Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2753-2761.DOI: 10.16085/j.issn.1000-6613.2020-1215
• Resources and environmental engineering • Previous Articles Next Articles
YU Zhongchen1(), LIU Changchun1, DONG Xigui2, LIU Shumeng2, SUN Bing2, LI Ke1
Received:
2020-06-29
Online:
2021-05-24
Published:
2021-05-06
Contact:
YU Zhongchen
于忠臣1(), 刘长春1, 董喜贵2, 刘书孟2, 孙冰2, 李可1
通讯作者:
于忠臣
作者简介:
于忠臣(1975—),男,博士,副教授,硕士生导师,研究方向为水环境污染治理技术、动态反冲洗技术和难降解有机废水高级氧化技术。E-mail:基金资助:
CLC Number:
YU Zhongchen, LIU Changchun, DONG Xigui, LIU Shumeng, SUN Bing, LI Ke. Deep bed backwashing process and its application progress in oily water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2753-2761.
于忠臣, 刘长春, 董喜贵, 刘书孟, 孙冰, 李可. 深层滤床反冲洗技术及其油田水处理领域应用进展[J]. 化工进展, 2021, 40(5): 2753-2761.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1215
1 | JAMES J S, BERND L, NASSER A. Status of polymer-flooding technology[J]. Journal of Canadian Petroleum Technology, 2015, 54(2): 116-126. |
2 | ABASS A O. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: prospects and challenges[J]. Energy, 2014, 77(12): 963-982. |
3 | JIMNEZ S, MICÓ M M, ARNALDOS M, et al. State of the art of produced water treatment[J]. Chemosphere, 2018, 192(2): 186-208. |
4 | RAUL D, ALTAF H, MARY K, et al. Using advanced water treatment technologies to treat produced water from the petroleum industry[C]// SPE International Production and Operations Conference & Exhibition, 2012. |
5 | FERNANDA C P, NATHALIA M P, JULIANA M, et al. Dissolved air flotation combined to biosurfactants: a clean and efficient alternative to treat industrial oily water[J]. Reviews in Environmental Science & Bio/Technology, 2018, 17(4): 591-602. |
6 | SAAD H A, AHMED S A. Oilfield produced water treatment in internal-loop airlift reactor using electrocoagulation/flotation technique[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 879-885. |
7 | WANG Cunying, WANG Zhixin, WEI Xiangyong, et al. A numerical study and flotation experiments of bicyclone column flotation for treating of produced water from ASP flooding[J]. Journal of Water Process Engineering, 2019, 32(10): 972-979. |
8 | SI Shaoxiong, YAN Zhong, GONG Zhaobo, et al. Pilot study of oilfield wastewater treatment by micro-flocculation filtration process[J]. Water Science and Technology, 2018, 77(1/2): 101-107. |
9 | ZHANG Zhenchao. The floccultion mechanism and treatment of oily wastewater by flocculation[J]. Water Science & Technology, 2017, 76(10): 2630-2637. |
10 | MOTTA A, BORGES C, ESQUERRE K, et al. Oil produced water treatment for oil removal by an integration of coalescer bed and microfiltration membrane processes[J]. Journal of Membrane Science, 2014, 469(7): 371-378. |
11 | ZHANG Zuoyou, DU Xuewei, CARLSON K, et al. Effective treatment of shale oil and gas produced water by membrane distillation coupled with precipitative softening and walnut shell filtration[J]. Desalination, 2019, 454(1): 82-90. |
12 | ZHANG HUI, BUKOSKY S C, RISTENPART W D. Low voltage electrical demulsification of oily wastewater[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8341-8347. |
13 | WEI Bigui, YUE Cheng, LIU Jianlin, et al. Fabrication of superhydrophilic and underwater superoleophobic quartz sand filter for oil/water separation[J]. Separation and Purification Technology, 2019, 229(15): 808-817. |
14 | VEERIAH J, VIGNESWARAN S. Transient stage deposition of submicron particles in deep bed filtration under unfavorable conditions[J]. Water Research, 2000, 34(7): 2119-2131. |
15 | BAI Renbi, CHI Tien. Particle detachment in deep bed filtration[J]. Journal of Colloid and Interface Science, 1997, 186(2): 307-317. |
16 | ZHAO Xiaofei, LIU Lixin, WANG Yuchan, et al. Influences of partially hydrolyzed polyacrylamide (HPAM) residue on the flocculation behavior of oily wastewater produced from polymer flooding[J]. Separation and Purification Technology, 2008, 62(1): 199-204. |
17 | DE DEUS F P, MESQUITA M, RAMIREZ J C S, et al. Hydraulic characterisation of the backwash process in sand filters used in micro irrigation[J]. Biosystems Engineering, 2019, 192(1): 188-198. |
18 | SOYER E, AKGIRAY O. A new simple equation for the prediction of filter expansion during backwashing[J]. Journal of Water Supply: Research and Technology — AQUA, 2009, 58(5): 336-345. |
19 | ASHLEY P, ANDY C L, SHAWN C, et al. Investigation of backwash strategy on headloss development and particle release in drinking water biofiltration[J]. Journal of Water Process Engineering, 2019, 32: 100895. |
20 | YU Zhongchen, WANG Daxin, WANG Song, et al. Determination of theoretical time of axial dynamic backwashing method for deep bed filtration in oilfield[J]. Fresenius Environmental Bulletin, 2018, 27(10): 6876-6883. |
21 | RALANIVEL R. Mechanism of particle detachment during filter backwashing[D]. Atlanta: Georgia Institute Technology, 1993. |
22 | SHYH-JYE HWANG, CHANG DONG-JANG, CHEN CHAN-HWA. Steady state permeate flux for particle cross-flow flltration[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 61(3): 171-178. |
23 | CLEASBY J L, ARBOLEDA J, BURNS D E, et al. Backwashing of granular filters[J]. Journal American Water Works Association, 1977, 69(2): 115-126. |
24 | AMBURGEY J E. Optimization of the extended terminal subfluidization wash (ETSW) filter backwashing procedure[J]. Water Research, 2005, 39(2/3): 314-330. |
25 | IVES K J, FITZPATRICK C S B. Detachment of deposits from sand grains[J]. Colloids & Surfaces, 1989, 39(1): 239-253. |
26 | AMIRTHARAJAH A, CLEASBY J. Predicting expansion of filters during backwash[J]. Journal AWWA, 1972, 64(1): 52-59. |
27 | AMIRTHARAJAH A. Optimum backwashing of filters with air scour: a review[J]. Water Science & Technology, 1993, 27(10): 195-211. |
28 | SIWIEC T. The experimental verification of Richardson-Zakilaw on example of selected beds used in water treatment[J]. Electronic Journal of Polish Agricul Tural Univerites, 2007, 10(2): 1-23. |
29 | CAMP T R, STEIN P C. Velocity gradients and internal work in fluid motion[J]. Journal of the Boston Society of Civil Engineers, 1943(3): 219-237. |
30 | KAWAMURA S. Design and operation of high-rate filters—Part 2[J]. Journal American Water Works Association, 1975, 67(11): 653-662. |
31 | FITZPATRICK C S B. Observations of particle detachment during filter backwashing[J]. Water Science and Technology, 1993, 27(10): 213-221. |
32 | JACKSON D, CARVER B. Todays forecasts: it looks like snow[J]. Precision Cleaning, 1999, 8: 17-29. |
33 | LIU Yihung, MARUYAMA H, MATSUSAKA S. Effect of particle impact on surface cleaning using dry ice jet[J]. Aerosol Science and Technology, 2011, 45(12): 1519-1527. |
34 | TSAI Chuen Jinn, PUI D Y H, LIU B Y H. Elastic flattening and particle adhesion[J]. Aerosol Science and Technology, 1991, 15(4): 239-255. |
35 | FAN Liang-Shih, ZHU Chao. Principles of gas-solid flows[M]. Cambridge: Cambridge University Press, 1998: 947-948. |
36 | LIU Yihung, HIRAMA D, MATSUSAKA S. Particle removal process during application of impinging dry ice jet[J]. Powder Technology, 2012, 217(2): 607-613. |
37 | 李圭白. 深层滤床的高效反冲洗问题[J]. 中国给水排水, 1985, 1(2): 3-8. |
LI Guibai. On the high effect backwashing of granular media deep-bed[J]. China Water & Wastewater, 1985, 1(2): 3-8. | |
38 | 范瑾初. 滤池反冲洗理论和实际反冲洗强度的控制[J]. 水处理技术, 1985, 11(2): 25-29. |
FAN Jinchu. Backwashing theory and controlling on the practical backwashing flow rate in the rapid sand filters[J]. Technology of Water Treatment, 1985, 11(2): 25-29. | |
39 | 于忠臣, 牛源麟, 李转, 等. 含聚浓度对轴向动态反冲洗法过滤和反冲洗效能的影响[J]. 化学通报, 2015, 78(8): 733-737. |
YU Zhongchen, NIU Yuanlin, LI Zhuan, et al. Effect of polymer concentration on filtration and backwashing process by the axial dynamic backwashing method[J]. Chemistry, 2015, 78(8): 733-737. | |
40 | COBOS B Y L, GONZALEZ M S. Influence of air flow rate and backwashing on the hydraulic behaviour of a submerged filter[J]. Water Science and Technology, 2013, 68(9): 2000-2006. |
41 | MOHAMMED R N, ABUALHAIL S, LÜ X. Fluidization of fine particles and its optimal operation condition in multimedia water filter[J]. Desalination and Water Treatment, 2013, 51(22/23/24): 4768-4778. |
42 | ZONG Quanli, LIU Zhenji, LIU Huanfang, et al. Backwashing performance of self-cleaning screen filters in drip irrigation systems[J]. PLOS One, 2019, 14(12): 1-18. |
43 | BROUCKAERT B, AMIRTHARAJAH A, BROUCKAERT C, et al. Predicting the efficiency of deposit removal during filter backwash[J]. Water SA, 2006, 32(5): 633-640. |
44 | SLEZAK L A, SIMS R C. The application and effectiveness of slow sand filtration in the United States[J] Journal American Water Works Association, 1984, 76(12): 38-43. |
45 | MARA D, HORAN N J. Handbook of water and wastewater microbiology[M]. London: Academic Press, 2003: 633-655. |
46 | KALINSKE A A. Advances in water supply technology[J]. Journal AWWA, 1960, 52(2): 199-204. |
47 | BAYLIS J R. Review of filter bed design and methods of washing[J]. Journal AWWA, 1959, 51(11): 1433-1454. |
48 | AMIRTHARAJAH A. Fundamentals and theory of air scour[J]. Journal of Environmental Engineering, 1984, 110(3): 573-590. |
49 | HEWITT S, AMIRTHARAJAH A. Air dynamics through filter media during air scour[J]. Journal of Environmental Engineering, 1984, 110(3): 591-606. |
50 | YANG Jinshui, LIU Weijie, LI Baozhen, et al. Application of a novel backwashing process in upflow biological aerated filter[J]. Journal of Environmental Sciences, 2010, 22(3): 362-366. |
51 | FU Liya, WU Changyong, ZHOU Yuexi, et al. Investigation on evaluation criteria of backwashing effects for a pilot-scale BAF treating petrochemical wastewater[J]. Environmental Technology, 2017, 38(20): 2523-2533. |
52 | PARK N S, YOON S M, KIM S H, et al Effects of bubble size on air-scoured backwashing efficiency in a biofilter[J]. Desalination and Water Treatment, 2015, 57(16): 1-7. |
53 | SCHOLZ M. Wetlands for water pollution control[M]. 2nd ed. Elsevier Science, 2016: 69-75. |
54 | MOTA M H, PATIL P S, SALKAR V. Improving the performance of rapid sand filter using coarser and more uniform media with poly-aluminum chloride as filter aid[J]. International Journal of Civil Engineering and Technology, 2019, 10(2): 988-998. |
55 | 倪士忠, 丁云鹤. 整体浇筑滤板与可调式滤头在气水反冲滤池中的应用[C]//全国给水排水技术信息网年会, 海口, 2005. |
NI Shizhong, DING Yunhe. Application of integrated poured filter plate and adjustable strainer head in air/water backwashing filterC]// Annual Meeting of National Water Supply and Drainage Technology Information Network, Haikou, 2005. | |
56 | HAN S J, FITZPATRICK C S, WETHERILL A. Simulation on combined rapid gravity filtration and backwash models[J]. Water Science and Technology, 2009, 60(5): 1361-1368. |
57 | KIM Seung-Hyun, Hwan-Kyu LIM, JEONG Woo-Chang, et al. Optimum backwash method for granular media filtration of seawater[J]. Desalination and Water Treatment, 2011, 32(1/2/3): 431-436. |
58 | 李景海, 蔡九茂, 翟国亮, 等. 基于砂滤层内水体积分数瞬态模拟的反冲洗速度优选[J]. 农业工程学报, 2018, 34(2): 83-89. |
LI Jinghai, CAI Jiumao, ZHAI Guoliang, et al. Optimization of backwashing speed based on transient simulation of water volume fraction in sand filter layer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 83-89. | |
59 | YIN Ruiyu. Theory and methods of metallurgical process integration[M]. New York: Academic Press, 2016: 115-178. |
60 | MAHVI A. Application of ultrasonic technology for water and wastewater treatment[J]. Iranian Journal of Public Health, 2009, 38(2): 1-17. |
61 | PIRKONEN P, GRONROOS A, HEIKKINEN J. Ultrasound assisted cleaning of ceramic capillary filter[J]. Ultrasonics Sonochemistry, 2010, 17(6): 1060-1065. |
62 | MASON T J. Ultrasonic cleaning: an historical perspective[J]. Ultrasonics Sonochemistry, 2016, 29: 519-523. |
63 | PI GmbH&Co.KG. Industrial ultrasonic cleaning with high-power ultrasound[EB/OL].[2020-06-27]. . |
64 | WANG Jian, GAO Xueli, XU Yuan, et al. Ultrasonic-assisted acid cleaning of nanofiltration membranes fouled by inorganic scales in arsenic-rich brackish water[J]. Desalination, 2016, 377(1): 172-177. |
65 | NGUYEN Dinh Duc, Huu Hao NGO, YOON Yong Soo, et al. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines’ oil filters under practical conditions[J]. Ultrasonics Sonochemistry, 2016, 71: 256-263. |
66 | PICHE A, CAMPBELL A, CLEARY S, et al. Investigation of backwash strategy on headloss development and particle release in drinking water biofiltration[J]. Journal of Water Process Engineering, 2019, 32(12): 1-9. |
67 | 于忠臣. 基于油田组合滤料过滤器复合场反冲洗与过滤机制研究[D]. 大庆: 东北石油大学, 2019. |
YU Zhongchen. Research on coupled field backwashing and filtration mechanism based on dual bed filters for oilfield wastewater[D]. Daqing: Northeast Petroleum University, 2019. | |
68 | 王松, 于忠臣, 申家年, 等. 过滤器的水力动态反冲洗装置及反冲洗方法: CN103055556A[P]. 2013-04-24. |
WANG Song, YU Zhongchen, SHEN Jianian, et al. Hydraulic dynamic backwashing device and filter backwashing method: CN103055556A[P]. 2013-04-24. | |
69 | 董喜贵, 刘书孟, 于忠臣, 等. 轴向动态反冲洗过滤器过滤含聚污水试验研究[J]. 工业水处理, 2015, 35(1): 86-89. |
DONG Xigui, LIU Shumeng, YU Zhongchen, et al. Experimental study on the filtration of wastewater containing polymer by axial dynamic backwashing filter[J]. Industrial Water Treatment, 2015, 35(1): 86-89. |
[1] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[2] | LI Xin, YANG Zao, ZHONG Xinru, HAN Haoxuan, ZHUANG Xuning, BAI Jianfeng, DONG Bin, XU Zuxin. Binding mechanism of Pb2+ onto humic acids from sludge hyper-thermophilic composting [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4957-4966. |
[3] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[4] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[5] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[6] | YANG Han, ZHANG Yibo, LI Qi, ZHANG Jun, TAO Ying, YANG Quanhong. Practical carbon anodes for sodium-ion batteries: progress and challenge [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042. |
[7] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[8] | OUYANG Sufang, ZHOU Daowei, HUANG Wei, JIA Feng. Research progress on novel anti-migration rubber antioxidants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3708-3719. |
[9] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[10] | QI Chenglu, ZHANG Zhongliang, WANG Mingchao, LI Yaopeng, GONG Xiaohui, SUN Peng, ZHENG Bin. Effects of built-in tube bundle arrangements on solid particle flow characteristics in heat exchangers [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2306-2314. |
[11] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[12] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[13] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[14] | WANG Yu, YU Guangwei, JIANG Ruqing, LI Changjiang, LIN Jiajia, XING Zhenjiao. Adsorption of ciprofloxacin hydrochloride by biochar from food waste digestate residues [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2160-2170. |
[15] | WU Heng, LI Yinlong, YAN Gang, XIONG Tong, ZHANG Hao, TAO Kui. Vapor-liquid separation technology in refrigeration/heat pump systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1129-1142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |