Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (2): 649-658.DOI: 10.16085/j.issn.1000-6613.2023-1285
• Column: multiphase flow test • Previous Articles Next Articles
JIAN Yu1(), CHEN Baoming1(), GONG Hanyu2
Received:
2023-07-25
Revised:
2023-10-23
Online:
2024-03-07
Published:
2024-02-25
Contact:
CHEN Baoming
通讯作者:
陈宝明
作者简介:
见禹(1998—),男,硕士研究生,研究方向多孔介质相变传热。E-mail:jy_9875@163.com。
基金资助:
CLC Number:
JIAN Yu, CHEN Baoming, GONG Hanyu. Enhanced heat transfer characteristics of phase change heat storage systems based on hierarchically structured skeletons[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 649-658.
见禹, 陈宝明, 宫晗语. 基于分级结构骨架相变储热系统强化传热特性[J]. 化工进展, 2024, 43(2): 649-658.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1285
物性参数 | 值 |
---|---|
固体(液体)比热容/kJ·kg-1·K-1 | 1.78(2.135) |
相变起始(终止)温度/℃ | 35(45) |
熔化潜热/kJ·kg-1 | 113 |
热导率固(液)/W·m-1·K-1 | 0.278(0.117) |
密度固(液)/kg· | 900(780) |
物性参数 | 值 |
---|---|
固体(液体)比热容/kJ·kg-1·K-1 | 1.78(2.135) |
相变起始(终止)温度/℃ | 35(45) |
熔化潜热/kJ·kg-1 | 113 |
热导率固(液)/W·m-1·K-1 | 0.278(0.117) |
密度固(液)/kg· | 900(780) |
物性参数 | 值 |
---|---|
热导率/W·m-1·K-1 | 121 |
密度/kg·m-3 | 2700 |
比热容/J·kg-1·K-1 | 900 |
物性参数 | 值 |
---|---|
热导率/W·m-1·K-1 | 121 |
密度/kg·m-3 | 2700 |
比热容/J·kg-1·K-1 | 900 |
1 | SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
2 | TAHAN LATIBARI Sara, SADRAMELI Seyed Mojtaba. Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: An extensive review[J]. Solar Energy, 2018, 170: 1130-1161. |
3 | DA CUNHA Sandra Raquel Leite, DE AGUIAR José Luís Barroso. Phase change materials and energy efficiency of buildings: A review of knowledge[J]. Journal of Energy Storage, 2020, 27: 101083. |
4 | MOFIJUR M, MAHLIA T, SILITONGA A, et al. Phase change materials (PCM) for solar energy usages and storage: An overview[J]. Energies, 2019, 12(16): 1-20 |
5 | MERLIN Kevin, SOTO Jérôme, DELAUNAY Didier, et al. Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage[J]. Applied Energy, 2016, 183: 491-503. |
6 | SHEN Zuguo, CHEN Shuai, LIU Xun, et al. A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 148: 111301. |
7 | WANG Changhong, LIN Tao, LI Na, et al. Heat transfer enhancement of phase change composite material: Copper foam/paraffin[J]. Renewable Energy, 2016, 96: 960-965. |
8 | 陈亮, 刘道平, 杨亮. 相变储能过程传热强化技术研究进展[J]. 化工进展, 2017, 36(S1): 291-296. |
CHEN Liang, LIU Daoping, YANG Liang. Research progress of heat transfer enhancement technology in phase change energy storage process[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 291-296. | |
9 | TARIQ Syeda Laraib, Hafiz Muhammad ALI, AKRAM Muhammad Ammar, et al. Nanoparticles enhanced phase change materials (NePCMs)-A recent review[J]. Applied Thermal Engineering, 2020, 176: 115305. |
10 | ABDULLAH A S, ESSA F A, BACHA Habib BEN, et al. Improving the trays solar still performance using reflectors and phase change material with nanoparticles[J]. Journal of Energy Storage, 2020, 31: 101744. |
11 | GHALAMBAZ Mohammad, DOOSTANI Ali, CHAMKHA Ali J, et al. Melting of nanoparticles-enhanced phase-change materials in an enclosure: Effect of hybrid nanoparticles[J]. International Journal of Mechanical Sciences, 2017, 134: 85-97. |
12 | Ömer AKBAL, SELIMEFENDIGIL Fatih, ÖZTOP Hakan F. Effects of flexible fins on melting process in a phase change material filled circular cavity[J]. Journal of Energy Storage, 2022, 55: 105533. |
13 | CHEN Zhifeng, LI Xiangsheng, ZHANG Jilong, et al. Simulation and analysis of heat dissipation performance of power battery based on phase change material enhanced heat transfer variable fin structure[J]. Numerical Heat Transfer A: Applications, 2021, 80(11): 535-555. |
14 | ZHANG Shengqi, PU Liang, XU Lingling, et al. Melting performance analysis of phase change materials in different finned thermal energy storage[J]. Applied Thermal Engineering, 2020, 176: 115425. |
15 | 朱孟帅, 王子龙, 孙向昕, 等. 高孔密度下泡沫铜的填充率对石蜡融化传热机理的影响[J]. 化工进展, 2022, 41(6): 3203-3211. |
ZHU Mengshuai, WANG Zilong, SUN Xiangxin, et al. Experimental research on effect of copper metal foam proportion on paraffin wax melting and heat transfer mechanism under high cell density[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3203-3211. | |
16 | ARAMESH M, SHABANI B. Metal foam-phase change material composites for thermal energy storage: A review of performance parameters[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111919. |
17 | SHAKIBI Hamid, AFZAL Sadegh, SHOKRI Afshar, et al. Utilization of a phase change material with metal foam for the performance improvement of the photovoltaic cells[J]. Journal of Energy Storage, 2022, 51: 104466. |
18 | WANG Tingyu, WANG Shuangfeng, LUO R, et al. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage[J]. Applied Energy, 2016, 171: 113-119. |
19 | TRIVEDI G V N, PARAMESHWARAN R. Cryogenic conditioning of microencapsulated phase change material for thermal energy storage[J]. Scientific Reports, 2020, 10: 18353. |
20 | ALVA Guruprasad, LIN Yaxue, LIU Lingkun, et al. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review[J]. Energy and Buildings, 2017, 144: 276-294. |
21 | TAUSEEF-UR-REHMAN, Hafiz Muhammad ALI, JANJUA Muhammad Mansoor, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J]. International Journal of Heat and Mass Transfer, 2019, 135: 649-673. |
22 | ZHAO C Y, LU W, TIAN Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy, 2010, 84(8): 1402-1412. |
23 | TIAN Y, ZHAO C Y. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals[J]. Energy, 2011, 36(9): 5539-5546. |
24 | TAO Y, YOU Y, HE Y. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material[J]. Applied Thermal Engineering, 2016, 93: 476-485. |
25 | ZHU Feng, ZHANG Chuan, GONG Xiaolu. Numerical analysis on the energy storage efficiency of phase change material embedded in finned metal foam with graded porosity [J]. Applied Thermal Engineering, 2017, 123: 256-265. |
26 | YANG Xiaohu, WEI Pan, LIU Gang, et al. Performance evaluation on the gradient design of pore parameters for metal foam and pin fin-metal foam hybrid structure [J]. Applied Thermal Engineering, 2020, 175: 115416. |
27 | GHAHREMANNEZHAD A, XU H J, SALIMPOUR M, et al. Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams [J]. Applied Thermal Engineering, 2020, 179: 115731. |
28 | LI Hongyang, HU Chengzhi, HE Yichuan, et al. Visualized-experimental investigation on the energy storage performance of PCM infiltrated in the metal foam with varying pore densities[J]. Energy, 2021, 237: 121540. |
29 | GUO Zengxu, BAI Qingsong, HOU Jialin, et al. Experimental investigation on the melting behavior of phase change materials in open-cell metal foams in an inclined rectangular enclosure[J]. Energy Procedia, 2018, 152: 215-220. |
30 | YANG Xiaohu, WANG Xinyi, LIU Zhan, et al. Influence of aspect ratios for a tilted cavity on the melting heat transfer of phase change materials embedded in metal foam[J]. International Communications in Heat and Mass Transfer, 2021, 122: 105127. |
31 | XU Yang, REN Qinlong, ZHENG Zhangjing, et al. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media[J]. Applied Energy, 2017, 193: 84-95. |
32 | WANG Gang, WEI Gaosheng, XU Chao, et al. Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals[J]. Applied Thermal Engineering, 2019, 147: 464-472. |
33 | 刘广正. 含梯度多孔骨架相变材料的传热特性研究[D]. 济南: 山东建筑大学, 2021. |
LIU Guangzheng. Study on heat transfer characteristics of phase change materials with gradient porous skeleton[D].Jinan: Shandong Jianzhu University, 2021. | |
34 | KAMKARI Babak, AMLASHI Hamid Jahedi. Numerical simulation and experimental verification of constrained melting of phase change material in inclined rectangular enclosures[J]. International Communications in Heat and Mass Transfer, 2017, 88: 211-219. |
35 | ZHOU Zhijie, HU Zhuohuan, WANG Dan, et al. Visualized-experimental investigation on the melting performance of PCM in 3D printed metal foam [J]. Thermal Science and Engineering Progress, 2022, 31: 101298 |
[1] | GUO Yingchun, LIANG Xiaoyi. Effect of citric acid modification on the spherical activated carbon's ammonia adsorption performance [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1082-1088. |
[2] | ZHANG Shiwei, LI Yuyu, MENG Lei, NING Xiang, SU Mingxu. Online measurement of particle size of high concentration slurry two-phase flows based on ultrasound method [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 593-601. |
[3] | SUN Hongjun, LI Teng, LI Jinxia, DING Hongbing. Disturbance wave height prediction model based on Kelvin-Helmholtz instability and interfacial shear [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 609-618. |
[4] | LI Jing, FANG Qing, ZHOU Wenhao, WU Guoliang, WANG Jiahui, ZHANG Hua, NI Hongwei. Effect of baffle configuration on the multiphase flow behaviors of vanadium shale leaching tank [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 619-627. |
[5] | SU Qian, XIA Zhifei, LIU Zhenxing. Ultrasound recognition method for flow patterns in oil-gas-water slug flow based on RBF neural network [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 628-636. |
[6] | SHI Xuewei, TAN Chao, DONG Feng. Gas-liquid two-phase flow pattern identification and flow parameters measurement based on the ring-shape conductance sensor [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 637-648. |
[7] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[8] | XIE Guangshuo, ZHANG Siliang, HE Song, XIAO Juan, WANG Simin. Global sensitivity analysis for particulate fouling performance based on metamodel of optimal prognosis [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 328-337. |
[9] | SUN Chongzheng, LI Yuxing, XU Jie, HAN Hui, SONG Guangchun, LU Xiao. Offshore adaptability enhancement mechanism of falling film flow outside the FLH2 channel tube during floating hydrogen energy storage and transportation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 338-352. |
[10] | YUAN Liang, CONG Haifeng, LI Xingang. Research progress on gas-liquid flow and mass transfer characteristics in microchannels [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 34-48. |
[11] | FENG Debin, WANG Wen, MA Fanhua. Simulation and analysis for pipeline transportation characteristics of hydrogen-enriched compressed natural gas [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 390-399. |
[12] | SUN Yue, WANG Sijia, WU Mingxia, SONG Xianyu, XU Shouhong. Synthesis, performance regulation and application of pH/temperature responsive polymer PMAA-b-PDMAEMA [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 480-489. |
[13] | DAI Hongjing, MA Xuehu, WANG Sifang. Adsorption technology and materials for the treatment of low and intermediate level radioactive wastewater [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 529-540. |
[14] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[15] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |