Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3600-3610.DOI: 10.16085/j.issn.1000-6613.2022-1640
• Materials science and technology • Previous Articles Next Articles
CHEN Xiangli(), LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang
Received:
2022-09-06
Revised:
2022-10-29
Online:
2023-08-14
Published:
2023-07-15
Contact:
CHEN Xiangli
通讯作者:
陈香李
作者简介:
陈香李(1986—),女,副教授,硕士生导师,研究方向为应用表面与胶体化学、油水分离材料的制备。E-mail:chenxiangli@sust.edu.cn。
基金资助:
CLC Number:
CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610.
陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1640
制备方法 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
模板法 | |||
天然模板法 | 成本较低、效率高 | 模板结构单一且有限 | [ |
人工模板法 | |||
刻蚀法 | 选择性好、效率高 | 产生的废液污染环境 | [ |
沉积法 | |||
液相沉积法 | 操作简单 | 对工艺制备条件要求高 | [ |
气相沉积法 | |||
物理沉积法 | |||
化学沉积法 | |||
喷涂法 | 工艺简单、适用性强 | 不易控制、基底与涂层黏附性小 | [ |
相分离法 | |||
热致相分离法 | 制备周期短、利于规模化生产 | 分离通量低、能耗高 | [ |
非溶剂诱导相分离法 | |||
静电纺丝法 | 可制备微/纳米纤维膜 | 成本高、效率低 | [ |
真空抽滤法 | 操作简单、易于调控 | 对原材料要求高 | [ |
电化学技术 | |||
电化学聚合 | 高效、成本低廉 | 表面的微结构形貌难以控制 | [ |
电化学沉积法 | |||
溶胶-凝胶法 | 低温加工、产品均匀一致 | 材料与基体之间的结合力较弱 | [ |
逐层组装法 | 过程简单、厚度可控 | 涂层稳定性较差、耗时长 | [ |
多孔材料改性法 | 易于改性 | 材料改性具有局限性 | [ |
等离子体处理法 | |||
等离子体刻蚀法 | 操作简单、重复性高 | 成本高、刻蚀速度慢、很难实现量产 | [ |
等离子体聚合法 | |||
有机-无机杂化表面法 | 易于获得所需性能 | 效率低、不适于大规模生产 | [ |
表面自由基聚合和气相聚合法 | 适用范围广 | 操作条件严格 | [ |
制备方法 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
模板法 | |||
天然模板法 | 成本较低、效率高 | 模板结构单一且有限 | [ |
人工模板法 | |||
刻蚀法 | 选择性好、效率高 | 产生的废液污染环境 | [ |
沉积法 | |||
液相沉积法 | 操作简单 | 对工艺制备条件要求高 | [ |
气相沉积法 | |||
物理沉积法 | |||
化学沉积法 | |||
喷涂法 | 工艺简单、适用性强 | 不易控制、基底与涂层黏附性小 | [ |
相分离法 | |||
热致相分离法 | 制备周期短、利于规模化生产 | 分离通量低、能耗高 | [ |
非溶剂诱导相分离法 | |||
静电纺丝法 | 可制备微/纳米纤维膜 | 成本高、效率低 | [ |
真空抽滤法 | 操作简单、易于调控 | 对原材料要求高 | [ |
电化学技术 | |||
电化学聚合 | 高效、成本低廉 | 表面的微结构形貌难以控制 | [ |
电化学沉积法 | |||
溶胶-凝胶法 | 低温加工、产品均匀一致 | 材料与基体之间的结合力较弱 | [ |
逐层组装法 | 过程简单、厚度可控 | 涂层稳定性较差、耗时长 | [ |
多孔材料改性法 | 易于改性 | 材料改性具有局限性 | [ |
等离子体处理法 | |||
等离子体刻蚀法 | 操作简单、重复性高 | 成本高、刻蚀速度慢、很难实现量产 | [ |
等离子体聚合法 | |||
有机-无机杂化表面法 | 易于获得所需性能 | 效率低、不适于大规模生产 | [ |
表面自由基聚合和气相聚合法 | 适用范围广 | 操作条件严格 | [ |
1 | TANIS-KANBUR Melike Begum, Sadiye VELIOĞLU, TANUDJAJA Henry J, et al. Understanding membrane fouling by oil-in-water emulsion via experiments and molecular dynamics simulations[J]. Journal of Membrane Science, 2018, 566: 140-150. |
2 | JIANG Guojun, GE Junyan, JIA Yuxin, et al. Coaxial electrospun nanofibrous aerogels for effective removal of oils and separation of water-in-oil emulsions[J]. Separation and Purification Technology, 2021, 270: 118740. |
3 | ZISMAN W A. Relation of the equilibrium contact angle to liquid and solid constitution[M]//Advances in Chemistry. Washington D C: American Chemical Society, 1964: 1-51. |
4 | VRANCKEN R J, KUSUMAATMAJA H, HERMANS K, et al. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces[EB/OL]. 2009: arXiv: 0911.0016. . |
5 | CHANG Jian, ZHANG Lianbin, WANG Peng. Intelligent environmental nanomaterials[J]. Environmental Science: Nano, 2018, 5(4): 811-836. |
6 | YE Xiaoji, ZHANG Jilong, ZHU Yong, et al. Ultrafast self-healing of polymer toward strength restoration[J]. ACS Applied Materials & Interfaces, 2014, 6(5): 3661-3670. |
7 | WANG Ben, LIANG Weixin, GUO Zhiguang, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature[J]. Chemical Society Reviews, 2015, 44(1): 336-361. |
8 | XU Jianhua, DING Chendi, CHEN Peng, et al. Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies[J]. Applied Physics Reviews, 2020, 7(3): 031304. |
9 | ZHANG Ning, YANG Xianwen, WANG Yalun, et al. A review on oil/water emulsion separation membrane material[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107257. |
10 | SPORI Doris M, DROBEK Tanja, Stefan ZÜRCHER, et al. Cassie-state wetting investigated by means of a hole-to-pillar density gradient[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(12): 9465-9473. |
11 | LI Zhenlong, YU Rui, GUO Baolin. Shape-memory and self-healing polymers based on dynamic covalent bonds and dynamic noncovalent interactions: Synthesis, mechanism, and application[J]. ACS Applied Bio Materials, 2021, 4(8): 5926-5943. |
12 | ZHANG Pengjuan, SHEN Bin, PU Hongting. Robust, dimensional stable, and self-healable anion exchange membranes via quadruple hydrogen bonds[J]. Polymer, 2022, 245: 124698. |
13 | LI Yang, LI Long, SUN Junqi. Bioinspired self-healing superhydrophobic coatings[J]. Angewandte Chemie International Edition, 2010, 49(35): 6129-6133. |
14 | DONG Xiuli, GAO Shouwei, HUANG Jianying, et al. A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil-water separation ability[J]. Journal of Materials Chemistry A, 2019, 7(5): 2122-2128. |
15 | ZHANG Tao, ZHANG Lizhi. A self-healing PVDF-ZnO/MXene membrane with universal fouling resistance for real seawater desalination[J]. Water Research, 2022, 216: 118349. |
16 | ZHONG Qi, SHI Guogui, SUN Qing, et al. Robust PVA-GO-TiO2 composite membrane for efficient separation oil-in-water emulsions with stable high flux[J]. Journal of Membrane Science, 2021, 640: 119836. |
17 | MA Wenjing, LI Yuansheng, GAO Shuting, et al. Self-healing and superwettable nanofibrous membranes with excellent stability toward multifunctional applications in water purification[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23644-23654. |
18 | MA Wenjing, DING Yichun, LI Yuansheng, et al. Durable, self-healing superhydrophobic nanofibrous membrane with self-cleaning ability for highly-efficient oily wastewater purification[J]. Journal of Membrane Science, 2021, 634: 119402. |
19 | YOUNAS Hassan, BAI Hongwei, SHAO Jiahui, et al. Super-hydrophilic and fouling resistant PVDF ultrafiltration membranes based on a facile prefabricated surface[J]. Journal of Membrane Science, 2017, 541: 529-540. |
20 | Ebenezer Kobina SAM, GE Yang, LIU Jun, et al. Robust, self-healing, superhydrophobic fabric for efficient oil/water emulsion separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625: 126860. |
21 | 董哲勤, 王宝娟, 许振良, 等. 油水分离功能膜制备技术研究进展[J]. 化工进展, 2017, 36(1): 1-9. |
DONG Zheqin, WANG Baojuan, XU Zhenliang, et al. Recent progress on fabrication technology of functional membranes for oil/water separation[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 1-9. | |
22 | WENZEL Robert N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
23 | SHCHUKIN Dmitry G. Container-based multifunctional self-healing polymer coatings[J]. Polymer Chemistry, 2013, 4(18): 4871-4877. |
24 | LU Qingchen, LI Nana. Preparation of hydrophilic polyvinylidene fluoride/polyvinyl alcohol ultrafiltration membrane via polymer/non-solvent co-induced phase separation method towards enhance anti-fouling performance[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106431. |
25 | XIAO Liji, DENG Min, ZENG Weiguo, et al. Novel robust superhydrophobic coating with self-cleaning properties in air and oil based on rare earth metal oxide[J]. Industrial & Engineering Chemistry Research, 2017, 56(43): 12354-12361. |
26 | XU Qianfeng, MONDAL Bikash, LYONS Alan M. Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method[J]. ACS Applied Materials & Interfaces, 2011, 3(9): 3508-3514. |
27 | KIM Jae Hun, MIRZAEI Ali, KIM Hyoun Woo, et al. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching[J]. Applied Surface Science, 2018, 439: 598-604. |
28 | TAN Ruixuan, XIE Hongyan, SHE Jueqin, et al. A new approach to fabricate superhydrophobic and antibacterial low density isotropic pyrocarbon by using catalyst free chemical vapor deposition[J]. Carbon, 2019, 145: 359-366. |
29 | LI Jian, WU Runni, JING Zhijiao, et al. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance[J]. Langmuir, 2015, 31(39): 10702-10707. |
30 | XIE Q, XU J, FENG L, et al. Facile creation of a super-amphiphobic coating surface with bionic microstructure[J]. Advanced Materials, 2004, 16(4): 302-305. |
31 | ZHANG Jichao, ZHANG Feng, SONG Jun, et al. Electrospun flexible nanofibrous membranes for oil/water separation[J]. Journal of Materials Chemistry A, 2019, 7(35): 20075-20102. |
32 | YU Li, RUAN Shuangchen, XU Xintong, et al. One-dimensional nanomaterial-assembled macroscopic membranes for water treatment[J]. Nano Today, 2017, 17: 79-95. |
33 | WEI Zhibo, JIANG Deyi, CHEN Jie, et al. Combination of chemical etching and electrophoretic deposition for the fabrication of multi-scale superhydrophobic Al films[J]. Materials Letters, 2017, 196: 115-118. |
34 | ARUN KUMAR K V, JOHN Jini, SOORAJ T R, et al. Surface plasmon response of silver nanoparticles doped silica synthesised via Sol-gel route[J]. Applied Surface Science, 2019, 472: 40-45. |
35 | LI Yang, LIU Feng, SUN Junqi. A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings[J]. Chemical Communications (Cambridge, England), 2009(19): 2730-2732. |
36 | SU Ying, FAN Tingting, CUI Wenying, et al. Advanced electrospun nanofibrous materials for efficient oil/water separation[J]. Advanced Fiber Materials, 2022, 4(5): 938-958. |
37 | QIN Yi, SHEN Hui, HAN Lu, et al. Mechanically robust Janus poly(lactic acid) hybrid fibrous membranes toward highly efficient switchable separation of surfactant-stabilized oil/water emulsions[J]. ACS Applied Materials & Interfaces, 2020, 12(45): 50879-50888. |
38 | WU Mingming, XIANG Bin, MU Peng, et al. Janus nanofibrous membrane with special micro-nanostructure for highly efficient separation of oil-water emulsion[J]. Separation and Purification Technology, 2022, 297: 121532. |
39 | CHEN Jiahui, LIU Zihan, WEN Xiufang, et al. Two-step approach for fabrication of durable superamphiphobic fabrics for self-cleaning, antifouling, and on-demand oil/water separation[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5490-5500. |
40 | FENG Qingying, ZHAN Yingqing, YANG Wei, et al. Layer-by-layer construction of super-hydrophilic and self-healing polyvinylidene fluoride composite membrane for efficient oil/water emulsion separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127462. |
41 | ZHANG Wenbin, SHI Zhun, ZHANG Feng, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Advanced Materials, 2013, 25(14): 2071-2076. |
42 | ZHENG Weiwei, HUANG Jiangying, LI Shuhui, et al. Advanced materials with special wettability toward intelligent oily wastewater remediation[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 67-87. |
43 | ZHANG Lianbin, ZHANG Zhonghai, WANG Peng. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: Toward controllable oil/water separation[J]. NPG Asia Materials, 2012, 4(2): e8. |
44 | ZHAO Dongli, DU Zhukang, LIU Shanshan, et al. UV light curable self-healing superamphiphobic coatings by photopromoted disulfide exchange reaction[J]. ACS Applied Polymer Materials, 2019, 1(11): 2951-2960. |
45 | YI Bo, LIU Peng, HOU Changshun, et al. Dual-cross-linked supramolecular polysiloxanes for mechanically tunable, damage-healable and oil-repellent polymeric coatings[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 47382-47389. |
46 | LIU Hongyu, YANG Lin, DOU Baojie, et al. Zwitterionic hydrogel-coated cotton fabrics with underwater superoleophobic, self-healing and anti-fouling performances for oil-water separation[J]. Separation and Purification Technology, 2021, 279: 119789. |
47 | LI Jian, NIU Hongyao, YU Yingfeng, et al. Supramolecular polydimethylsiloxane elastomer with enhanced mechanical properties and self-healing ability engineered by synergetic dynamic bonds[J]. ACS Applied Polymer Materials, 2021, 3(7): 3373-3382. |
48 | YE Hanchen, CHEN Dongyun, LI Najun, et al. Durable and robust self-healing superhydrophobic Co-PDMS@ZIF-8-coated MWCNT films for extremely efficient emulsion separation[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38313-38320. |
49 | PURETSKIY Nikolay, STOYCHEV Georgi, SYNYTSKA Alla, et al. Surfaces with self-repairable ultrahydrophobicity based on self-organizing freely floating colloidal particles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(8): 3679-3682. |
50 | Tong LYU, CHENG Zhongjun, ZHANG Enshuang, et al. Self-Restoration of super hydrophobicity on shape memory polymer arrays with both crushed microstructure and damaged surface chemistry[J]. Small, 2017, 13(4): 1503402. |
51 | WANG Yingke, LIU Yiping, LI Juan, et al. Fast self-healing superhydrophobic surfaces enabled by biomimetic wax regeneration[J]. Chemical Engineering Journal, 2020, 390: 124311. |
52 | CHEN Kunlin, ZHOU Shuxue, WU Limin. Facile fabrication of self-repairing superhydrophobic coatings[J]. Chemical Communications, 2014, 50(80): 11891-11894. |
53 | PAN Shengyang, CHEN Min, WU Limin. Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 5157-5165. |
54 | SUN Yan, LIU Wenqi, XU Dongyan, et al. Self-healing of super hydrophobic and hierarchical surfaces for gas diffusion layer[J]. International Journal of Hydrogen Energy, 2020, 45(54): 29774-29781. |
[1] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[2] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[7] | WANG Shaofan, ZHOU Ying, HAO Kang’an, HUANG Anrong, ZHANG Ruju, WU Chong, ZUO Xiaoling. Self-healing and blue-light hydrogel with pH responsiveness [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4837-4846. |
[8] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[9] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[10] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[11] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[12] | LIU Zhanjian, FU Yuxin, REN Lina, ZHANG Xiguang, YUAN Zhongtao, YANG Nan, WANG Huaiyuan. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011. |
[13] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
[14] | WU Heping, CAO Ning, XU Yuanyuan, CAO Yunbo, LI Yudong, YANG Qiang, LU Hao. Rapid separation of hydrofluoric acid and alkylated oil [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2845-2853. |
[15] | SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Research progress of cyclone-enhanced separation based on disperse phase rearrangement at the inlet [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2219-2232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |