Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4187-4202.DOI: 10.16085/j.issn.1000-6613.2023-1133
• Chemical processes and equipment • Previous Articles
JIAO Wenlei(), LIU Zhen(), CHEN Junxian, ZHANG Tianyu, JI Zhongli
Received:
2023-07-07
Revised:
2023-09-20
Online:
2024-09-02
Published:
2024-08-15
Contact:
LIU Zhen
通讯作者:
刘震
作者简介:
焦文磊(1997—),男,硕士研究生,研究方向为多相流分离。E-mail:15264699594@163.com。
基金资助:
CLC Number:
JIAO Wenlei, LIU Zhen, CHEN Junxian, ZHANG Tianyu, JI Zhongli. Structure and performance influencing factors of vane separation components: The reviews[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4187-4202.
焦文磊, 刘震, 陈俊先, 张天钰, 姬忠礼. 叶片式分离元件结构及性能影响因素研究进展[J]. 化工进展, 2024, 43(8): 4187-4202.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1133
相关研究 | 液滴参数 | 撞击参数 | 壁面类型 | 研究参数 |
---|---|---|---|---|
Chen等[ | 乙醇;液滴直径1.95~2.05mm | 接触角为15°~45° | 不锈钢表面;液膜厚度为75~109µm | 倾斜角度的增加有利于抑制飞溅;当倾角相同时,We对液滴扩散因子影响不大 |
Ru等[ | 平均粒径224~600µm | 入射速度1m/s | 不锈钢表面 | 液滴最大扩散因子半经验公式: |
Tang等[ | 水、癸烷、乙醇和十四烷;液滴直径1.9mm | 雷诺数为858~4290 | 不锈钢表面;不同粗糙度(Ra=0.025~6.3µm) | 最大归一化扩展直径: |
Sikalo等[ | 水、异丙醇(C3H8O)、甘油(85%溶液);液滴直径1.8~3.3mm | 接触角为0°~105° 雷诺数为27~8880 | 光滑玻璃、粗糙玻璃、光滑石蜡;干表面/湿表面、液膜厚度为40~100µm | 在较低角度和光滑或湿润表面易发生反弹;低黏性液滴会反弹或沉积在光滑或湿润表面;高黏度液滴也可能分解出小液滴,具体取决于撞击角度 |
樊玉光等[ | 水、甘油(70%);液滴直径50~100µm | 接触角为36°~90° | 液膜厚度为2.5mm | 入射角度30°~90°,飞溅的临界We增大 |
相关研究 | 液滴参数 | 撞击参数 | 壁面类型 | 研究参数 |
---|---|---|---|---|
Chen等[ | 乙醇;液滴直径1.95~2.05mm | 接触角为15°~45° | 不锈钢表面;液膜厚度为75~109µm | 倾斜角度的增加有利于抑制飞溅;当倾角相同时,We对液滴扩散因子影响不大 |
Ru等[ | 平均粒径224~600µm | 入射速度1m/s | 不锈钢表面 | 液滴最大扩散因子半经验公式: |
Tang等[ | 水、癸烷、乙醇和十四烷;液滴直径1.9mm | 雷诺数为858~4290 | 不锈钢表面;不同粗糙度(Ra=0.025~6.3µm) | 最大归一化扩展直径: |
Sikalo等[ | 水、异丙醇(C3H8O)、甘油(85%溶液);液滴直径1.8~3.3mm | 接触角为0°~105° 雷诺数为27~8880 | 光滑玻璃、粗糙玻璃、光滑石蜡;干表面/湿表面、液膜厚度为40~100µm | 在较低角度和光滑或湿润表面易发生反弹;低黏性液滴会反弹或沉积在光滑或湿润表面;高黏度液滴也可能分解出小液滴,具体取决于撞击角度 |
樊玉光等[ | 水、甘油(70%);液滴直径50~100µm | 接触角为36°~90° | 液膜厚度为2.5mm | 入射角度30°~90°,飞溅的临界We增大 |
相关研究 | 液膜 材料 | 液膜破裂及二次液滴描述 | 适用范围 | |
---|---|---|---|---|
Samenfink等[ | 蒸馏水 | 沉积质量分数: | 二次液滴角度: 直径分布: | 1.0<sd<5.0 0.3<h* <3.0 |
Mao等[ | 含有 荧光剂的水 | 厚度与气流速度关系: | 液膜厚度半经验公式: | 基于三个固定测量位置(46mm、60mm、80mm) |
Wang等[ | 含有 荧光剂的水 | 水膜击穿的量纲为1临界条件: | 液膜雷诺数与气流韦伯数: | 水膜厚度0.574~1.64mm以上 |
Wang等[ | 水 | 水膜破裂临界气流速度: 水膜厚度半经验公式: | Re<4055 忽略重力 | |
Wang等[ | 水 | 临界气流速度: | 层流 | |
Wang等[ | 含有 荧光剂的水 | 液膜破裂相对高度: | 二次液滴粒径: | Re<2788 中小雷诺数区域 |
Wang等[ | 含有 荧光剂的水 | 条形液膜夹角经验公式: | Re=1997~4055 | |
Zeng等[ | 水 | 液膜临界破裂速度: | Re=8640~25900 |
相关研究 | 液膜 材料 | 液膜破裂及二次液滴描述 | 适用范围 | |
---|---|---|---|---|
Samenfink等[ | 蒸馏水 | 沉积质量分数: | 二次液滴角度: 直径分布: | 1.0<sd<5.0 0.3<h* <3.0 |
Mao等[ | 含有 荧光剂的水 | 厚度与气流速度关系: | 液膜厚度半经验公式: | 基于三个固定测量位置(46mm、60mm、80mm) |
Wang等[ | 含有 荧光剂的水 | 水膜击穿的量纲为1临界条件: | 液膜雷诺数与气流韦伯数: | 水膜厚度0.574~1.64mm以上 |
Wang等[ | 水 | 水膜破裂临界气流速度: 水膜厚度半经验公式: | Re<4055 忽略重力 | |
Wang等[ | 水 | 临界气流速度: | 层流 | |
Wang等[ | 含有 荧光剂的水 | 液膜破裂相对高度: | 二次液滴粒径: | Re<2788 中小雷诺数区域 |
Wang等[ | 含有 荧光剂的水 | 条形液膜夹角经验公式: | Re=1997~4055 | |
Zeng等[ | 水 | 液膜临界破裂速度: | Re=8640~25900 |
基础结构 | 增强结构的主要功能 | 性能表现 | 参考文献 | ||
---|---|---|---|---|---|
增强捕集 | 降低压损 | 增强疏水 | |||
折线形 | — | — | — | 压降较低 | [ |
— | 开孔/槽 | 双层叶片 | 对粒径10μm液滴具有较高的捕集效率 | [ | |
凹槽 | — | — | 可以提高粒径小于20μm液滴的去除效率,压降较高 | [ | |
单疏水钩 | — | — | 对于粒径8μm以上的液滴去除效率可以达到90%以上,压降在37~415Pa | [ | |
开孔/槽 | 疏水钩 | 降低压损、提高捕集效率。气速5.5m/s效率最高,可达到90%以上 | [ | ||
双疏水钩 | — | — | 对于粒径8μm液滴可以达到90%的分离效率 | [ | |
开孔/槽 | 疏水钩 | 保证捕集面积的同时减少压损,保证排液,减少二次夹带 | |||
多孔材料 | — | — | 可以提高临界气速度(4~5m/s),减少二次夹带 | [ | |
疏水钩 | — | 表面改性 | 气速超过5m/s后壁面液膜厚度减小,分离效率下降程度减小 | [ | |
流线形 | — | — | — | 粒径25μm液滴的分离效率80%以上,压降10~30Pa(2.5~6m/s) | [ |
单疏水钩 | — | 疏水钩 | 对粒径10μm液滴分离效率为65%,粒径20μm液滴分离效率可以达到90%以上 | [ | |
双疏水钩 | — | 疏水钩 | 压降10~150Pa(1~6m/s),临界气速度较无钩型提高28%(3~4m/s与4~5m/s) | [ | |
— | — | 降膜流动 | 接触角越小,浸润面积越大 | [ | |
梯形 | — | — | — | 压降10~90Pa(2~7m/s),气速为2m/s时,粒径26μm的液滴100%收集 | [ |
双疏水钩 | — | 疏水钩 | 减少二次夹带,增强排液,增大气体容量 | ||
Ω形 | — | — | — | 20~320Pa(2~8m/s),叶片间距18.2mm时,平均效率在90%以上 | [ |
基础结构 | 增强结构的主要功能 | 性能表现 | 参考文献 | ||
---|---|---|---|---|---|
增强捕集 | 降低压损 | 增强疏水 | |||
折线形 | — | — | — | 压降较低 | [ |
— | 开孔/槽 | 双层叶片 | 对粒径10μm液滴具有较高的捕集效率 | [ | |
凹槽 | — | — | 可以提高粒径小于20μm液滴的去除效率,压降较高 | [ | |
单疏水钩 | — | — | 对于粒径8μm以上的液滴去除效率可以达到90%以上,压降在37~415Pa | [ | |
开孔/槽 | 疏水钩 | 降低压损、提高捕集效率。气速5.5m/s效率最高,可达到90%以上 | [ | ||
双疏水钩 | — | — | 对于粒径8μm液滴可以达到90%的分离效率 | [ | |
开孔/槽 | 疏水钩 | 保证捕集面积的同时减少压损,保证排液,减少二次夹带 | |||
多孔材料 | — | — | 可以提高临界气速度(4~5m/s),减少二次夹带 | [ | |
疏水钩 | — | 表面改性 | 气速超过5m/s后壁面液膜厚度减小,分离效率下降程度减小 | [ | |
流线形 | — | — | — | 粒径25μm液滴的分离效率80%以上,压降10~30Pa(2.5~6m/s) | [ |
单疏水钩 | — | 疏水钩 | 对粒径10μm液滴分离效率为65%,粒径20μm液滴分离效率可以达到90%以上 | [ | |
双疏水钩 | — | 疏水钩 | 压降10~150Pa(1~6m/s),临界气速度较无钩型提高28%(3~4m/s与4~5m/s) | [ | |
— | — | 降膜流动 | 接触角越小,浸润面积越大 | [ | |
梯形 | — | — | — | 压降10~90Pa(2~7m/s),气速为2m/s时,粒径26μm的液滴100%收集 | [ |
双疏水钩 | — | 疏水钩 | 减少二次夹带,增强排液,增大气体容量 | ||
Ω形 | — | — | — | 20~320Pa(2~8m/s),叶片间距18.2mm时,平均效率在90%以上 | [ |
结构类型 | 结构参数 | 分离性能的影响 | 参考文献 |
---|---|---|---|
折线形/单钩型 | 疏水钩、叶片间距 | 沿程液滴尺寸有减小的趋势,当加入疏水钩时减小的速率更大,当叶片间距变大时减小变得更慢;气速分别为2.96m/s、4.14m/s、6m/s、8m/s时,折线形入口和出口之间的液滴尺寸减小8%、14%、22%、28%,而带疏水钩的分别减小50%、57%、64%和69% | [ |
折线形、单钩型、双钩型 | 疏水钩数量 叶片间距12mm、14mm、16mm、18mm、20mm | 分离效率随着间距的增加而减小,间距相同时单钩效率最高,折线形最低;随着间距增加,压降减小,但达到某一值后下降幅度不明显;带疏水钩结构比无疏水钩结构下降幅度更大 | [ |
流线形/单钩型 | 疏水钩 横向间距30mm、20mm | 带有疏水钩结构在相同条件下效率高于无疏水钩结构,压降也会更高;较小的间距分离效率和压力损失较高 | [ |
带排液槽结构叶片 | 排液槽高度260mm、200mm 挡板数量1、3 | 挡板数量相同时,排液槽高度越高,分离性能反而下降;排液挡板数量的增加会使得临界分离气速升高;挡板数量增加会使得压降增大,排液槽高度对压降影响不大 | [ |
单钩型 | 钩板高度1~15mm、长度 0~9mm、夹角-9°~9° | 分离效率随钩板高度的增加而增加;β>0时,分离效率随钩板长度的增加而减小;β=0时,分离效率随钩板长度的增加而先增加后减小;β<0时,分离效率随着钩板长度的增加而增加;压降随着钩板高度的增加而增加,随着钩板长度的增加而减小,随着角度的增加而减小 | [ |
流线形/单钩型 | 弯曲级数;弯曲波长 | 弯曲级数增加,液滴去除效率增加,压降增大;具有较小弯曲波长的叶片(λ/s=2.37)比更大的波长分离效率、压降更高,大波长(λ/s>7.11)叶片,量纲为1的波长增加对分离效率和压降影响不大 | [ |
单钩型 | 弯折曲率 | 在一定折角曲率条件下,有助于减少带疏水钩结构叶片的压力损失 | [ |
带孔板结构 | 穿孔板间距、数量、厚度、孔隙率、安装角、孔板高度 | 孔板数较少时,捕集效率较高但压损大,随着孔板数量增加,会形成滞流区;板间距较大(15mm)时,捕集能力减弱;孔板厚度对分离效率影响较小,增加厚度,去除效率略微提升,但压损增大;随着孔间距增加(孔隙率降低),整体收集效率提高;压降先增大后减小;随着孔板率增加,效率降低,压降减小并逐渐达到平衡;捕集效率和压降随着安装角度的增大而不断减小,捕集效率随孔板高度的增加而小幅增加 | [ |
结构类型 | 结构参数 | 分离性能的影响 | 参考文献 |
---|---|---|---|
折线形/单钩型 | 疏水钩、叶片间距 | 沿程液滴尺寸有减小的趋势,当加入疏水钩时减小的速率更大,当叶片间距变大时减小变得更慢;气速分别为2.96m/s、4.14m/s、6m/s、8m/s时,折线形入口和出口之间的液滴尺寸减小8%、14%、22%、28%,而带疏水钩的分别减小50%、57%、64%和69% | [ |
折线形、单钩型、双钩型 | 疏水钩数量 叶片间距12mm、14mm、16mm、18mm、20mm | 分离效率随着间距的增加而减小,间距相同时单钩效率最高,折线形最低;随着间距增加,压降减小,但达到某一值后下降幅度不明显;带疏水钩结构比无疏水钩结构下降幅度更大 | [ |
流线形/单钩型 | 疏水钩 横向间距30mm、20mm | 带有疏水钩结构在相同条件下效率高于无疏水钩结构,压降也会更高;较小的间距分离效率和压力损失较高 | [ |
带排液槽结构叶片 | 排液槽高度260mm、200mm 挡板数量1、3 | 挡板数量相同时,排液槽高度越高,分离性能反而下降;排液挡板数量的增加会使得临界分离气速升高;挡板数量增加会使得压降增大,排液槽高度对压降影响不大 | [ |
单钩型 | 钩板高度1~15mm、长度 0~9mm、夹角-9°~9° | 分离效率随钩板高度的增加而增加;β>0时,分离效率随钩板长度的增加而减小;β=0时,分离效率随钩板长度的增加而先增加后减小;β<0时,分离效率随着钩板长度的增加而增加;压降随着钩板高度的增加而增加,随着钩板长度的增加而减小,随着角度的增加而减小 | [ |
流线形/单钩型 | 弯曲级数;弯曲波长 | 弯曲级数增加,液滴去除效率增加,压降增大;具有较小弯曲波长的叶片(λ/s=2.37)比更大的波长分离效率、压降更高,大波长(λ/s>7.11)叶片,量纲为1的波长增加对分离效率和压降影响不大 | [ |
单钩型 | 弯折曲率 | 在一定折角曲率条件下,有助于减少带疏水钩结构叶片的压力损失 | [ |
带孔板结构 | 穿孔板间距、数量、厚度、孔隙率、安装角、孔板高度 | 孔板数较少时,捕集效率较高但压损大,随着孔板数量增加,会形成滞流区;板间距较大(15mm)时,捕集能力减弱;孔板厚度对分离效率影响较小,增加厚度,去除效率略微提升,但压损增大;随着孔间距增加(孔隙率降低),整体收集效率提高;压降先增大后减小;随着孔板率增加,效率降低,压降减小并逐渐达到平衡;捕集效率和压降随着安装角度的增大而不断减小,捕集效率随孔板高度的增加而小幅增加 | [ |
公司单位 | 结构形式 | 分离参数 | 应用场景 |
---|---|---|---|
CECO Peerless | 单钩型 | >8μm(100%) | 小容量 |
Ensepatec | 折线型&疏水槽 | 4.5m/s,气体处理量±30% | 洗涤器、蒸发器 |
单钩型/双钩型 | 8~20μm(99.9%) | 液气比>30 | |
Koch-Glitsch | 梯型&底部排液孔 | 10~40μm;100~872Pa | 黏性液体、高液体负载 |
单钩型&疏水槽 | 高压、大容量 | ||
双钩型 | 高压、大容量 | ||
Sulzer | 梯型 | K=0.17m/s;30~40μm | 高黏度流体 |
折线型 | K=0.14m/s;25μm | ||
单钩型 | K=0.35m/s;25~30μm/35~40μm | 高效气液分离、高黏度易结垢 | |
双钩型&疏水孔 | K=0.17~0.45m/s;10~15μm | ||
AMACS | 梯型 | 20μm(90%),40μm(99.9%);K=0.076~0.351m/s 77.7~1476.38Pa;气体处理范围30%~110% | 丝网后端以提高液体容量、蒸馏塔 |
梯型&双钩&疏水槽 |
公司单位 | 结构形式 | 分离参数 | 应用场景 |
---|---|---|---|
CECO Peerless | 单钩型 | >8μm(100%) | 小容量 |
Ensepatec | 折线型&疏水槽 | 4.5m/s,气体处理量±30% | 洗涤器、蒸发器 |
单钩型/双钩型 | 8~20μm(99.9%) | 液气比>30 | |
Koch-Glitsch | 梯型&底部排液孔 | 10~40μm;100~872Pa | 黏性液体、高液体负载 |
单钩型&疏水槽 | 高压、大容量 | ||
双钩型 | 高压、大容量 | ||
Sulzer | 梯型 | K=0.17m/s;30~40μm | 高黏度流体 |
折线型 | K=0.14m/s;25μm | ||
单钩型 | K=0.35m/s;25~30μm/35~40μm | 高效气液分离、高黏度易结垢 | |
双钩型&疏水孔 | K=0.17~0.45m/s;10~15μm | ||
AMACS | 梯型 | 20μm(90%),40μm(99.9%);K=0.076~0.351m/s 77.7~1476.38Pa;气体处理范围30%~110% | 丝网后端以提高液体容量、蒸馏塔 |
梯型&双钩&疏水槽 |
研究单位 | 结构形式 | 分离性能 | 应用场景 |
---|---|---|---|
美国FMC Technologies公司管式相分离器[ | 分流器、叶片、分离段、气体抽出口、气相及液相出口 | 单级分离,结构简单,但变工况时稳定性较差 | 入口含气率范围为0.5~0.9 |
挪威国家石油公司(Statoil) CompactSepTM系统[ | GLCC分离器、管式脱气器和(或)管式脱液器串联 | 分离效果较好,但控制复杂,且二级分离易受一级分离干扰 | 入口含气率范围为0.15~0.6 |
哈尔滨工程大学管式气液分离器[ | 多级旋流元件串联、竖直方式 | 分离效率较高,但相同条件下处理液量较低 | 入口含气率范围0.05~0.9 |
研究单位 | 结构形式 | 分离性能 | 应用场景 |
---|---|---|---|
美国FMC Technologies公司管式相分离器[ | 分流器、叶片、分离段、气体抽出口、气相及液相出口 | 单级分离,结构简单,但变工况时稳定性较差 | 入口含气率范围为0.5~0.9 |
挪威国家石油公司(Statoil) CompactSepTM系统[ | GLCC分离器、管式脱气器和(或)管式脱液器串联 | 分离效果较好,但控制复杂,且二级分离易受一级分离干扰 | 入口含气率范围为0.15~0.6 |
哈尔滨工程大学管式气液分离器[ | 多级旋流元件串联、竖直方式 | 分离效率较高,但相同条件下处理液量较低 | 入口含气率范围0.05~0.9 |
相关研究 | 操作工况 | 研究结果 |
---|---|---|
Tang等[ | 2~4m/s;液滴尺寸3.4~13.5μm | 在接近完全分离之前,随着液滴尺寸的增加,分离效率呈上升趋势 |
徐旭辉等[ | 入口湿度30%~60% 雷诺数60000~180000 常温常压 | 出口湿度随入口湿度的增加和雷诺数的增加呈增长状态;当入口湿度和雷诺数较低时,出口湿度变化平缓;而当入口湿度和雷诺数较高时,出口湿度较高,变化幅度较大 |
Song等[ | 2.5~6m/s;粒径分布;常压 | 当液滴直径小于4μm时,分级效率异常的高,发生“鱼钩”效应;小于5μm的液滴出口处液滴质量浓度高于入口,表明发生液滴再夹带 |
Li等[ | 2~8m/s 0.101MPa,20℃(常温常压) 7MPa,286℃(高温高压) | 分离效率随着气速先增加后减小;随着粒径增大,分级效率显著提高;临界分离粒径随着气速增加而减小。在高温、高压条件下,临界分离粒径增大。 |
Koopman等[ | 1~19m/s;液体质量分数 2%~9%常温常压 | 带圆孔排液结构的叶片效率随着液滴质量分数的增加而提高,而压降受液滴质量分数的影响不大 |
Li等[ | 4~12m/s;入口湿度6%、8%常温常压 | 入口湿度差在2%以内时对临界分离气速影响不明显;其他条件相同时,入口湿度越大,效率越高 |
相关研究 | 操作工况 | 研究结果 |
---|---|---|
Tang等[ | 2~4m/s;液滴尺寸3.4~13.5μm | 在接近完全分离之前,随着液滴尺寸的增加,分离效率呈上升趋势 |
徐旭辉等[ | 入口湿度30%~60% 雷诺数60000~180000 常温常压 | 出口湿度随入口湿度的增加和雷诺数的增加呈增长状态;当入口湿度和雷诺数较低时,出口湿度变化平缓;而当入口湿度和雷诺数较高时,出口湿度较高,变化幅度较大 |
Song等[ | 2.5~6m/s;粒径分布;常压 | 当液滴直径小于4μm时,分级效率异常的高,发生“鱼钩”效应;小于5μm的液滴出口处液滴质量浓度高于入口,表明发生液滴再夹带 |
Li等[ | 2~8m/s 0.101MPa,20℃(常温常压) 7MPa,286℃(高温高压) | 分离效率随着气速先增加后减小;随着粒径增大,分级效率显著提高;临界分离粒径随着气速增加而减小。在高温、高压条件下,临界分离粒径增大。 |
Koopman等[ | 1~19m/s;液体质量分数 2%~9%常温常压 | 带圆孔排液结构的叶片效率随着液滴质量分数的增加而提高,而压降受液滴质量分数的影响不大 |
Li等[ | 4~12m/s;入口湿度6%、8%常温常压 | 入口湿度差在2%以内时对临界分离气速影响不明显;其他条件相同时,入口湿度越大,效率越高 |
1 | ZHANG Huang, LIU Qianfeng, QIN Benke, et al. Study on working mechanism of AP1000 moisture separator by numerical modeling[J]. Annals of Nuclear Energy, 2016, 92: 345-354. |
2 | ZHAO Fulong, ZHAO Chenru, BO Hanliang. Numerical investigation of the separation performance of full-scale AP1000 steam-water separator[J]. Annals of Nuclear Energy, 2018, 111: 204-223. |
3 | 杜利鹏, 张慧, 张文超, 等. 汽水分离技术研究进展分析与展望[J]. 东北电力大学学报, 2019, 39(1): 29-34. |
DU Lipeng, ZHANG Hui, ZHANG Wenchao, et al. Research progress and prospect of steam-water separation technology[J]. Journal of Northeast Electric Power University, 2019, 39(1): 29-34. | |
4 | YANG Linjun, BAO Jingjing, YAN Jinpei, et al. Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation[J]. Chemical Engineering Journal, 2010, 156(1): 25-32. |
5 | ZHANG Rui, WU Hao, SI Xiaodong, et al. Improving the removal of fine particulate matter based on heterogeneous condensation in desulfurized flue gas[J]. Fuel Processing Technology, 2018, 174: 9-16. |
6 | CHEN Zhen, YOU Changfu, LIU Hanzi, et al. The synergetic particles collection in three different wet flue gas desulfurization towers: A pilot-scale experimental investigation[J]. Fuel Processing Technology, 2018, 179: 344-350. |
7 | 黄锟腾, 陈健勇, 陈颖, 等. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41. |
HUANG Kunteng, CHEN Jianyong, CHEN Ying, et al. Research status of vapor-liquid separation technology[J]. CIESC Journal, 2021, 72(S1): 30-41. | |
8 | 程元龙, 刘顺隆, 姚明, 等. 船用燃气轮机进气滤清器惯性级内的流场计算和实验验证[J]. 力学学报, 1987, 19(4): 293-304. |
CHENG Yuanlong, LIU Shunlong, YAO Ming, et al. Flow field calculation and its experimental verification for inertia stage of marine gas turbine air intare filter[J]. Acta Mechanica Sinica, 1987, 19(4): 293-304. | |
9 | 翟斌, 卫禹丞, 李梦竹, 等. 船用燃气轮机进气滤清器冲蚀行为研究[J]. 舰船科学技术, 2021, 43(19): 95-101. |
ZHAI Bin, WEI Yucheng, LI Mengzhu, et al. Research on erosion behavior of inlet filter of marine gas turbine[J]. Ship Science and Technology, 2021, 43(19): 95-101. | |
10 | 郑春峰, 杨万有, 孟熙然, 等. 海上高含气井新型井下气液分离器设计及性能评价[J]. 中国海上油气, 2020, 32(6): 128-135. |
ZHENG Chunfeng, YANG Wanyou, MENG Xiran, et al. Design and performance evaluation of a novel downhole gas-liquid separator for offshore high gas bearing wells[J]. China Offshore Oil and Gas, 2020, 32(6): 128-135. | |
11 | NAKAO Toshitsugu, NAGASE Makoto, AOYAMA Goro, et al. Development of simplified wave-type vane in BWR steam dryer and assessment of vane droplet removal characteristics[J]. Journal of Nuclear Science and Technology, 1999, 36(5): 424-432. |
12 | 王泽龙, 王建军, 刘宏宇. 两级组合式除雾器的分离性能分析[J]. 化工进展, 2020, 39(3): 890-897. |
WANG Zelong, WANG Jianjun, LIU Hongyu. Separation performance analysis of a two-stage combined demister[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 890-897. | |
13 | SAMENFINK W, ELSÄßER A, DULLENKOPF K, et al. Droplet interaction with shear-driven liquid films: Analysis of deposition and secondary droplet characteristics[J]. International Journal of Heat and Fluid Flow, 1999, 20(5): 462-469. |
14 | CHEN Bowen, WANG Bo, MAO Feng, et al. Experimental study of droplet impacting on inclined wetted wall in corrugated plate separator[J]. Annals of Nuclear Energy, 2020, 137: 107155. |
15 | 马超, 薄涵亮. 气泡破裂产生膜液滴理论模型的建立与验证[J]. 原子能科学技术, 2015, 49(11): 2036-2043. |
MA Chao, BO Hanliang. Establishment and verification of theoretical model of film drops produced by bubble bursting[J]. Atomic Energy Science and Technology, 2015, 49(11): 2036-2043. | |
16 | ZHANG Huang, LIU Qianfeng. Numerical investigation on performance of moisture separator: Experimental validation, applications and new findings[J]. Annals of Nuclear Energy, 2020, 142: 107362. |
17 | 李建新, 李雨铮, 张璜, 等. 基于液滴碰撞模型的AP1000波形板汽-水分离器性能及结构优化研究[J]. 原子能科学技术, 2017, 51(12): 2203-2211. |
LI Jianxin, LI Yuzheng, ZHANG Huang, et al. Study on separation ability and structure optimization of AP 1000 wave-type plate steam-water separator based on droplet collision model[J]. Atomic Energy Science and Technology, 2017, 51(12): 2203-2211. | |
18 | LI Ru, CHEN Bowen, WANG Weibing, et al. Experimental analysis of droplet impacting on inclined wall of the corrugated plate dryer in steam generator of nuclear power plants[J]. Annals of Nuclear Energy, 2022, 172: 109062. |
19 | TANG Chenglong, QIN Mengxiao, WENG Xinyan, et al. Dynamics of droplet impact on solid surface with different roughness[J]. International Journal of Multiphase Flow, 2017, 96: 56-69. |
20 | ŠIKALO Š, TROPEA C, GANIĆ E N. Impact of droplets onto inclined surfaces[J]. Journal of Colloid and Interface Science, 2005, 286(2): 661-669. |
21 | 樊玉光, 刘家豪, 袁淑霞, 等. 波纹板气液分离过程中液滴与液膜作用的动力学过程研究[J]. 石油化工, 2021, 50(4): 307-312. |
FAN Yuguang, LIU Jiahao, YUAN Shuxia, et al. Study on the kinetic process of liquid droplets acting with liquid film during gas-liquid separation of corrugated plate[J]. Petrochemical Technology, 2021, 50(4): 307-312. | |
22 | WANG Bo, KE Bingzheng, CHEN Bowen, et al. Study on the size of secondary droplets generated owing to rupture of liquid film on corrugated plate wall[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118904. |
23 | BACHAROUDIS Evangelos, BRATEC Hervé, KEIRSBULCK Laurent, et al. Simplified model for the prediction of the occurrence of film atomization in corner geometries[J]. International Journal of Multiphase Flow, 2014, 58: 325-337. |
24 | 叶学民, 李春曦, 阎维平. 切应力协同下受热过冷层流液膜的破断特性[J]. 力学学报, 2011, 43(3): 461-467. |
YE Xuemin, LI Chunxi, YAN Weiping. Breakdown of locally heated and subcooled laminar films with interfacial shear[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 461-467. | |
25 | WANG Bo, TIAN Ruifeng. Study on characteristics of water film breakdown on the corrugated plate wall under the horizontal shear of airflow[J]. Nuclear Engineering and Design, 2019, 343: 76-84. |
26 | WANG Bo, TIAN Ruifeng. Judgement of critical state of water film rupture on corrugated plate wall based on SIFT feature selection algorithm and SVM classification method[J]. Nuclear Engineering and Design, 2019, 347: 132-139. |
27 | HARTLEY D E, MURGATROYD W. Criteria for the break-up of thin liquid layers flowing isothermally over solid surfaces[J]. International Journal of Heat and Mass Transfer, 1964, 7(9): 1003-1015. |
28 | PARK K, WATKINS A P. Comparison of wall spray impaction models with experimental data on drop velocities and sizes[J]. International Journal of Heat and Fluid Flow, 1996, 17(4): 424-438. |
29 | MAO Feng, TIAN Ruifeng, CHEN Yixuan, et al. Re-entrainment in and optimization of a vane mist eliminator[J]. Annals of Nuclear Energy, 2018, 120: 656-665. |
30 | WANG Bo, TIAN Ruifeng. Investigation on flow and breakdown characteristics of water film on vertical corrugated plate wall[J]. Annals of Nuclear Energy, 2019, 127: 120-129. |
31 | WANG Bo, CHEN Bowen, LI Ru, et al. Analysis of fluctuation and breakdown characteristics of liquid film on corrugated plate wall[J]. Annals of Nuclear Energy, 2020, 135: 106946. |
32 | WANG Bo, CHEN Bowen, KE Bingzheng, et al. Study on strip-shaped liquid film in the corrugated plate dryer[J]. Annals of Nuclear Energy, 2020, 139: 107237. |
33 | ZENG Jie, WANG Yifei, WEI Zongyao, et al. Thickness distribution and fluctuation characteristics of liquid falling film under turbulent conditions[J]. Chemical Engineering Science, 2022, 248: 117172. |
34 | 周宇航, 陈建义, 王亚安, 等. 基于液膜流型的双入口管柱式气液分离器性能研究[J]. 化工学报, 2022, 73(3): 1221-1231. |
ZHOU Yuhang, CHEN Jianyi, WANG Yaan, et al. Research on performance of dual-inlet gas-liquid cylindrical cyclone based on liquid film flow pattern[J]. CIESC Journal, 2022, 73(3): 1221-1231. | |
35 | 孙志春, 郭永红, 肖海平, 等. 鼓泡脱硫塔除雾器除雾特性数值研究及实验验证[J]. 中国电机工程学报, 2010, 30(8): 68-75. |
SUN Zhichun, GUO Yonghong, XIAO Haiping, et al. Numerical simulation and experimental validation on demisting characteristic of the mist eliminator for jet bubble reactor dusulfurization system[J]. Proceedings of the CSEE, 2010, 30(8): 68-75. | |
36 | 郝雅洁, 刘嘉宇, 袁竹林, 等. 除雾器内雾滴运动特性与除雾效率[J]. 化工学报, 2014, 65(12): 4669-4677. |
HAO Yajie, LIU Jiayu, YUAN Zhulin, et al. Movement characteristics of droplets and demisting efficiency of mist eliminator[J]. CIESC Journal, 2014, 65(12): 4669-4677. | |
37 | WANG Jiarong, JI Zhongli, LIU Zhen. Experimental and numerical investigation on the gas–liquid separation performance of a novel vane separator with grooves[J]. Chemical Engineering Research and Design, 2022, 180: 306-317. |
38 | FANG Can, ZOU Renjie, LUO Guangqian, et al. CFD simulation design and optimization of a novel zigzag wave-plate mist eliminator with perforated plate[J]. Applied Thermal Engineering, 2021, 184: 116212. |
39 | YU Zhikang, SUN Cheng, FANG Jiamei, et al. Water recovery efficiency improvement using the enhanced structure of the mist eliminator[J]. Process Safety and Environmental Protection, 2021, 154: 433-446. |
40 | KOOPMAN Hans K, Çağatay KÖKSOY, Özgür ERTUNÇ, et al. An analytical model for droplet separation in vane separators and measurements of grade efficiency and pressure drop[J]. Nuclear Engineering and Design, 2014, 276: 98-106. |
41 | JAMES P W, WANG Y, AZZOPARDI B J, et al. The role of drainage channels in the performance of wave-plate mist eliminators[J]. Chemical Engineering Research and Design, 2003, 81(6): 639-648. |
42 | KAVOUSI Fatemeh, BEHJAT Yaghoub, SHAHHOSSEINI Shahrokh. Optimal design of drainage channel geometry parameters in vane demister liquid-gas separators[J]. Chemical Engineering Research and Design, 2013, 91(7): 1212-1222. |
43 | TANG Ya, XU Yuting, ZHANG Bingjian, et al. An integrated computational strategy for the geometric design and prioritization of wave-plate mist eliminators[J]. Process Safety and Environmental Protection, 2022, 158: 674-686. |
44 | 梁奇, 毛荐, 王飞龙, 等. 单钩型波形板气液分离器结构参数优化研究[J]. 工程热物理学报, 2016, 37(4): 796-802. |
LIANG Qi, MAO Jian, WANG Feilong, et al. Optimization of structural parameters for corrugated plates separator with single scoop[J]. Journal of Engineering Thermophysics, 2016, 37(4): 796-802. | |
45 | HAMEDI ESTAKHRSAR M H, RAFEE R. Effects of wavelength and number of bends on the performance of zigzag demisters with drainage channels[J]. Applied Mathematical Modelling, 2016, 40(2): 685-699. |
46 | 刘丽艳, 赵晨光. 带液滴辅助捕集结构的折板除雾器分离性能研究[J]. 现代化工, 2015, 35(5): 159-162. |
LIU Liyan, ZHAO Chenguang. Separation performance of wave-plate mist eliminator with auxiliary capture[J]. Modern Chemical Industry, 2015, 35(5): 159-162. | |
47 | FANG Can, ZOU Renjie, LUO Guangqian, et al. Numerical simulation and optimization of coupled demister with directing and perforated plate in MSF plants[J]. Desalination, 2023, 547: 116192. |
48 | LIU Yong, QU Zhiguo. Numerical investigation of moisture separators with corrugated plates[J]. Energy Procedia, 2017, 105: 1501-1506. |
49 | 徐旭辉, 王伟, 施少波. 双钩波形板气水分离特性的试验研究[J]. 科学技术与工程, 2019, 19(4): 126-130. |
XU Xuhui, WANG Wei, SHI Shaobo. Experimental study on air-water separation performance of double-hook chevron vane[J]. Science Technology and Engineering, 2019, 19(4): 126-130. | |
50 | WANG Pengfei, JIANG Jin, LI Shunyang, et al. Numerical investigation on the fluid droplet separation performance of corrugated plate gas-liquid separators[J]. Separation and Purification Technology, 2020, 248: 117027. |
51 | 刘再冲, 陈颖, 莫松平, 等. 多孔泡沫镍分液隔板的气液分离性能研究[J]. 工程热物理学报, 2015, 36(2): 383-387. |
LIU Zaichong, CHEN Ying, MO Songping, et al. Investigation on the gas-liquid separation performance of a porous nickel foam separation baffle[J]. Journal of Engineering Thermophysics, 2015, 36(2): 383-387. | |
52 | 马巍威. 不同排液结构折流板除雾器的分离性能研究和内表面改性技术[D]. 北京:中国石油大学(北京), 2019. |
MA Weiwei. Separation performance and internal surface modification of wave-plate mist eliminator with different drainage structure[D]. Beijing: China University of Petroleum-Beijing, 2019. | |
53 | SONG Jianfei, HU Xuefei. A mathematical model to calculate the separation efficiency of streamlined plate gas-liquid separator[J]. Separation and Purification Technology, 2017, 178: 242-252. |
54 | ZHAO Jianzhi, JIN Baosheng, ZHONG Zhaoping. Study of the separation efficiency of a demister vane with response surface methodology[J]. Journal of Hazardous Materials, 2007, 147(1/2): 363-369. |
55 | SONG Jianfei, HU Xuefei, ZHANG Jixiang, et al. Experimental study on performance of two types of corrugated plate gas-liquid separators[J]. Energy Procedia, 2017, 142: 3282-3286. |
56 | VENKATESAN G, KULASEKHARAN N, INIYAN S. Design and selection of curved vane demisters using Taguchi based CFD analysis[J]. Desalination, 2014, 354: 39-52. |
57 | VENKATESAN G, KULASEKHARAN N, INIYAN S. Numerical analysis of curved vane demisters in estimating water droplet separation efficiency[J]. Desalination, 2014, 339: 40-53. |
58 | VENKATESAN G, KULASEKHARAN N, INIYAN S. Influence of turbulence models on the performance prediction of flow through curved vane demisters[J]. Desalination, 2013, 329: 19-28. |
59 | 王松, 王廷, 张志强, 等. 正交试验方法在波形板分离器数值模拟研究中的应用[J]. 热能动力工程, 2014, 29(4): 434-438, 462-463. |
WANG Song, WANG Ting, ZHANG Zhiqiang, et al. Applications of the orthogonal test method in the numerical simulation study of waveform plate separators[J]. Journal of Engineering for Thermal Energy and Power, 2014, 29(4): 434-438, 462-463. | |
60 | 马巍威, 吴小林, 姬忠礼. 新式波形板除雾器气液分离性能评价和流场分析[J]. 新技术新工艺, 2018(1): 26-31. |
MA Weiwei, WU Xiaolin, JI Zhongli. Gas-liquid separation performance evaluation and flow field analysis of new type wave plate mist eliminator[J]. New Technology & New Process, 2018(1): 26-31. | |
61 | 廖俊华, 薛鹏, 赵梦静, 等. 波纹板填料表面液体降膜流动的特性分析[J]. 过程工程学报, 2021, 21(11): 1287-1296. |
LIAO Junhua, XUE Peng, ZHAO Mengjing, et al. Analysis of characteristics of liquid falling film flow on corrugated sheet packing[J]. The Chinese Journal of Process Engineering, 2021, 21(11): 1287-1296. | |
62 | 谢剑, 何孝天, 程愉, 等. 丝网表面液滴撞击行为及气液分离器设计优化[J]. 工程热物理学报, 2016, 37(6): 1230-1236. |
XIE Jian, HE Xiaotian, CHENG Yu, et al. Behavior of a droplet impacting on mesh screen and optimal design of the gas-liquid separator[J]. Journal of Engineering Thermophysics, 2016, 37(6): 1230-1236. | |
63 | 洪文鹏, 董世平, 马军辉. 基于数值研究的折线型除雾器叶片的优化设计[J]. 东北电力大学学报, 2016, 36(2): 67-71. |
HONG Wenpeng, DONG Shiping, MA Junhui. Optimal design for the broken line demister baffle with numerical stream simulation[J]. Journal of Northeast Electric Power University, 2016, 36(2): 67-71. | |
64 | 张恩实, 王飞飞. 冷却塔折流板除雾器叶片折角优化数值模拟[J]. 流体机械, 2018, 46(7): 69-75, 53. |
ZHANG Enshi, WANG Feifei. Impact of bend angle on removal efficiency of cooling tower wave-plate mist eliminator by numerical simulation[J]. Fluid Machinery, 2018, 46(7): 69-75, 53. | |
65 | PRIETO JIMÉNEZ Natalia, GONZÁLEZ SILVA Germán, CHAVES GUERRERO Arlex. Revisión del proceso de separación de fases del gas natural a Alta presión en la industria Oil&Gas[J]. Entramado, 2019, 15(1): 312-329. |
66 | 栾一刚, 孙海鸥, 王松, 等. Ω型惯性气液分离器性能研究[J]. 热能动力工程, 2010, 25(4): 394-398, 466. |
LUAN Yigang, SUN Haiou, WANG Song, et al. Performance study of a Ω type inertia gas-liquid separator[J]. Journal of Engineering for Thermal Energy and Power, 2010, 25(4): 394-398, 466. | |
67 | XU Yichen, YANG Zhenming, ZHANG Jinsong. Study on performance of wave-plate mist eliminator with porous foam layer as enhanced structure. Part II: Experiments[J]. Chemical Engineering Science, 2017, 171: 662-671. |
68 | 丁训慎, 崔保元, 薛运煃, 等. 同心立式波形板汽水分离器的试验研究[J]. 核动力工程, 1984, 5(1): 22-28. |
DING Xunshen, CUI Baoyuan, XUE Yunkui, et al. Test and study of concentric vertical shutter steam separator[J]. Nuclear Power Engineering, 1984, 5(1): 22-28. | |
69 | LI Ru, ZHAN Chunyuan, WANG Bo, et al. Experimental study on the influence of drainage tank structure on separation performance of vertical corrugated plate dryer in PWR[J]. Annals of Nuclear Energy, 2022, 177: 109292. |
70 | 杨柳, 王世和, 王小明, 等. 湿法烟气脱硫系统除雾器特性试验研究[J]. 热能动力工程, 2005, 20(2): 145-147, 215. |
YANG Liu, WANG Shihe, WANG Xiaoming, et al. Experimental investigation of the characteristics of a demister in a wet flue-gas desulfurization system[J]. Journal of Engineering for Thermal Energy and Power, 2005, 20(2): 145-147, 215. | |
71 | WANG Y I, JAMES P W. Assessment of an eddy-interaction model and its refinements using predictions of droplet deposition in a wave-plate demister[J]. Chemical Engineering Research and Design, 1999, 77(8): 692-698. |
72 | 滕建鑫, 杨春英, 贺征. 惯性分离装置的性能分析及结构优化[J]. 化工进展, 2019, 38(5): 2074-2084. |
TENG Jianxin, YANG Chunying, HE Zheng. Performance analysis and structural optimization of inertial separation devices[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2074-2084. | |
73 | 石振晶, 陶明, 何育东, 等. 喷淋脱硫塔内除雾器性能数值模拟[J]. 热力发电, 2016, 45(3): 92-97, 104. |
SHI Zhenjing, TAO Ming, HE Yudong, et al. Numerical simulation on demister performance of spray tower desulfurization system[J]. Thermal Power Generation, 2016, 45(3): 92-97, 104. | |
74 | 常程, 姬忠礼, 黄金斌, 等. 气液过滤过程中液滴二次夹带现象分析[J]. 化工学报, 2015, 66(4): 1344-1352. |
CHANG Cheng, JI Zhongli, HUANG Jinbin, et al. Analysis of re-entrainment in process of gas-liquid filtration[J]. CIESC Journal, 2015, 66(4): 1344-1352. | |
75 | EDDIE SETEKLEIV A, Thomas HELSØR, SVENDSEN Hallvard F. Liquid holdup in wire-mesh pads[J]. Chemical Engineering Research and Design, 2010, 88(11): 1523-1531. |
76 | KREBS Thomas, BALK Wouter, VERBEEK Paul, et al. Debottlenecking of FPSO facilities by compact separators[C]. November 7-10, 2016. Abu Dhabi, United Arab Emirates: Society of Petroleum Engineers, 2016. |
77 | KRISTIANSEN O, SORENSEN O, NILSSEN O R. CompactSepTM-Compact subsea gas-liquid separator for high-pressure wellstream boosting[C]. May 2-5, 2016. Houston, TX, United states: Offshore Technology Conference, 2016. |
78 | ZENG Xiaobo, FAN Guangming, XU Junxiu, et al. Experimental study on a new gas-liquid separator for a wide range of gas volume fraction[J]. Chemical Engineering Research and Design, 2020, 160: 561-570. |
79 | 卫德强, 俞接成, 陈家庆. 结构参数对内联式脱液器分离性能的影响[J]. 科学技术与工程, 2016, 16(17): 86-92. |
WEI Deqiang, YU Jiecheng, CHEN Jiaqing. The influence of structural parameters on the separation performance of an inline deliquidiser[J]. Science Technology and Engineering, 2016, 16(17): 86-92. | |
80 | 刘帅, 王建军, 郭颖, 等. 多管直流式旋流分离器的性能实验与结构优化[J]. 高校化学工程学报, 2018, 32(5): 1042-1053. |
LIU Shuai, WANG Jianjun, GUO Ying, et al. Performance and structure optimization of a multi-tube axial flow cyclone separator[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(5): 1042-1053. | |
81 | LI Yuan, QIN Guoliang, XIONG Zhiyi, et al. Gas-liquid separation performance of a micro axial flow cyclone separator[J]. Chemical Engineering Science, 2022, 249: 117234. |
82 | WANG Qiangqiang, CHEN Jiaqing, WANG Chunsheng, et al. Design and performance study of a two-stage inline gas-liquid cyclone separator with large range of inlet gas volume fraction[J]. Journal of Petroleum Science and Engineering, 2023, 220: 111218. |
83 | 吴恒, 李银龙, 晏刚, 等. 蒸气压缩制冷/热泵系统中的气液分离技术[J]. 化工进展, 2023, 42(3): 1129-1142. |
WU Heng, LI Yinlong, YAN Gang, et al. Vapor-liquid separation technology in refrigeration/heat pump systems[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1129-1142. | |
84 | JOSANG A. I. Numerical and experimental studies of droplet-gas flow[D]. Porsgrunn: Telemark University College, 2002. |
85 | LI Jia, HUANG Suyi, WANG Xiaomo. Numerical study of steam-water separators with wave-type vanes[J]. Chinese Journal of Chemical Engineering, 2007, 15(4): 492-498. |
86 | 宋健斐, 刘帅, 马嘉棋, 等. 波纹板气液分离器分离效率测量方法对比[J]. 化工机械, 2021, 48(6): 819-822. |
SONG Jianfei, LIU Shuai, MA Jiaqi, et al. Comparison of measurement methods for the separation efficiency of corrugated plate gas-liquid separator[J]. Chemical Engineering & Machinery, 2021, 48(6): 819-822. | |
87 | 吴小林, 熊至宜, 姬忠礼. 天然气净化用旋风分离器气液分离性能[J]. 化工学报, 2010, 61(9): 2430-2436. |
WU Xiaolin, XIONG Zhiyi, JI Zhongli. Gas-liquid separation performance of cyclone separator for purification of natural gas[J]. CIESC Journal, 2010, 61(9): 2430-2436. |
[1] | FENG Feifei, TIAN Bin, MA Pengfei, WEI Jianxin, XU Long, TIAN Yuanyu, MA Xiaoxun. Research progress on mechanism and methods of lignin separation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2512-2525. |
[2] | WU Heng, LI Yinlong, YAN Gang, XIONG Tong, ZHANG Hao, TAO Kui. Vapor-liquid separation technology in refrigeration/heat pump systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1129-1142. |
[3] | SHEN Tianxu, SHEN Laihong. Investigation of multi-fuel chemical looping combustion in a 3kW interconnected fluidized bed reactors [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 138-147. |
[4] | LIU Yang, GU Ping, ZHANG Guanghui. Fabrication of graphene oxide-assisted membranes and its applications in water treatment and purification [J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4151-4159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |