Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1133-1144.DOI: 10.16085/j.issn.1000-6613.2023-0353
• Chemical processes and equipment • Previous Articles
YU Yanfang1(), SHI Bowen1, MENG Huibo2(), DING Pengcheng1, YAO Yunjuan1
Received:
2023-03-08
Revised:
2023-05-17
Online:
2024-04-11
Published:
2024-03-10
Contact:
MENG Huibo
禹言芳1(), 石博文1, 孟辉波2(), 丁鹏程1, 姚云娟1
通讯作者:
孟辉波
作者简介:
禹言芳(1979—),女,博士,副教授,研究方向为化工过程强化。E-mail:taroyy@163.com。
基金资助:
CLC Number:
YU Yanfang, SHI Bowen, MENG Huibo, DING Pengcheng, YAO Yunjuan. Characteristics analysis of gas solid two-phase flow in pneumatic conveying based on CFD-DEM algorithm[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1133-1144.
禹言芳, 石博文, 孟辉波, 丁鹏程, 姚云娟. 基于CFD-DEM算法的气力输送气固两相流特性分析[J]. 化工进展, 2024, 43(3): 1133-1144.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0353
状态 | 参数 | 数值 |
---|---|---|
固相 | 颗粒质量流量/g·s-1 | 2.85 |
颗粒密度/kg·m-3 | 40 | |
颗粒直径/μm | 300 | |
泊松比 | 0.206 | |
剪切模量/Pa | 1×107 | |
颗粒-颗粒恢复系数 | 0.037 | |
颗粒-颗粒静摩擦系数 | 2 | |
颗粒-颗粒滚动摩擦系数 | 0.2 | |
颗粒-有机玻璃恢复系数 | 0.047 | |
颗粒-有机玻璃静摩擦系数 | 0.894 | |
颗粒-有机玻璃滚动摩擦系数 | 0.2 | |
颗粒相时间步长/s | 2×10-7 | |
颗粒入口速度/m·s-1 | 0 | |
气相 | 气体密度/kg·m-3 | 1.225 |
气体黏度/kg·(m·s)-1 | 1.7894×10-5 | |
气体时间步长/s | 2×10-5 |
状态 | 参数 | 数值 |
---|---|---|
固相 | 颗粒质量流量/g·s-1 | 2.85 |
颗粒密度/kg·m-3 | 40 | |
颗粒直径/μm | 300 | |
泊松比 | 0.206 | |
剪切模量/Pa | 1×107 | |
颗粒-颗粒恢复系数 | 0.037 | |
颗粒-颗粒静摩擦系数 | 2 | |
颗粒-颗粒滚动摩擦系数 | 0.2 | |
颗粒-有机玻璃恢复系数 | 0.047 | |
颗粒-有机玻璃静摩擦系数 | 0.894 | |
颗粒-有机玻璃滚动摩擦系数 | 0.2 | |
颗粒相时间步长/s | 2×10-7 | |
颗粒入口速度/m·s-1 | 0 | |
气相 | 气体密度/kg·m-3 | 1.225 |
气体黏度/kg·(m·s)-1 | 1.7894×10-5 | |
气体时间步长/s | 2×10-5 |
平均网格尺寸/mm | 网格数量/万 | 压降/Pa | 误差/% |
---|---|---|---|
1.75 | 5.2 | 15552.030 | — |
2.00 | 4.6 | 15651.335 | 0.06 |
2.25 | 3.9 | 15700.564 | 0.37 |
2.50 | 3.3 | 15709.938 | 1.01 |
平均网格尺寸/mm | 网格数量/万 | 压降/Pa | 误差/% |
---|---|---|---|
1.75 | 5.2 | 15552.030 | — |
2.00 | 4.6 | 15651.335 | 0.06 |
2.25 | 3.9 | 15700.564 | 0.37 |
2.50 | 3.3 | 15709.938 | 1.01 |
序号 | 输送气速/m·s-1 | 颗粒质量流量/g·s-1 | 颗粒直径/μm | 压降/Pa |
---|---|---|---|---|
1 | 3 | 0.85 | 300 | 49.954 |
2 | 3 | 1.85 | 400 | 49.967 |
3 | 3 | 2.85 | 500 | 49.975 |
4 | 4 | 1.85 | 300 | 87.325 |
5 | 4 | 2.85 | 400 | 87.353 |
6 | 4 | 0.85 | 500 | 87.299 |
7 | 5 | 2.85 | 300 | 134.997 |
8 | 5 | 0.85 | 400 | 134.939 |
9 | 5 | 1.85 | 500 | 134.951 |
R' | 84.997 | 0.045 | 0.017 | — |
序号 | 输送气速/m·s-1 | 颗粒质量流量/g·s-1 | 颗粒直径/μm | 压降/Pa |
---|---|---|---|---|
1 | 3 | 0.85 | 300 | 49.954 |
2 | 3 | 1.85 | 400 | 49.967 |
3 | 3 | 2.85 | 500 | 49.975 |
4 | 4 | 1.85 | 300 | 87.325 |
5 | 4 | 2.85 | 400 | 87.353 |
6 | 4 | 0.85 | 500 | 87.299 |
7 | 5 | 2.85 | 300 | 134.997 |
8 | 5 | 0.85 | 400 | 134.939 |
9 | 5 | 1.85 | 500 | 134.951 |
R' | 84.997 | 0.045 | 0.017 | — |
1 | 周甲伟, 荆双喜, 刘瑜. 煤炭颗粒旋流气力输送系统设计与研究[J]. 煤矿机械, 2021, 42(11): 1-4. |
ZHOU Jiawei, JING Shuangxi, LIU Yu. Design and research on swirling flow pneumatic conveying system of coal particle[J]. Coal Mine Machinery, 2021, 42(11): 1-4. | |
2 | 高罗辉, 姚振强, 梁鑫光, 等. 旋流气力输运中水平管道管壁磨损的流体力学仿真与分析[J]. 机械设计与研究, 2012, 28(2): 88-92. |
GAO Luohui, YAO Zhenqiang, LIANG Xinguang, et al. Research for the wall wear of horizontal pipeline in swirling flow pneumatic transport based on the computational fluid dynamics simulation analysis[J]. Machine Design & Research, 2012, 28(2): 88-92. | |
3 | MEINECKE Marvin, KILZER Andreas, WEIDNER Eckhard. Imaging method for mass transport measurements in a two-phase bubbly flow of supercritical CO2 and viscous liquids in a static mixer[J]. The Journal of Supercritical Fluids, 2020, 159: 104757. |
4 | MENG Huibo, HAN Mengqi, YU Yanfang, et al. Numerical evaluations on the characteristics of turbulent flow and heat transfer in the Lightnin static mixer[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119788. |
5 | VALDÉS Juan P, KAHOUADJI Lyes, MATAR Omar K. Current advances in liquid-liquid mixing in static mixers: A review[J]. Chemical Engineering Research and Design, 2022, 177: 694-731. |
6 | SCALA Marco, GAMET Lionel, MALBEC Louis-Marie, et al. Hydrodynamics of gas-liquid dispersion in transparent Sulzer static mixers SMXTM [J]. Chemical Engineering Science, 2020, 213: 115398. |
7 | ARIAN Elias, PAUER Werner. Contributions to the kinetics of the iodide-iodate test reaction for micromixing time calculation with extended incorporation models[J]. Chemical Engineering Science, 2021, 237: 116549. |
8 | AKAR Shima, TAHERI Amin, BAZAZ Razavi, et al. Twisted architecture for enhancement of passive micromixing in a wide range of Reynolds numbers[J]. Chemical Engineering and Processing-Process Intensification, 2021, 160: 108251. |
9 | LIU Baoqing, GAO Pengfei, SUN Ning, et al. Experimental investigation on micromixing characteristics of coaxial mixers in viscous system[J]. The Canadian Journal of Chemical Engineering, 2020, 98(8): 1815-1824. |
10 | GHANEM Akram, LEMENAND Thierry, DELLA VALLE Dominique, et al. Static mixers: Mechanisms, applications, and characterization methods—A review[J]. Chemical Engineering Research and Design, 2014, 92(2): 205-228. |
11 | KIM Gook Hee, Sang Hun WOO, KIM Sang Done, et al. Effect of static mixer internals on hydrodynamics and axial gas mixing characteristics in a circulating fluidized bed[J]. Journal of Chemical Engineering of Japan, 2010, 43(3): 269-274. |
12 | SYNOWIEC Piotr Maria, STEC Magdalena. Analysis of CaF2 precipitation process in the selected static mixers[J]. Journal of Chemistry, 2019, 2019: 6728492. |
13 | Žana ŠARANOVIĆ, Zita ŠEREŠ, ALEKSANDAR Jokić, et al. Reduction of solid content in starch industry wastewater by microfiltration[J]. Starch-Stärke, 2011, 63(2): 64-74. |
14 | DONG Yuancai, Wai Kiong NG, SHEN Shoucang, et al. Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers[J]. Colloids and Surfaces B: Biointerfaces, 2012, 94: 68-72. |
15 | Angel Chyi En WE, ARIS Azmi, ZAIN Nor Azimah Mohd, et al. Influence of static mixer on the development of aerobic granules for the treatment of low-medium strength domestic wastewater[J]. Chemosphere, 2021, 263: 128209. |
16 | 宣颖, 刘雪东, 周成奇, 等. 粉体混合过程及搅拌功率的DEM数值模拟和实验[J]. 化工进展, 2021, 40(7): 3598-3607. |
XUAN Ying, LIU Xuedong, ZHOU Chengqi, et al. A discrete element method (DEM) simulation and experimental research on powder mixing process and stirring power[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3598-3607. | |
17 | Filipp GÖBEL, GOLSHAN Shahab, NOROUZI Hamid Reza, et al. Simulation of granular mixing in a static mixer by the discrete element method[J]. Powder Technology, 2019, 346: 171-179. |
18 | BUNKLUARB Noraphon, SAWANGTONG Wannika, KHAJOHNSAKSUMETH Nathnarong, et al. Numerical simulation of granular mixing in static mixers with different geometries[J]. Advances in Difference Equations, 2019, 2019(1): 238. |
19 | Aca JOVANOVIĆ, PEZO Milada, PEZO Lato, et al. DEM/CFD analysis of granular flow in static mixers[J]. Powder Technology, 2014, 266: 240-248. |
20 | PEZO Milada, PEZO Lato, Aca JOVANOVIĆ, et al. DEM/CFD approach for modeling granular flow in the revolving static mixer[J]. Chemical Engineering Research and Design, 2016, 109: 317-326. |
21 | THAKUR R K, VIAL Ch, NIGAM K D P, et al. Static mixers in the process industries—A review[J]. Chemical Engineering Research and Design, 2003, 81(7): 787-826. |
22 | REVATHI D, SARAVANAN K. Experimental studies on hydrodynamic aspects for mixing of non-Newtonian fluids in a Komax static mixer[J]. Chemical Industry and Chemical Engineering Quarterly, 2020, 26(4): 329-335. |
23 | 郎显华, 施永生, 王琳. 改进管道混合器提高高浊水混凝效果[J]. 工业用水与废水, 2006, 37(1): 71-72. |
LANG Xianhua, SHI Yongsheng, WANG Lin. Improving pipeline mixer to improve coagulation effect of highly turbid water[J]. Industrial Water & Wastewater, 2006, 37(1): 71-72. | |
24 | MENG Huibo, MENG Tong, YU Yanfang, et al. Experimental and numerical investigation of turbulent flow and heat transfer characteristics in the Komax static mixer[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123006. |
25 | MAA Y F, HSU C. Liquid-liquid emulsification by static mixers for use in microencapsulation[J]. Journal of Microencapsulation, 1996, 13(4): 419-433. |
26 | 王宗勇, 王亮, 孟辉波. Kenics型静态混合器内分散相液滴破碎和聚结过程的CFD-PBM数值模拟[J]. 过程工程学报, 2021, 21(8): 935-943. |
WANG Zongyong, WANG Liang, MENG Huibo. CFD-PBM numerical simulation on the breakup and coalescence process of dispersed phase droplet in Kenics static mixer[J]. The Chinese Journal of Process Engineering, 2021, 21(8): 935-943. | |
27 | 禹言芳, 李中根, 孟辉波, 等. Lightnin静态混合器内瞬态流场POD分析及混合特性研究[J]. 北京化工大学学报(自然科学版), 2021, 48(4): 19-26. |
YU Yanfang, LI Zhonggen, MENG Huibo, et al. Proper orthogonal decomposition(POD) analysis of the transient flow field and mixing characteristics in a Lightnin static mixer[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2021, 48(4): 19-26. | |
28 | 禹言芳, 王丰, 孟辉波, 等. 旋流静态混合器内瞬态流动特性研究进展[J]. 化工进展, 2013, 32(2): 255-262, 282. |
YU Yanfang, WANG Feng, MENG Huibo, et al. Research progress of the characteristics of instantaneous flow in static mixer with twisted-leaves[J]. Chemical Industry and Engineering Progress, 2013, 32(2): 255-262, 282. | |
29 | 孟辉波, 王建宝, 禹言芳, 等. Q型静态混合器内液滴群分散特性[J]. 过程工程学报, 2022, 22(3): 338-346. |
MENG Huibo, WANG Jianbao, YU Yanfang, et al. Dispersion characteristics of droplets in the Q-type static mixer[J]. The Chinese Journal of Process Engineering, 2022, 22(3): 338-346. | |
30 | HOOMANS B P B, KUIPERS J A M, BRIELS W J, et al. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach[J]. Chemical Engineering Science, 1996, 51(1): 99-118. |
31 | TSUJI Y, TANAKA T, YONEMURA S. Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model)[J]. Powder Technology, 1998, 95(3): 254-264. |
32 | ZHU H P, ZHOU Z Y, YANG R Y, et al. Discrete particle simulation of particulate systems: Theoretical developments[J]. Chemical Engineering Science, 2007, 62(13): 3378-3396. |
33 | ANSYS Inc. ANSYS FLUENT 2020 User’s Guide[Z]. Pittsburgh: ANSYS Inc., 2020. |
34 | 周海丽. 超轻膨胀石墨颗粒气固两相流动特性的CFD-DEM模拟研究[D]. 秦皇岛: 燕山大学, 2019. |
ZHOU Haili. CFD-DEM simulation of gas-solid two phase flow characteristics of ultra-light expanded graphite particles[D]. Qinhuangdao: Yanshan University, 2019. | |
35 | LAVRINEC A, OROZOVIC O, RAJABNIA H, et al. Velocity and porosity relationships within dense phase pneumatic conveying as studied using coupled CFD-DEM[J]. Powder Technology, 2020, 375: 89-100. |
36 | HOSSEINI Seyyed Hossein, SHOJAEE Saeed, AHMADI Goodarz, et al. Computational fluid dynamics studies of dry and wet pressure drops in structured packings[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(4): 1465-1473. |
37 | MENG Huibo, WANG Jianbao, YU Yanfang, et al. CFD-PBM numerical study on liquid-liquid dispersion in the Q-type static mixer[J]. Industrial & Engineering Chemistry Research, 2021, 60(49): 18121-18135. |
38 | 杜俊, 胡国明, 方自强, 等. 弯管稀相气力输送CFD-DEM法数值模拟[J]. 国防科技大学学报, 2014, 36(4): 134-139. |
DU Jun, HU Guoming, FANG Ziqiang, et al. Simulation of dilute pneumatic conveying with bends by CFD-DEM[J]. Journal of National University of Defense Technology, 2014, 36(4): 134-139. | |
39 | NARIMATSU C P, FERREIRA M C. Vertical pneumatic conveying in dilute and dense-phase flows: Experimental study of the influence of particle density and diameter on fluid dynamic behavior[J]. Brazilian Journal of Chemical Engineering, 2001, 18(3): 221-232. |
40 | RINOSHIKA Akira, YAN Fei, KIKUCHI Masanori. Experimental study on particle fluctuation velocity of a horizontal pneumatic conveying near the minimum conveying velocity[J]. International Journal of Multiphase Flow, 2012, 40: 126-135. |
41 | HABCHI Charbel, LEMENAND Thierry, DELLA VALLE Dominique, et al. Turbulent mixing and residence time distribution in novel multifunctional heat exchangers-reactors[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(10): 1066-1075. |
42 | 方薪晖, 安海泉, 刘臻, 等. 煤粉掺混煤液化残渣萃余物的气力输送压降特性研究[J]. 煤炭学报, 2020, 45(4): 1510-1518. |
FANG Xinhui, AN Haiquan, LIU Zhen, et al. Experimental research on pressure drop in dense phase pneumatic conveying of pulverized coal blending extract residue of direct coal liquefaction residue[J]. Journal of China Coal Society, 2020, 45(4): 1510-1518. | |
43 | SAATDJIAN E, RODRIGO A J S, MOTA J P B. On chaotic advection in a static mixer[J]. Chemical Engineering Journal, 2012, 187: 289-298. |
[1] | WANG Chao, CAO Hui, MA Guoji, YE Jiamin, JI Xueling. EMD-based electrostatic detection of screw conveyor blade motion [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 752-759. |
[2] | CHEN Junxian, LIU Zhen, JIAO Wenlei, ZHANG Tianyu, LYU Jiameng, JI Zhongli. Measurement method of liquid drop concentration in natural gas pipeline based on microwave resonance principle [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 734-742. |
[3] | SU Qian, XIA Zhifei, LIU Zhenxing. Ultrasound recognition method for flow patterns in oil-gas-water slug flow based on RBF neural network [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 628-636. |
[4] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[5] | QI Chenglu, ZHANG Zhongliang, WANG Mingchao, LI Yaopeng, GONG Xiaohui, SUN Peng, ZHENG Bin. Effects of built-in tube bundle arrangements on solid particle flow characteristics in heat exchangers [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2306-2314. |
[6] | LIU Jia, LIANG Deqing, LI Junhui, LIN Decai, WU Siting, LU Fuqin. A review of flow assurance studies on hydrate slurry in oil-water system [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1739-1759. |
[7] | TIAN Qikai, ZHENG Haiping, ZHANG Shaobin, ZHANG Jing, YU Ziyi. Advances in mixing enhanced microfluidic channels [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1677-1687. |
[8] | YU Yanfang, LI Yu, MENG Huibo, LIU Huanchen. Enhancement of gas-liquid flow mixing and mass transfer in Lightnin static mixer [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6180-6190. |
[9] | QIAO Yuan, QIU Chang, QIAN Jinyuan, GAN Ruibin, XU Chunming, JIN Zhijiang. Analysis of erosion and cavitation wear in the cage-typed control valve [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5111-5120. |
[10] | YIN Shaowu, ZHANG Chao, KANG Peng, HAN Jiawei, WANG Li. Numerical simulation of gas solid reaction process in silicon powder nitriding conveying bed [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2256-2267. |
[11] | ZHU Mingjun, HU Dapeng. Simulation and experimental analysis of the influence of operating parameters on oil-water-sand separation performance of three-phase decanter centrifuge [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5188-5199. |
[12] | LIN Weixiang, SU Gangchuan, CHEN Qiang, WEN Jian, AKRAPHON Janon, WANG Simin. Influencing factors of ultrasound enhanced heat transfer of immersed coil heat exchanger [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 40-51. |
[13] | YU Yanfang, CHEN Yaxin, MENG Huibo, WANG Zongyong, WU Jianhua. Analysis of turbulent heat transfer characteristics of nanofluids in the Lightnin static mixer [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 30-39. |
[14] | WANG Kai, HUANG Hui, NAN Cuihong, WANG Yueshe, LU Jinling. Simulation of corrosion kinetics in stratified oil-water flows [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 40-47. |
[15] | YU Zhongchen, LIU Changchun, DONG Xigui, LIU Shumeng, SUN Bing, LI Ke. Deep bed backwashing process and its application progress in oily water treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2753-2761. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |