHANEM Akram, LEMENAND Thierry, DELLA VALLE Dominique, et al. Static mixers: Mechanisms, applications, and characterization methods—A review[J]. Chemical Engineering Research and Design, 2014, 92(2): 205-228. |
29 | SHAHSAVAR Amin, ALIMOHAMMADI Seyed Saman, ASKARI Ighball Baniasad, et al. Numerical investigation of the effect of corrugation profile on the hydrothermal characteristics and entropy generation behavior of laminar forced convection of non-Newtonian water/CMC-CuO nanofluid flow inside a wavy channel[J]. International Communications in Heat and Mass Transfer, 2021, 121: 105117. |
30 | RAHMANI Ramin K, KEITH Theo G, AYASOUFI Anahita. Numerical simulation of turbulent flow in an industrial helical static mixer[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2008, 18(6): 675-696. |
31 | METZNER A B, REED J C. Flow of non-newtonian fluids—Correlation of the laminar, transition, and turbulent-flow regions[J]. AIChE Journal, 1955, 1(4): 434-440. |
32 | LIAW Kim Leong, KURNIA Jundika C, SASMITO Agus P. Turbulent convective heat transfer in helical tube with twisted tape insert[J]. International Journal of Heat and Mass Transfer, 2021, 169: 120918. |
33 | 张静, 黄思旭, 蒋灿, 等. 幂律流体在Kenics型静态混合器中流动特性分析[J]. 过程工程学报, 2022, 22(5): 622-630. |
ZHANG Jing, HUANG Sixu, JIANG Can, et al. Analysis of flow characteristics of power law-fluid in Kenics static mixer[J]. The Chinese Journal of Process Engineering, 2022, 22(5): 622-630. | |
34 | JAVADPOUR Ally, NAJAFI Mohammad, JAVAHERDEH Kourosh. Experimental study of steady state laminar forced heat transfer of horizontal annulus tube with non-Newtonian nanofluid[J]. Journal of Mechanical Science and Technology, 2017, 31(11): 5539-5544. |
35 | LIU Wei, YANG Kun. Mechanism and numerical analysis of heat transfer enhancement in the core flow along a tube[J]. Science in China Series E: Technological Sciences, 2008, 51(8): 1195-1202. |
36 | MAHAMMEDI Abdelkader, TAYEB Naas Toufik, KIM Kwang-Yong, et al. Mixing enhancement of non-Newtonian shear-thinning fluid for a Kenics micromixer[J]. Micromachines, 2021, 12(12): 1494. |
[1] | YU Yanfang, SHI Bowen, MENG Huibo, DING Pengcheng, YAO Yunjuan. Characteristics analysis of gas solid two-phase flow in pneumatic conveying based on CFD-DEM algorithm [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1133-1144. |
[2] | LI Jing, FANG Qing, ZHOU Wenhao, WU Guoliang, WANG Jiahui, ZHANG Hua, NI Hongwei. Effect of baffle configuration on the multiphase flow behaviors of vanadium shale leaching tank [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 619-627. |
[3] | JIAN Yu, CHEN Baoming, GONG Hanyu. Enhanced heat transfer characteristics of phase change heat storage systems based on hierarchically structured skeletons [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 649-658. |
[4] | BIAN Hanqing, ZHANG Xingkai, LIAO Ruiquan, WANG Dong, LI Rui, LUO Xiaochu, HOU Yaodong, BAI Xiaohong, GAN Qingming. Double-parameter measurement method of wet gas in phase-isolation state [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 722-733. |
[5] | HA Wen, YANG Yang, TANG Yu, CAO Di, ZHANG Chao, YANG Bin. Ultrasonic attenuation method for measuring phase holdup in oil-water annular flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 768-780. |
[6] | DENG Lei, YUAN Maobo, YANG Jiahui, YUE Yang, JIANG Jiahao, CHE Defu. High-temperature corrosion prediction model of water-cooled wall for boiler peak regulation [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 925-936. |
[7] | ZHU Bingguo, GONG Kaigang, PENG Bin. Heat transfer characteristics of supercritical CO2 with high mass flux in vertical tube [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 937-947. |
[8] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[9] | XIE Guangshuo, ZHANG Siliang, HE Song, XIAO Juan, WANG Simin. Global sensitivity analysis for particulate fouling performance based on metamodel of optimal prognosis [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 328-337. |
[10] | FENG Debin, WANG Wen, MA Fanhua. Simulation and analysis for pipeline transportation characteristics of hydrogen-enriched compressed natural gas [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 390-399. |
[11] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[12] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[13] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[14] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[15] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |