Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 121-134.DOI: 10.16085/j.issn.1000-6613.2024-0020
• Chemical processes and equipment • Previous Articles Next Articles
XIAO Yuan1,2(), CHEN Yi1,2, LIU Siqi1,2, CUI Guomin1,2(
)
Received:
2024-01-04
Revised:
2024-02-16
Online:
2025-02-13
Published:
2025-01-15
Contact:
CUI Guomin
肖媛1,2(), 陈怡1,2, 刘思琪1,2, 崔国民1,2(
)
通讯作者:
崔国民
作者简介:
肖媛(1991—),女,讲师,硕士生导师,研究方向为过程系统优化及节能。E-mail:yxiao0606@yeah.net。
基金资助:
CLC Number:
XIAO Yuan, CHEN Yi, LIU Siqi, CUI Guomin. Mass-heat analogy and global optimization of mass exchange network based on generalized heat exchanger network[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 121-134.
肖媛, 陈怡, 刘思琪, 崔国民. 基于广义换热网络的质量交换网络质能比拟及全局优化[J]. 化工进展, 2025, 44(1): 121-134.
比拟量 | 质量(板式塔) | 能量(换热器) |
---|---|---|
强度量 | 组分浓度C/kg·kg–1 | 温度T/K |
传递性能 | 对流传质系数hm/m·s–1 | 表面传热系数h/kW·m-2·K-1 |
热质交换设备 | ||
传递驱动力 | 浓度差(LMCD、AMCD)/kg·kg–1 | 温度差(LMTD、AMTD)/K |
传递性能 | 总传质系数Km/m·s–1 | 总传热系数K/kW·m-2·K-1 |
传递量 | 传质量MA/kg·s–1 | 换热量QA/kW |
设备尺寸 | 提供有效传质的塔板质量 | 换热面积A/m2 |
比拟量 | 质量(板式塔) | 能量(换热器) |
---|---|---|
强度量 | 组分浓度C/kg·kg–1 | 温度T/K |
传递性能 | 对流传质系数hm/m·s–1 | 表面传热系数h/kW·m-2·K-1 |
热质交换设备 | ||
传递驱动力 | 浓度差(LMCD、AMCD)/kg·kg–1 | 温度差(LMTD、AMTD)/K |
传递性能 | 总传质系数Km/m·s–1 | 总传热系数K/kW·m-2·K-1 |
传递量 | 传质量MA/kg·s–1 | 换热量QA/kW |
设备尺寸 | 提供有效传质的塔板质量 | 换热面积A/m2 |
变量 | 释义 | 下角标 |
---|---|---|
QHi,im,ib | 各热节点上换热单元的换热量,kW | i∈NR, im∈NsgH,ib∈NbH, j∈Ns, jm∈NsgC,jb∈NbC, ip∈3, jp∈3。 ip=1: 流股编号; ip=2: 主节点编号; ip=3: 分支编号 |
QCj,jm,jb | 各冷节点上换热单元的换热量,kW | |
SPHi,im,ib | 热流股分支的分流比 | |
SPCj,jm,jb | 冷流股分支的分流比 | |
冷流股的热容流率,kW/K | ||
Zi,im,ib | 每个热节点上有无换热单元的 0-1变量 | |
NH_Ci,im,ib,ip | 热节点连的冷节点 | |
NC_Hj,jm,jb,jp | 冷节点连的热节点 |
变量 | 释义 | 下角标 |
---|---|---|
QHi,im,ib | 各热节点上换热单元的换热量,kW | i∈NR, im∈NsgH,ib∈NbH, j∈Ns, jm∈NsgC,jb∈NbC, ip∈3, jp∈3。 ip=1: 流股编号; ip=2: 主节点编号; ip=3: 分支编号 |
QCj,jm,jb | 各冷节点上换热单元的换热量,kW | |
SPHi,im,ib | 热流股分支的分流比 | |
SPCj,jm,jb | 冷流股分支的分流比 | |
冷流股的热容流率,kW/K | ||
Zi,im,ib | 每个热节点上有无换热单元的 0-1变量 | |
NH_Ci,im,ib,ip | 热节点连的冷节点 | |
NC_Hj,jm,jb,jp | 冷节点连的热节点 |
GHEN-NNM | MEN-NNM | 释义 |
---|---|---|
QHi,im,ib | MRi,im,ib | 富节点上换热单元的传质量,kg/s |
QCj,jm,jb | MSj,jm,jb | 贫节点上换热单元的换热量,kg/s |
SPHi,im,ib | SPRi,im,ib = SPHi,im,ib | 富流股分支的分流比 |
SPCj,jm,jb | SPSj,jm,jb = SPCj,jm,jb | 贫流股分支的分流比 |
Lj = | 贫流股的热容流率,kg/s | |
Zi,im,ib | ZZi,im,ib = Zi,im,ib | 每个富节点有无换热单元的0-1变量 |
NH_Ci,im,ib,ip | NR_Si,im,ib,ip = NH_Ci,im,ib,ip | 富节点连的贫节点 |
NC_Hj,jm,jb,jp | NS_Rj,jm,jb,jp = NC_Hj,jm,jb,jp | 贫节点连的富节点 |
i∈NR, im∈NsgH, ib∈NbH; j∈Ns, jm∈NsgC, jb∈NbC, ip∈3, jp∈3。 ip=1, 流股编号; ip=2, 主节点编号; ip=3, 分支编号 |
GHEN-NNM | MEN-NNM | 释义 |
---|---|---|
QHi,im,ib | MRi,im,ib | 富节点上换热单元的传质量,kg/s |
QCj,jm,jb | MSj,jm,jb | 贫节点上换热单元的换热量,kg/s |
SPHi,im,ib | SPRi,im,ib = SPHi,im,ib | 富流股分支的分流比 |
SPCj,jm,jb | SPSj,jm,jb = SPCj,jm,jb | 贫流股分支的分流比 |
Lj = | 贫流股的热容流率,kg/s | |
Zi,im,ib | ZZi,im,ib = Zi,im,ib | 每个富节点有无换热单元的0-1变量 |
NH_Ci,im,ib,ip | NR_Si,im,ib,ip = NH_Ci,im,ib,ip | 富节点连的贫节点 |
NC_Hj,jm,jb,jp | NS_Rj,jm,jb,jp = NC_Hj,jm,jb,jp | 贫节点连的富节点 |
i∈NR, im∈NsgH, ib∈NbH; j∈Ns, jm∈NsgC, jb∈NbC, ip∈3, jp∈3。 ip=1, 流股编号; ip=2, 主节点编号; ip=3, 分支编号 |
MEN(R2S3)参数[ | ||||||
---|---|---|---|---|---|---|
MEN | G(L)/kg·s–1 | |||||
R1 | 2 | 0.05 | 0.01 | |||
R2 | 1 | 0.03 | 0.006 | |||
S1 | 5 | 0.005 | 0.015 | 0.01 | 0.03 | |
S2 | 3 | 0.01 | 0.03 | 0.0153 | 0.0459 | |
S3 | ∞ | 0.0013 | 0.015 | 0.001923 | 0.01165 | |
S1、S2免费,S3运行费用系数: | ||||||
比拟参数 | ||||||
Cmax/kg·kg–1 | Tmax/℃ | (Tmax/Cmax)/℃·kg–1·kg | ρ/kg·m-3 | cp /kJ·kg-1·K-1 | μ0/kg·m-1 | C0 |
0.005 | 100 | 10000 | 1000 | 10 | 10000 | 1.0 |
GHEN(H2C3)参数 | ||||||
GHEN | Fcp =Gcp /kJ·K-1·s-1 | Tin/℃ | Tout/℃ | |||
H1 | 20 | 500 | 100 | |||
H2 | 10 | 300 | 60 | |||
C1 | 50 | 100 | 300 | |||
C2 | 30 | 153 | 459 | |||
C3 | 10 | 19.23 | 116.5 | |||
C1、C2免费,C3运行费用系数: |
MEN(R2S3)参数[ | ||||||
---|---|---|---|---|---|---|
MEN | G(L)/kg·s–1 | |||||
R1 | 2 | 0.05 | 0.01 | |||
R2 | 1 | 0.03 | 0.006 | |||
S1 | 5 | 0.005 | 0.015 | 0.01 | 0.03 | |
S2 | 3 | 0.01 | 0.03 | 0.0153 | 0.0459 | |
S3 | ∞ | 0.0013 | 0.015 | 0.001923 | 0.01165 | |
S1、S2免费,S3运行费用系数: | ||||||
比拟参数 | ||||||
Cmax/kg·kg–1 | Tmax/℃ | (Tmax/Cmax)/℃·kg–1·kg | ρ/kg·m-3 | cp /kJ·kg-1·K-1 | μ0/kg·m-1 | C0 |
0.005 | 100 | 10000 | 1000 | 10 | 10000 | 1.0 |
GHEN(H2C3)参数 | ||||||
GHEN | Fcp =Gcp /kJ·K-1·s-1 | Tin/℃ | Tout/℃ | |||
H1 | 20 | 500 | 100 | |||
H2 | 10 | 300 | 60 | |||
C1 | 50 | 100 | 300 | |||
C2 | 30 | 153 | 459 | |||
C3 | 10 | 19.23 | 116.5 | |||
C1、C2免费,C3运行费用系数: |
网络 | X | Xmin | φev,X | Xg | φg,x | τ | |
---|---|---|---|---|---|---|---|
GHEN | QH | 100 | 5 | 0.95×0.3 | 100 | 0.001 | 0.01 |
SP | 0.03 | 0.01 | 0.05×0.3 | 1 | |||
0.01 | 0.01 | 0.0001 | 1 | ||||
MEN | MR | 5×10-5 | 5×10-5 | 0.7×0.3 | 0.002 | 0.005 | 0.001 |
SP | 0.05 | 0.01 | 0.3×0.3 | 1 | |||
LNS | 0.03 | 0.02 | 0.01 | 0.5 |
网络 | X | Xmin | φev,X | Xg | φg,x | τ | |
---|---|---|---|---|---|---|---|
GHEN | QH | 100 | 5 | 0.95×0.3 | 100 | 0.001 | 0.01 |
SP | 0.03 | 0.01 | 0.05×0.3 | 1 | |||
0.01 | 0.01 | 0.0001 | 1 | ||||
MEN | MR | 5×10-5 | 5×10-5 | 0.7×0.3 | 0.002 | 0.005 | 0.001 |
SP | 0.05 | 0.01 | 0.3×0.3 | 1 | |||
LNS | 0.03 | 0.02 | 0.01 | 0.5 |
文献 | 方法 | 单元数 | 塔板总数 | AOC/USD·a-1 | TAC/USD·a-1 |
---|---|---|---|---|---|
Hallale and Fraser [ | PDM | 7 | — | — | 345416 |
Isafiade and Fraser [ | IBMS & DICOPT | 6 | 26 | 219816 | 338168 |
Comeaus [ | — | 7 | 28 | 205800 | 333300 |
Xiao等[ | NV-NSM & RWCE | 6 | 26 | 217938 | 336290 |
Xiao等[ | NV-NSM & RWCE | 7 | 21 | 233911 | 329503 |
本文( | 质能比拟 | 8 | 21 | 227607 | 323199 |
本文( | 质能比拟 | 6 | 24 | 212552 | 321800 |
文献 | 方法 | 单元数 | 塔板总数 | AOC/USD·a-1 | TAC/USD·a-1 |
---|---|---|---|---|---|
Hallale and Fraser [ | PDM | 7 | — | — | 345416 |
Isafiade and Fraser [ | IBMS & DICOPT | 6 | 26 | 219816 | 338168 |
Comeaus [ | — | 7 | 28 | 205800 | 333300 |
Xiao等[ | NV-NSM & RWCE | 6 | 26 | 217938 | 336290 |
Xiao等[ | NV-NSM & RWCE | 7 | 21 | 233911 | 329503 |
本文( | 质能比拟 | 8 | 21 | 227607 | 323199 |
本文( | 质能比拟 | 6 | 24 | 212552 | 321800 |
GHEN | 104℃·kg–1·kg | 2×104℃·kg–1·kg | 105℃·kg–1·kg | |||
---|---|---|---|---|---|---|
Tin/℃ | Tout/℃ | Tin/℃ | Tout/℃ | Tin/℃ | Tout/℃ | |
H1 | 250 | 50 | 500 | 100 | 2500 | 500 |
H2 | 150 | 30 | 300 | 60 | 1500 | 300 |
C1 | 50 | 150 | 100 | 300 | 500 | 1500 |
C2 | 76.5 | 229.5 | 153 | 459 | 765 | 2295 |
C3 | 9.615 | 58.25 | 19.23 | 116.5 | 96.15 | 582.5 |
GHEN | 104℃·kg–1·kg | 2×104℃·kg–1·kg | 105℃·kg–1·kg | |||
---|---|---|---|---|---|---|
Tin/℃ | Tout/℃ | Tin/℃ | Tout/℃ | Tin/℃ | Tout/℃ | |
H1 | 250 | 50 | 500 | 100 | 2500 | 500 |
H2 | 150 | 30 | 300 | 60 | 1500 | 300 |
C1 | 50 | 150 | 100 | 300 | 500 | 1500 |
C2 | 76.5 | 229.5 | 153 | 459 | 765 | 2295 |
C3 | 9.615 | 58.25 | 19.23 | 116.5 | 96.15 | 582.5 |
MEN(R2S2)参数[ | |||||
---|---|---|---|---|---|
MEN | G(L)/kg·s–1 | ||||
R1 | 0.9 | 0.07 | 0.0003 | — | — |
R2 | 0.1 | 0.051 | 0.0001 | — | — |
S1 | 2.3 | 0.0006 | 0.031 | 0.00087 | 0.04495 |
S2 | ∞ | 0.0002 | 0.0035 | 0.000052 | 0.00091 |
S1运行费用系数: | |||||
比拟参数 | |||||
ρ/kg·m-3 | Cp /kJ·kg-1·K-1 | μ0/ kg·m-1 | C0 | ||
1000 | 10 | 10000 | 1.0 | ||
GHEN(H2C2)参数 | |||||
GHEN | H1 | H2 | C1 | C2 | |
Fcp =Gcp /kJ·K-1·s-1 | 9 | 1 | 23 | 10 | |
C1运行费用系数: |
MEN(R2S2)参数[ | |||||
---|---|---|---|---|---|
MEN | G(L)/kg·s–1 | ||||
R1 | 0.9 | 0.07 | 0.0003 | — | — |
R2 | 0.1 | 0.051 | 0.0001 | — | — |
S1 | 2.3 | 0.0006 | 0.031 | 0.00087 | 0.04495 |
S2 | ∞ | 0.0002 | 0.0035 | 0.000052 | 0.00091 |
S1运行费用系数: | |||||
比拟参数 | |||||
ρ/kg·m-3 | Cp /kJ·kg-1·K-1 | μ0/ kg·m-1 | C0 | ||
1000 | 10 | 10000 | 1.0 | ||
GHEN(H2C2)参数 | |||||
GHEN | H1 | H2 | C1 | C2 | |
Fcp =Gcp /kJ·K-1·s-1 | 9 | 1 | 23 | 10 | |
C1运行费用系数: |
GHEN | 104℃·kg–1·kg | 2×104℃·kg–1·kg | 105℃·kg–1·kg | 2×105℃·kg–1·kg | ||||
---|---|---|---|---|---|---|---|---|
Tin/℃ | Tout/℃ | Tin/℃ | Tout/℃ | Tin/℃ | Tout/℃ | Tin/℃ | Tout/℃ | |
H1 | 700 | 3 | 1400 | 6 | 7000 | 30 | 14000 | 60 |
H2 | 510 | 1 | 1020 | 2 | 5100 | 10 | 10200 | 20 |
C1 | 8.7 | 449.5 | 17.4 | 899 | 87 | 4.495 | 174 | 8990 |
C2 | 0.52 | 9.1 | 1.04 | 18.2 | 5.2 | 91 | 10.4 | 182 |
GHEN | 104℃·kg–1·kg | 2×104℃·kg–1·kg | 105℃·kg–1·kg | 2×105℃·kg–1·kg | ||||
---|---|---|---|---|---|---|---|---|
Tin/℃ | Tout/℃ | Tin/℃ | Tout/℃ | Tin/℃ | Tout/℃ | Tin/℃ | Tout/℃ | |
H1 | 700 | 3 | 1400 | 6 | 7000 | 30 | 14000 | 60 |
H2 | 510 | 1 | 1020 | 2 | 5100 | 10 | 10200 | 20 |
C1 | 8.7 | 449.5 | 17.4 | 899 | 87 | 4.495 | 174 | 8990 |
C2 | 0.52 | 9.1 | 1.04 | 18.2 | 5.2 | 91 | 10.4 | 182 |
算例 | (Tmax/Cmax)/℃·kg–1·kg | GHEN/USD·a-1 | MEN/USD·a-1 | 单元数 |
---|---|---|---|---|
R2S3 | 104 | 319617 | 340020 | 8 |
2×104 | 321779 | 323199 | 8 | |
105 | 340130 | 342077 | 8 | |
R2S2 | 105 | 418365 | 411043 | 5 |
2×104 | 444661 | 431570 | 5 | |
104 | 509784 | 437389 | 4 |
算例 | (Tmax/Cmax)/℃·kg–1·kg | GHEN/USD·a-1 | MEN/USD·a-1 | 单元数 |
---|---|---|---|---|
R2S3 | 104 | 319617 | 340020 | 8 |
2×104 | 321779 | 323199 | 8 | |
105 | 340130 | 342077 | 8 | |
R2S2 | 105 | 418365 | 411043 | 5 |
2×104 | 444661 | 431570 | 5 | |
104 | 509784 | 437389 | 4 |
协调系数 | GHEN/USD·a-1 | MEN/USD·a-1 | 总塔板数 | 单元个数 |
---|---|---|---|---|
0.8 | 323983 | 337797 | 21 | 6 |
1.0 | 321779 | 323199 | 21 | 8 |
1.1 | 321792 | 321800 | 24 | 6 |
1.2 | 320281 | 338702 | 23 | 7 |
1.3 | 320915 | 334183 | 26 | 8 |
1.4 | 321098 | 333534 | 22 | 5 |
2.0 | 319995 | 334603 | 22 | 5 |
协调系数 | GHEN/USD·a-1 | MEN/USD·a-1 | 总塔板数 | 单元个数 |
---|---|---|---|---|
0.8 | 323983 | 337797 | 21 | 6 |
1.0 | 321779 | 323199 | 21 | 8 |
1.1 | 321792 | 321800 | 24 | 6 |
1.2 | 320281 | 338702 | 23 | 7 |
1.3 | 320915 | 334183 | 26 | 8 |
1.4 | 321098 | 333534 | 22 | 5 |
2.0 | 319995 | 334603 | 22 | 5 |
文献 | 方法 | 单元数 | 塔板总数 | AOC/USD·a-1 | TAC/USD·a-1 |
---|---|---|---|---|---|
Papalexandri等[ | Hyper MINLP | 3 | — | — | 918000 |
Azeez等[ | SBS | 5 | 37 | 300433 | 469968 |
Hallale and Fraser [ | PDM | 5 | 25 | 313293 | 427093 |
都健等[ | SWS & GA-SA | 4 | 22 | 321500 | 421644 |
侯创等[ | SWS & 取整函数 | 4 | 20 | 320126 | 411166 |
Zhou等[ | NNM & RWCE | 4 | 21 | 310332 | 410476 |
本文( | 质能比拟 | 5 | 17 | 324555 | 411043 |
本文( | 质能比拟 | 4 | 20 | 318124 | 409164 |
文献 | 方法 | 单元数 | 塔板总数 | AOC/USD·a-1 | TAC/USD·a-1 |
---|---|---|---|---|---|
Papalexandri等[ | Hyper MINLP | 3 | — | — | 918000 |
Azeez等[ | SBS | 5 | 37 | 300433 | 469968 |
Hallale and Fraser [ | PDM | 5 | 25 | 313293 | 427093 |
都健等[ | SWS & GA-SA | 4 | 22 | 321500 | 421644 |
侯创等[ | SWS & 取整函数 | 4 | 20 | 320126 | 411166 |
Zhou等[ | NNM & RWCE | 4 | 21 | 310332 | 410476 |
本文( | 质能比拟 | 5 | 17 | 324555 | 411043 |
本文( | 质能比拟 | 4 | 20 | 318124 | 409164 |
1 | XU Yue, CUI Guomin, XIAO Yuan, et al. An enhanced heuristic algorithm with coordination evolution strategy for waste-mass minimization and heat integration network design[J]. Case Studies in Thermal Engineering, 2022, 39: 102458. |
2 | EL-HALWAGI Mahmoud M, MANOUSIOUTHAKIS Vasilios. Synthesis of mass exchange networks[J]. AIChE Journal, 1989, 35(8): 1233-1244. |
3 | MASSO A H, RUDD D F. The synthesis of system designs. Ⅱ. Heuristic structuring[J]. AIChE Journal, 1969, 15(1): 10-17. |
4 | 都健, 李秀峰, 陈理, 等. 超结构法分步综合热集成的质量交换网络[J]. 化工学报, 2010, 61(10): 2636-2643. |
DU Jian, LI Xiufeng, CHEN Li, et al. Synthesis of heat integrated mass exchanger networks using step-wise approach based on superstructure[J]. CIESC Journal, 2010, 61(10): 2636-2643. | |
5 | LINNHOFF B, HINDMARSH E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. |
6 | FARRAG Nessren M, KAMEL Dina A, GHALLAB Ayat O, et al. Graphical design and analysis of mass exchange networks using composition driving forces[J]. South African Journal of Chemical Engineering, 2021, 36: 94-104. |
7 | 侯创, 罗明生, 徐文星. 取整函数优化基于超结构模型的质量交换网络[J]. 化学反应工程与工艺, 2020, 36(2): 108-116. |
HOU Chuang, LUO Mingsheng, XU Wenxing. An integral function to optimize the mass exchange network based on superstructure model[J]. Chemical Reaction Engineering and Technology, 2020, 36(2): 108-116. | |
8 | 易智康, 崔国民, 周志强,等. 棋盘模型同步优化质量交换网络[J]. 计算物理, 2023, 40(4): 500-510. |
YI Zhikang, CUI Guomin, ZHOU Zhiqiang,et al. A chessboard model for simultaneous optimization of mass exchange networks[J]. Chinese Journal of Computational Physics, 2023, 40(4): 500-510. | |
9 | ZHOU Zhiqiang, CUI Guoming, XIAO Yuan. A novel node-based non-structural model for mass exchanger network synthesis using a stochastic algorithm[J]. Journal of Cleaner Production, 2022, 376: 134227. |
10 | 薛东峰. 废物最小化为目标的质量集成方法研究[D]. 大连: 大连理工大学, 2001. |
XUE Dongfeng. Study on mass integration for waste minimization as the goal[D]. Dalian: Dalian University of Technology, 2001. | |
11 | 李绍军, 阳永荣. 利用改进的遗传算法进行质量交换网络的最优综合[J]. 化工学报, 2002, 53(1): 60-65. |
LI Shaojun, YANG Yongrong. Mass exchanger networks synthesis using genetic-alopex algorithms[J]. CIESC Journal, 2002, 53(1): 60-65. | |
12 | 都健, 高志辉, 陈理, 等. 采用浓度差同步优化的质量交换网络设计[J]. 化工学报, 2007, 58(7): 1768-1775. |
DU Jian, GAO Zhihui, CHEN Li, et al. Mass exchange network design using simultaneous optimization of composition differences[J]. CIESC Journal, 2007, 58(7): 1768-1775. | |
13 | 马秀宝, 盖照亮, 崔国民, 等. 基于强制进化随机游走算法的质量交换网络综合[J]. 计算物理, 2022, 39(4): 479-490. |
MA Xiubao, GAI Zhaoliang, CUI Guomin, et al. Mass exchanger network synthesis based on random walk algorithm with compulsive evolution[J]. Chinese Journal of Computational Physics, 2022, 39(4): 479-490. | |
14 | 杨岭, 崔国民, 周志强, 等. 精细搜索策略应用于质量交换网络综合[J]. 化工学报, 2022, 73(7): 3145-3155. |
YANG Ling, CUI Guomin, ZHOU Zhiqiang, et al. Fine search strategy applied to mass exchange network synthesis[J]. CIESC Journal, 2022, 73(7): 3145-3155. | |
15 | 金广林, 崔国民, 肖媛, 等. 应用于质量交换网络的个体重构优化方法[J]. 计算物理, 2024, 41(2): 245-257. |
JIN Guanglin, CUI Guomin, XIAO Yuan, et al. Individual reconstruction optimization method applied to mass exchanger networks[J]. Chinese Journal of Computational Physics, 2024, 41(2): 245-257. | |
16 | 杨友麒. 质量交换网络[J]. 化工进展, 2007, 26(2): 284-289. |
YANG Youqi. Mass exchange networks[J]. Chemical Industry and Engineering Progress, 2007, 26(2): 284-289. | |
17 | 刘伟. 基于协同与耗散的能质传输理论[J].中国科学: 技术科学, 2024, 54(3): 411-421. |
LIU Wei. The theory of macroscopic energy and mass transport based on the synergy and dissipation analysis [J]. Scientia Sinica Technologica, 2024, 54(3): 411-421. | |
18 | XIAO Yuan, CUI Guomin. A novel mass-heat exchange network analogy, regression, and synthesis method for mass exchanger networks[J]. Heliyon, 2023, 9(10): e20574. |
19 | TREYBAL R E. Mass-transfer operations[M]. 3rd ed. Singapore: McGraw-Hill, 1981. |
20 | MCCABE W L, SMITH J C, HARRIOTT P. Unit operations of chemical engineering (6th ed.). Singapore: McGraw-Hill, 2001. |
21 | 弗兰克 P . 英克鲁佩勒. 传热和传质基本原理[M]. 葛新石, 叶宏, 译. 6版. 北京: 化学工业出版社, 2007.INCROPERA F. |
INCROPERA F P. Fundamentals of heat and mass transfer[M]. GE xinshi, YE Hong, trans. 6th ed. Beijing: Chemical Industry Press, 2007. | |
22 | XU Yue, LIU Liuchen, CUI Guomin. A flexible model with an adjustable number of nodes for efficient and high-quality heat exchanger network synthesis[J]. Industrial & Engineering Chemistry Research, 2020, 59(33): 14834-14849. |
23 | XIAO Yuan, CUI Guomin, XU Yue, et al. An efficient and random synthesis method for mass exchange networks with multi-component using a node-based vertical non-structural model[J]. Journal of Cleaner Production, 2023, 416: 137951. |
24 | 肖媛, 崔国民, 李帅龙. 一种新的用于换热网络全局优化的强制进化随机游走算法[J]. 化工学报, 2016, 67(12): 5140-5147. |
XIAO Yuan, CUI Guomin, LI Shuailong. A novel random walk algorithm with compulsive evolution for global optimization of heat exchanger networks[J]. CIESC Journal, 2016, 67(12): 5140-5147. | |
25 | XIAO Yuan, CUI Guomin, SUN Tao, et al. An integrated random walk algorithm with compulsive evolution and fine-search strategy for heat exchanger network synthesis[J]. Applied Thermal Engineering, 2018, 128: 861-876. |
26 | HALLALE N, FRASER D M. Supertargeting for mass exchange networks Part Ⅰ: Targeting and design techniques [J]. Chemical Engineering Research and Design, 2000, 78(2): 202-207. |
27 | ISAFIADE A J, FRASER D M. Interval based MINLP superstructure synthesis of mass exchange networks[J]. Chemical Engineering Research and Design, 2008, 86(8): 909-924. |
28 | COMEAUX R. Synthesis of MENs with Minimum Total Cost[D]. Manchester, UK: University of Manchester Institute of Science and Technology, 2000. |
29 | PAPALEXANDRI K P, PISTIKOPOULOS E N, FLOUDAS C A. Mass exchange networks for waste minimization: A simultaneous approach[J]. Chemical Engineering Research & Design, 1994, 72(A3): 279-294. |
30 | AZEEZ O S, ISAFIADE A J, FRASER D M. Supply-based superstructure synthesis of heat and mass exchange networks[J]. Computers & Chemical Engineering, 2013, 56: 184-201. |
[1] | ZHANG Qian, LIU Xin, WANG Bing, XU Jing, CAO Chenxi. Quantitative analysis of domino effects in large tank farms under various wind conditions and accident scenarios [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1170-1182. |
[2] | XIONG Siheng, HUANG Dongmei, XIAO Yuan, HUANG Xiaohuang, YI Zhikang, CUI Guomin. Novel continuous non-structural model for mass exchanger network synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 635-645. |
[3] | CHEN Wangmi, XI Beidou, LI Mingxiao, YE Meiying, HOU Jiaqi, YU Chengze, WEI Yufang, MENG Fanhua. Research progress on carbon emission reduction technology for pyrolysis system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 479-503. |
[4] | CUI Yi, LI Mengyuan, YANG Lu, LI Haidong, ZHANG Qiqi, CHANG Chenglin, WANG Yufei. New method for automatic design of intensified shell and tube heat exchanger with twisted-tape insert [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4824-4832. |
[5] | ZHANG Xiaotian, LIU Siqi, CUI Guomin, HUANG Xiaohuang, DUAN Huanhuan, WANG Jinyang. Heat exchanger network synthesis based on directional coordination strategy to improve heat exchange unit optimization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4342-4353. |
[6] | YI Zhikang, LIU Siqi, CUI Guomin, DUAN Huanhuan, XIAO Yuan. A chessboard model for incompatible multi-component mass exchange network optimization [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2986-2995. |
[7] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[8] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[9] | WANG Zizong, SUO Hansheng, ZHAO Xueliang, YAN Yakun. Design and construction of industrial internet platform for digital twin intelligent ethylene plant [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5029-5036. |
[10] | ZENG Siying, YANG Minbo, FENG Xiao. Machine learning-based prediction of coalbed methane composition and real-time optimization of liquefaction process [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5059-5066. |
[11] | ZHAO Huacong, ZHU Weixuan, YE Haotian, DONG Hongguang. Research on synchronous optimization of steam power system for processing units and thermal power plant operation [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 44-53. |
[12] | YANG Youqi, CHEN Bingzhen. PSE in China: retrospect and prospects [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 3991-4008. |
[13] | LI Guixian, ZHANG Junqiang, YANG Yong, FAN Xueying, WANG Dongliang. A novel PX production shortcut through PX selectivity intensification in toluene and methanol methylation [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2939-2947. |
[14] | ZHANG Fan, WANG Shuzhong, LI Yanhui, YANG Jianqiao, SUN Shenghan. Analysis of CO2 emission and countermeasures and suggestions for emission reduction in Chinese manufacturing [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1645-1653. |
[15] | ZHU Jiahua, MU Liwen, JIANG Guancong, LIU Li, XIONG Jingjing, LU Xiaohua. Biomass integrated industrial processes for system energy conservation, pollution reduction and carbon dioxide mitigation [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1111-1114. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 10
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 54
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |