Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 109-120.DOI: 10.16085/j.issn.1000-6613.2024-0016
• Chemical processes and equipment • Previous Articles Next Articles
SU Xuanhe1(), MENG Shida2, KE Jiekun1, LU Wei1(
)
Received:
2024-01-04
Revised:
2024-03-28
Online:
2025-02-13
Published:
2025-01-15
Contact:
LU Wei
通讯作者:
卢苇
作者简介:
苏宣合(1996—),男,硕士研究生,研究方向为气体分离技术。E-mail:1254998410@qq.com。
基金资助:
CLC Number:
SU Xuanhe, MENG Shida, KE Jiekun, LU Wei. Analyses of performance and energy consumption for a multistage gas separation system based on molecular exchange flow[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 109-120.
苏宣合, 蒙仕达, 柯杰坤, 卢苇. 基于分子交换流的多级气体分离系统性能与能耗分析[J]. 化工进展, 2025, 44(1): 109-120.
α-β | Cα,in,1 | ΔT | Kn | γ | Pin | Vin,1 | Qin,1 | l/d | D/d | L/d |
---|---|---|---|---|---|---|---|---|---|---|
Ne-Ar | 35% | 0~60K | 0.1~+∞ | 0.1~0.5 | 101.325kPa | 0.5m/s | 0.0487mol/s | 100 | 2×104 | 1×104 |
α-β | Cα,in,1 | ΔT | Kn | γ | Pin | Vin,1 | Qin,1 | l/d | D/d | L/d |
---|---|---|---|---|---|---|---|---|---|---|
Ne-Ar | 35% | 0~60K | 0.1~+∞ | 0.1~0.5 | 101.325kPa | 0.5m/s | 0.0487mol/s | 100 | 2×104 | 1×104 |
分离方法 | 混合气体(分离目标组分) | 回收率/% | 纯度/% | 动力源 | 单位能耗/GJ∙(t CO2)-1 |
---|---|---|---|---|---|
膜分离法[ | CO2/N2(CO2) | >90.0 | >90.0 | 电驱动机械(压缩机、真空泵) | 0.9~5.2 |
化学吸收法[ | CO2/N2(CO2) | >90.0 | >95.0 | 电加热(再生温度为348.2~421.2K) | 2.1~5.1 |
变压吸附法[ | CO2/N2(CO2) | >90.0 | >90.0 | 电驱动机械(压缩机、真空泵) | 0.5~2.7 |
分离方法 | 混合气体(分离目标组分) | 回收率/% | 纯度/% | 动力源 | 单位能耗/GJ∙(t CO2)-1 |
---|---|---|---|---|---|
膜分离法[ | CO2/N2(CO2) | >90.0 | >90.0 | 电驱动机械(压缩机、真空泵) | 0.9~5.2 |
化学吸收法[ | CO2/N2(CO2) | >90.0 | >95.0 | 电加热(再生温度为348.2~421.2K) | 2.1~5.1 |
变压吸附法[ | CO2/N2(CO2) | >90.0 | >90.0 | 电驱动机械(压缩机、真空泵) | 0.5~2.7 |
1 | 赵辉. 气体分离膜技术及其在石油化工领域的应用[J]. 石油化工, 2023, 52(3): 412-417. |
ZHAO Hui. Gas separation membrane technology and its application in petrochemical industry[J]. Petrochemical Technology, 2023, 52(3): 412-417. | |
2 | NAKAYE Shoeji, SUGIMOTO Hiroshi. Demonstration of a gas separator composed of Knudsen pumps[J]. Vacuum, 2016, 125: 154-164. |
3 | YAKUNCHIKOV Artem, KOSYANCHUK Vasily. Numerical investigation of gas separation in the system of filaments with different temperatures[J]. International Journal of Heat and Mass Transfer, 2019, 138: 144-151. |
4 | KOSYANCHUK Vasily, KOVALEV Valery, YAKUNCHIKOV Artem. Multiscale modeling of a gas separation device based on effect of thermal transpiration in the membrane[J]. Separation and Purification Technology, 2017, 180: 58-68. |
5 | SUGIMOTO H, SHINOTOU A. Gas separator with the thermal transpiration in a rarefied gas[C]//AIP Conference Proceedings. Pacific Grove, California, USA: AIP, 2011: 784-789. |
6 | SUGIMOTO Hiroshi, HIBINO Masaya. Numerical analysis on gas separator with thermal transpiration in micro channels[C]//AIP Conference Proceedings. Zaragoza, Spain: AIP, 2012: 794-801. |
7 | NAKAYE Shoeji, SUGIMOTO Hiroshi, GUPTA Naveen K, et al. Thermally enhanced membrane gas separation[J]. European Journal of Mechanics - B/Fluids, 2015, 49: 36-49. |
8 | MENG Shida, LU Wei, ZENG Cheng, et al. Construction and analyses of molecular exchange flow for gas mixtures in microchannels[J]. Chemical Papers, 2022, 76(5): 3185-3199. |
9 | 贺高红, 姜晓滨. 分离过程耦合强化[M]. 北京: 化学工业出版社, 2020. |
HE Gaohong, JIANG Xiaobin. Coupling and intensification of separation processes[M]. Beijing: Chemical Industry Press, 2020. | |
10 | 许知洲, 卢苇, 张文杰, 等. 基于热流逸效应的串联式气体分离系统设计[J]. 化工进展, 2020, 39(6): 2336-2344. |
XU Zhizhou, LU Wei, ZHANG Wenjie, et al. A design of cascade type gas separation system based on thermal transpiration effect[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2336-2344. | |
11 | 曾成, 卢苇, 蒙仕达, 等. 基于热流逸效应的燃煤电厂烟气二氧化碳分离系统[J]. 化工进展, 2022, 41(10): 5214-5220. |
ZENG Cheng, LU Wei, MENG Shida, et al. Thermal-transpiration-effect-based carbon dioxide separation system for flue gas from coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5214-5220. | |
12 | SHAO Junda, YE Jianjun, ZHANG Yuan, et al. Effect of the microchannel obstacles on the pressure performance and flow behaviors of the hydrogen Knudsen compressor[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22691-22703. |
13 | 李保军, 贺高红, 肖武, 等. 炼厂气回收过程中分离技术的能效分析[J]. 化工进展, 2016, 35(10): 3072-3077. |
LI Baojun, HE Gaohong, XIAO Wu, et al. Analysis of energy efficiency of separation technology during a refinery gas recycling process[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3072-3077. | |
14 | 刘家祺. 传质分离过程[M]. 2版. 北京: 高等教育出版社, 2014. |
LIU Jiaqi. Mass transfer separation process[M]. 2nd ed. Beijing: Higher Education Press, 2014. | |
15 | ROSTAMI A A, MUJUMDAR A S, SANIEI N. Flow and heat transfer for gas flowing in microchannels: A review[J]. Heat and Mass Transfer, 2002, 38(4): 359-367. |
16 | KOSUGE Shingo, TAKATA Shigeru. Database for flows of binary gas mixtures through a plane microchannel[J]. European Journal of Mechanics-B/Fluids, 2008, 27(4): 444-465. |
17 | AHMAD Faizan, LAU K K, SHARIFF A M, et al. Process simulation and optimal design of membrane separation system for CO2 capture from natural gas[J]. Computers & Chemical Engineering, 2012, 36: 119-128. |
18 | 覃日帅, 蒙仕达, 王博韬, 等. 多级热流逸式真空泵流量与压力特性分析[J]. 真空科学与技术学报, 2022, 42(11): 815-821. |
QIN Rishuai, MENG Shida, WANG Botao, et al. Analysis of flow rate and pressure characteristics for multistage thermal transpiration based vacuum pump[J]. Chinese Journal of Vacuum Science and Technology, 2022, 42(11): 815-821. | |
19 | YE Jianjun, YANG Jian, ZHENG Jinyang, et al. Rarefaction and temperature gradient effect on the performance of the Knudsen pump[J]. Chinese Journal of Mechanical Engineering, 2012, 25(4): 745-752. |
20 | MATSUMOTO Michiaki, NAKAYE Shoeji, SUGIMOTO Hiroshi. Gas separation by the molecular exchange flow through micropores of the membrane[C]//AIP Conference Proceedings. Victoria, BC, Canada: AIP Publishing, 2016: 080011-1-080011-8. |
21 | 蒙仕达. 分子交换气体分离器设计及性能分析[D]. 南宁: 广西大学, 2022. |
MENG Shida. Design and performance analysis of molecular exchange gas separator[D]. Nanning: Guangxi University, 2022. | |
22 | HUSSAIN Arshad, May-Britt HÄGG. A feasibility study of CO2 capture from flue gas by a facilitated transport membrane[J]. Journal of Membrane Science, 2010, 359(1/2): 140-148. |
23 | BELAISSAOUI Bouchra, WILLSON David, FAVRE Eric. Membrane gas separations and post-combustion carbon dioxide capture: Parametric sensitivity and process integration strategies[J]. Chemical Engineering Journal, 2012, 211: 122-132. |
24 | FAVRE Eric. Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption?[J]. Journal of Membrane Science, 2007, 294(1/2): 50-59. |
25 | 徐燕洁. 用于烟气CO2捕集的双胺类少水吸收剂性能研究[D]. 杭州: 浙江大学, 2021. |
XU Yanjie. Evaluation on diamine based water lean solvents for post-combustion CO2 capture[D]. Hangzhou: Zhejiang University, 2021. | |
26 | 张嘉伟, 顾文波, 张富龙. 基于化学吸收法的二氧化碳捕集技术研究进展[J]. 低碳化学与化工, 2023, 48(4): 96-106. |
ZHANG Jiawei, GU Wenbo, ZHANG Fulong. Research progress of carbon dioxide capture technology based on chemical absorption method[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(4): 96-106. | |
27 | MOTA-MARTINEZ Maria T, BRANDL Patrick, HALLETT Jason P, et al. Challenges and opportunities for the utilisation of ionic liquids as solvents for CO2 capture[J]. Molecular Systems Design & Engineering, 2018, 3(3): 560-571. |
28 | 方梦祥, 王涛, 张翼, 等. 烟气二氧化碳化学吸收技术[M]. 北京: 化学工业出版社, 2023. |
FANG Mengxiang, WANG Tao, ZHANG Yi, et al. Flue gas CO2 chemical absorption techology[M]. Beijing: Chemical Industry Press, 2023. | |
29 | AGARWAL Anshul, BIEGLER Lorenz T, ZITNEY Stephen E. A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture[J]. AIChE journal, 2010, 56(7): 1813-1828. |
30 | RIBOLDI Luca, BOLLAND Olav. Overview on pressure swing adsorption (PSA) as CO2 capture technology: State-of-the-art, limits and potentials[J]. Energy Procedia, 2017, 114: 2390-2400. |
31 | YAN Haiyu, FU Qiang, ZHOU Yan, et al. CO2 capture from dry flue gas by pressure vacuum swing adsorption: A systematic simulation and optimization[J]. International Journal of Greenhouse Gas Control, 2016, 51: 1-10. |
[1] | JIAO Wenlei, LIU Zhen, CHEN Junxian, ZHANG Tianyu, JI Zhongli. Structure and performance influencing factors of vane separation components: The reviews [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4187-4202. |
[2] | WANG Tao, GAO Xiang, GAO Jifeng, DENG Haiquan, YU Xianyong, ZHOU Zhenhua, TANG Ling, LYU Hang. Application of modified Cu-BTC-based mixed matrix membrane in CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3240-3246. |
[3] | FAN Wenxuan, XU Shuangping, JIA Hongge, ZHANG Mingyu, QU Yanqing. Research progress on polymeric membranes containing fluorenyl, imide and naphthyl groups for gas separation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1897-1911. |
[4] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[5] | WU Heng, LI Yinlong, YAN Gang, XIONG Tong, ZHANG Hao, TAO Kui. Vapor-liquid separation technology in refrigeration/heat pump systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1129-1142. |
[6] | LI Dongyan, ZHOU Jian, JIANG Qian, MIAO Kai, NI Shiying, ZOU Dong. Progress in preparations and applications of silicon carbide ceramic membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6399-6408. |
[7] | CAI Mingwei, WANG Zhi, LU Xiaochuang, ZHUANG Junwei, WU Jiahao, ZHANG Shiyang, MIN Yonggang. Polyimide membranes for hydrogen separation: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5232-5248. |
[8] | SHEN Tianxu, SHEN Laihong. Investigation of multi-fuel chemical looping combustion in a 3kW interconnected fluidized bed reactors [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 138-147. |
[9] | JIANG Hua, ZHANG Zihui, GONG Wuqi, CHANG Yueyong. Design and performance analysis of mechanical vapor recompression salt fractionation evaporation crystallization system [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3947-3956. |
[10] | GAO Yifei, YI Qun, QI Kai, GAO Lili, LI Xuelian. Research status and application in H2/CH4 separation of MOFs-based membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6395-6407. |
[11] | WANG Jianxun. Comprehensive analysis of cascade heating technology based on waste heat of thermal power units [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 149-155. |
[12] | Qian XUE, Xiaolin WANG, Zunzhao LI, Mingrui LIU, Wei ZHAO. Research progresses in hydrate based technologies and processes [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 722-735. |
[13] | LIU Guanglin, XU Jinliang, MIAO Zheng. Exergy analysis of two stage organic Rankine cycle generation power system with co-condenser [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6656-6662. |
[14] | CAO Xuewen, YANG Jian, BIAN Jiang, LIU Yang, GUO Dan, LI Qigui. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669. |
[15] | GUO Haiyan, PENG Donglai, FENG Xiaoquan, JIN Yehao, TIAN Zhihong, WANG Jing, ZHANG Yatao. Progress in the membranes of polymers of intrinsic micro-porosity PIM-1 for gas separation [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5577-5589. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 9
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |