Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (2): 637-648.DOI: 10.16085/j.issn.1000-6613.2023-1233
• Column: multiphase flow test • Previous Articles Next Articles
SHI Xuewei(), TAN Chao, DONG Feng
Received:
2023-07-19
Revised:
2023-09-08
Online:
2024-03-07
Published:
2024-02-25
Contact:
SHI Xuewei
通讯作者:
史雪薇
作者简介:
史雪薇(1992—),女,博士,助理研究员,研究方向为多相流检测技术及装置。E-mail:shixuewei@tju.edu.cn。
基金资助:
CLC Number:
SHI Xuewei, TAN Chao, DONG Feng. Gas-liquid two-phase flow pattern identification and flow parameters measurement based on the ring-shape conductance sensor[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 637-648.
史雪薇, 谭超, 董峰. 基于环形电导传感器的气液两相流流型识别与过程参数测量[J]. 化工进展, 2024, 43(2): 637-648.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1233
流型 | 样本总数 | 训练样本数 | 测试样本数 | 识别准确数 | 识别准确率/% |
---|---|---|---|---|---|
分层流 | 18 | 14 | 4 | 4 | 100 |
塞状流 | 36 | 25 | 11 | 9 | 81.8 |
泡状流 | 20 | 13 | 7 | 7 | 100 |
弹状流 | 55 | 36 | 19 | 18 | 94.7 |
环状流 | 19 | 11 | 8 | 8 | 100 |
波状流 | 29 | 20 | 9 | 8 | 88.9 |
总数 | 177 | 119 | 58 | 54 | 93.1 |
流型 | 样本总数 | 训练样本数 | 测试样本数 | 识别准确数 | 识别准确率/% |
---|---|---|---|---|---|
分层流 | 18 | 14 | 4 | 4 | 100 |
塞状流 | 36 | 25 | 11 | 9 | 81.8 |
泡状流 | 20 | 13 | 7 | 7 | 100 |
弹状流 | 55 | 36 | 19 | 18 | 94.7 |
环状流 | 19 | 11 | 8 | 8 | 100 |
波状流 | 29 | 20 | 9 | 8 | 88.9 |
总数 | 177 | 119 | 58 | 54 | 93.1 |
1 | 谭超, 董峰. 多相流过程参数检测技术综述[J]. 自动化学报, 2013, 39(11): 1923-1932. |
TAN Chao, DONG Feng. Parameters measurement for multiphase flow process[J]. Acta Automatica Sinica, 2013, 39(11): 1923-1932. | |
2 | ANGELI P, HEWITT G F. Flow structure in horizontal oil-water flow[J]. International Journal of Multiphase Flow, 2000, 26(7):1117-1140. |
3 | 陆家亮, 赵素平, 韩永新, 等. 中国天然气跨越式发展与大气田开发关键问题探讨[J]. 天然气工业, 2013, 33(5):13-18. |
LU Jialiang, ZHAO Suping, HAN Yongxin, et al. Key issues in the great-leap-forward development of natural gas industry and the exploitation of giant gas fields in China[J]. Natural Gas Industry, 2013, 33(5): 13-18. | |
4 | 钱益斌, 杨利民. 管道内油水两相流动研究进展[J]. 化工进展, 2009, 28(4): 566-573. |
QIAN Yibin, YANG Limin. Research advances in oil-water two-phase flow[J]. Chemical Industry and Engineering Progress, 2009, 28(4): 566-573. | |
5 | SPEDDING P L, NGUYEN V T. Regime maps for air water two phase flow[J]. Chemical Engineering Science, 1980, 35(4): 779-793. |
6 | BARNEA D, SHOHAM O, TAITEL Y, et al. Gas-liquid flow in inclined tubes: Flow pattern transitions for upward flow[J]. Chemical Engineering Science, 1985, 40(1): 131-136. |
7 | GAO Z K, JIN N D. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks[J]. Physical Review E, 2009, 79(6): 066303. |
8 | 翁润滢, 孙斌, 赵玉晓, 等. 基于自适应最优核和卷积神经网络的气液两相流流型识别方法[J]. 化工学报, 2018, 69(12): 5065-5072. |
WENG Runying, SUN Bin, ZHAO Yuxiao, et al. Flow pattern recognition method of gas-liquid two-phase flow based on adaptive optimal kernel and convolution neural network[J]. CIESC Journal, 2018, 69(12): 5065-5072. | |
9 | TAN C, LI P F, DAI W, et al. Characterization of oil-water two-phase pipe flow with a combined conductivity/capacitance sensor and wavelet analysis[J]. Chemical Engineering Science, 2015, 134: 153-168. |
10 | SHI X W, TAN C, DONG F, et al. Oil-gas-water three-phase flow characterization and velocity measurement based on time-frequency decomposition[J]. International Journal of Multiphase Flow, 2019, 111: 219-231. |
11 | XUE Z H, QU W. Experimental and theoretical research on a ammonia pulsating heat pipe: New full visualization of flow pattern and operating mechanism study[J]. International Journal of Heat and Mass Transfer, 2017, 106: 149-166. |
12 | JIN N D, XIN Z, WANG J, et al. Design and geometry optimization of a conductivity probe with a vertical multiple electrode array for measuring volume fraction and axial velocity of two-phase flow[J]. Measurement Science and Technology, 2008, 19(4): 045403. |
13 | 田海军, 周云龙, 赵晓明. 气固两相流固相浓度与流速的测量及可视化[J]. 化工进展, 2017, 36(12): 4350-4355. |
TIAN Haijun, ZHOU Yunlong, ZHAO Xiaoming. Measurement and visualization of concentration and velocity of solid phase in the gas-solid two-phase flow[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4350-4355. | |
14 | SHI X W, TAN C, DONG X X, et al. Structural velocity measurement of gas-liquid slug flow based on EMD of continuous wave ultrasonic Doppler[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67 (11): 2662-2675. |
15 | SALGADO C M, PEREIRA C M N A, SCHIRRU R, et al. Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks[J]. Progress in Nuclear Energy, 2010, 52(6): 555-562. |
16 | TSOCHATZIDIS N A, KARAPANTSIOS T D, KOSTOGLOU M V, et al. A conductance probe for measuring liquid fraction in pipes and packed beds[J]. International Journal of Multiphase Flow, 1992, 18(5): 653-667. |
17 | GAO Z, YANG Y, ZHAI L, et al. A four-sector conductance method for measuring and characterizing low-velocity oil-water two-phase flows[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(7): 1690-1697 |
18 | FOSSA M. Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows[J]. Flow Measurement and Instrumentation, 1998, 9(2): 103-109. |
19 | MENG Z Z, HUANG Z Y, WANG B L, et al. Flowrate measurement of air-water two-phase flow using an electrical resistance tomography sensor and a Venturi meter[J]. Flow Measurement and Instrumentation, 2010, 21(3): 268-276. |
20 | LUCAS G P, CORY J C, WATERFALL R C. A six-electrode local probe for measuring solids velocity and volume fraction profiles in solids-water flows[J]. Measurement Science and Technology, 2000, 11(10): 1498-1509. |
21 | DEVIA F, FOSSA M. Design and optimisation of impedance probes for void fraction measurements[J]. Flow Measurement and Instrumentation, 2003, 14(4/5): 139-149. |
22 | WU H, TAN C, DONG X X, et al. Design of a conductance and capacitance combination sensor for water holdup measurement in oil-water two-phase flow[J]. Flow Measurement and Instrumentation, 2015, 46: 218-229. |
23 | FU G Z, TAN C, WU H, et al. Adaptive kalman estimation of phase holdup of water-continuous oil-water two-phase flow[J]. IEEE Access, 2017, 5: 3569-3579. |
24 | TAN C, YUAN Y, DONG X X, et al. Oil-water two-phase flow measurement with combined ultrasonic transducer and electrical sensors[J]. Measurement Science and Technology, 2016, 27(12): 125307. |
25 | LIU W L, TAN C, DONG X X, et al. Dispersed oil-water two-phase flow measurement based on pulse-wave ultrasonic Doppler coupled with electrical sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(9): 2129-2142. |
26 | SHI X W, TAN C, WU H, et al. An electrical and ultrasonic Doppler system for industrial multiphase flow measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7500313. |
27 | SHI X W, TAN C, DONG F, et al. Flow rate measurement of oil-gas-water wavy flow through a combined electrical and ultrasonic sensor[J]. Chemical Engineering Journal, 2022, 427: 131982. |
28 | 傅春, 谭超, 董峰. 基于多频带谱熵的水平气液两相流结构复杂性分析[J]. 仪器仪表学报, 2015, 36(5): 1138-1146. |
FU Chun, TAN Chao, DONG Feng. Structural complexity analysis based on the multiband spectral entropy in horizontal gas-liquid two-phase flow[J]. Chinese Journal of Scientific Instrument, 2015, 36(5): 1138-1146. | |
29 | ZHAO J, DONG F, TAN C. Fast flow regime recognition method of gas/water two-phase flow based on extreme learning machine[C]// Proceedings of 2013 IEEE International Instrumentation and Measurement Technology Conference. Minneapolis, 2013. |
30 | DONG F, ZHANG S, SHI X W, et al. Flow regimes identification-based multidomain features for gas-liquid two-phase flow in horizontal pipe[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7502911. |
31 | SUN B X, TAN C, SHI X W, et al. Flow pattern identification of gas-liquid two-phase flow using dual modality sensor[C]// Proceedings of the 40th Chinese Control Conference. Shanghai, 2021. |
32 | SHI Y Y, DONG F, TAN C. Conductance probe for the measurement of liquid volume fraction and axial velocity in gas-liquid two phase flow[C]. Proceedings of the 9th International Conference on Electronic Measurement & Instruments, ICEMI'09. Beijing, 2009. |
33 | SHI X W, TAN C, DONG F, et al. Conductance sensors for multiphase flow measurement: A review[J]. IEEE Sensors Journal, 2021, 21(11): 12913-12925. |
34 | BECK M S. Correlation in instruments cross correlation flowmeters[J]. Journal of Physics E: Scientific Instruments, 1981, 14(1): 7-19. |
35 | MANDHANE J M, GREGORY G A, AZIZ K. A flow pattern map for gas-liquid flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1974, 1(4): 537-553. |
36 | 张立峰, 王化祥. 基于SVM及电容层析成像的两相流流型识别[J]. 仪器仪表学报, 2009, 30(4): 812-816. |
ZHANG Lifeng, WANG Huaxiang. Identification of two-phase flow regime based on support vector machine and electrical capacitance tomography technique[J]. Chinese Journal of Scientific Instrument, 2009, 30(4): 812-816. |
[1] | HOU Likai, FAN Xu, BAO Fubing. Calibration technique of micro-liquid flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 579-585. |
[2] | ZHOU Wu, GONG Wenchao, XU Rixin. Online measurement techniques for multi-parameters of particles based on defocus imaging [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 586-592. |
[3] | ZHANG Shiwei, LI Yuyu, MENG Lei, NING Xiang, SU Mingxu. Online measurement of particle size of high concentration slurry two-phase flows based on ultrasound method [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 593-601. |
[4] | SUN Hongjun, LI Teng, LI Jinxia, DING Hongbing. Disturbance wave height prediction model based on Kelvin-Helmholtz instability and interfacial shear [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 609-618. |
[5] | YUAN Liang, CONG Haifeng, LI Xingang. Research progress on gas-liquid flow and mass transfer characteristics in microchannels [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 34-48. |
[6] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[7] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[8] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[9] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[10] | ZHAO Jian, ZHUO Zewen, DONG Hang, GAO Wenjian. A new method for observation of microstructure of waxy crude oil and its emulsion system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4372-4384. |
[11] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[12] | LU Shijian, LIU Miaomiao, YANG Fei, ZHANG Junjie, CHEN Siming, LIU Ling, KANG Guojun, LI Qingfang. Gas-liquid two-phase flow and mass transfer characteristics in an improved CO2 wet-wall column [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3457-3467. |
[13] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
[14] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
[15] | PANG Liping, YUAN Hu, QIU Wensheng, DUAN Liqiang, LI Wenxue. Hydrodynamic characteristics during peaking operation in utility boiler [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1708-1718. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |