Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (6): 2799-2808.DOI: 10.16085/j.issn.1000-6613.2022-1457
• Chemical processes and equipment • Previous Articles Next Articles
GU Shiya(), DONG Yachao(), LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian
Received:
2022-08-04
Revised:
2022-10-18
Online:
2023-06-29
Published:
2023-06-25
Contact:
DONG Yachao
通讯作者:
董亚超
作者简介:
顾诗亚(2000—),女,硕士研究生,研究方向为过程系统工程。E-mail:gsy0617@mail.dlut.edu.cn。
CLC Number:
GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808.
顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1457
编号 | 排放量/kg·s-1 | 封存容量/Mt | 经度/(°) | 纬度/(°) | x坐标/m | y坐标/m |
---|---|---|---|---|---|---|
a1 | 62.5 | — | 123.35 | 42.75 | 528655 | 4735007 |
a2 | 62.5 | — | 123.01 | 39.68 | 500858 | 4393999 |
a3 | 98.96 | — | 123.97 | 41.91 | 580484 | 4641727 |
a4 | 67.71 | — | 124.34 | 40.08 | 614303 | 4438717 |
a5 | 31.25 | — | 121.22 | 41.14 | 350553 | 4557649 |
a6 | 130.21 | — | 122.20 | 40.61 | 431874 | 4497575 |
a7 | 36.46 | — | 121.66 | 42.00 | 388979 | 4652506 |
a8 | 31.25 | — | 123.22 | 41.36 | 518409 | 4580577 |
a9 | 187.5 | — | 123.98 | 42.45 | 580194 | 4701540 |
a10 | 31.25 | — | 122.14 | 41.14 | 427797 | 4556478 |
a11 | 36.46 | — | 123.81 | 41.35 | 567788 | 4579760 |
a12 | 67.71 | — | 123.46 | 41.75 | 537842 | 4623986 |
a13 | 67.71 | — | 120.37 | 41.51 | 280005 | 4600569 |
a14 | — | 824.21 | 121.59 | 40.95 | 381278 | 4535978 |
a15 | — | 448.29 | 121.95 | 41.10 | 411376 | 4552216 |
a16 | — | 123.7 | 123.13 | 41.98 | 510774 | 4649424 |
a17 | — | 213.85 | 122.81 | 42.08 | 484282 | 4659987 |
a18 | — | 56.53 | 122.92 | 41.78 | 493349 | 4627204 |
a19 | — | — | 122.74 | 40.84 | 490545 | 4511684 |
a20 | — | — | 123.63 | 40.84 | 591236 | 4511684 |
a21 | — | — | 120.91 | 42.03 | 389854 | 4601321 |
a22 | — | — | 122.73 | 42.05 | 490545 | 4601321 |
编号 | 排放量/kg·s-1 | 封存容量/Mt | 经度/(°) | 纬度/(°) | x坐标/m | y坐标/m |
---|---|---|---|---|---|---|
a1 | 62.5 | — | 123.35 | 42.75 | 528655 | 4735007 |
a2 | 62.5 | — | 123.01 | 39.68 | 500858 | 4393999 |
a3 | 98.96 | — | 123.97 | 41.91 | 580484 | 4641727 |
a4 | 67.71 | — | 124.34 | 40.08 | 614303 | 4438717 |
a5 | 31.25 | — | 121.22 | 41.14 | 350553 | 4557649 |
a6 | 130.21 | — | 122.20 | 40.61 | 431874 | 4497575 |
a7 | 36.46 | — | 121.66 | 42.00 | 388979 | 4652506 |
a8 | 31.25 | — | 123.22 | 41.36 | 518409 | 4580577 |
a9 | 187.5 | — | 123.98 | 42.45 | 580194 | 4701540 |
a10 | 31.25 | — | 122.14 | 41.14 | 427797 | 4556478 |
a11 | 36.46 | — | 123.81 | 41.35 | 567788 | 4579760 |
a12 | 67.71 | — | 123.46 | 41.75 | 537842 | 4623986 |
a13 | 67.71 | — | 120.37 | 41.51 | 280005 | 4600569 |
a14 | — | 824.21 | 121.59 | 40.95 | 381278 | 4535978 |
a15 | — | 448.29 | 121.95 | 41.10 | 411376 | 4552216 |
a16 | — | 123.7 | 123.13 | 41.98 | 510774 | 4649424 |
a17 | — | 213.85 | 122.81 | 42.08 | 484282 | 4659987 |
a18 | — | 56.53 | 122.92 | 41.78 | 493349 | 4627204 |
a19 | — | — | 122.74 | 40.84 | 490545 | 4511684 |
a20 | — | — | 123.63 | 40.84 | 591236 | 4511684 |
a21 | — | — | 120.91 | 42.03 | 389854 | 4601321 |
a22 | — | — | 122.73 | 42.05 | 490545 | 4601321 |
管路系统类型 | 捕集量要求 | 变量 个数 | 约束 个数 | 求解时间/s | 迭代次数/次 |
---|---|---|---|---|---|
无中间节点 | 无捕集封存量要求 | 346 (216) | 572 | 0.253 | 232 |
有总捕集封存量要求 | 0.382 | 463 | |||
有源捕集封存量要求 | 0.422 | 601 | |||
有中间节点 | 无捕集封存量要求 | 762 (476) | 1244 | 0.406 | 2132 |
有总捕集封存量要求 | 0.765 | 3206 | |||
有源捕集封存量要求 | 1.985 | 15629 |
管路系统类型 | 捕集量要求 | 变量 个数 | 约束 个数 | 求解时间/s | 迭代次数/次 |
---|---|---|---|---|---|
无中间节点 | 无捕集封存量要求 | 346 (216) | 572 | 0.253 | 232 |
有总捕集封存量要求 | 0.382 | 463 | |||
有源捕集封存量要求 | 0.422 | 601 | |||
有中间节点 | 无捕集封存量要求 | 762 (476) | 1244 | 0.406 | 2132 |
有总捕集封存量要求 | 0.765 | 3206 | |||
有源捕集封存量要求 | 1.985 | 15629 |
捕集量要求 | 无捕集封存量 要求 | 有总捕集封存量要求 | 有源捕集封存量要求 |
---|---|---|---|
1~17 | 6.25 | 13.00 | 25.00 |
2~15 | 6.25 | 13.00 | 25.00 |
3~16 | 9.90 | 21.79 | 39.24 |
4~18 | 6.77 | 13.54 | 27.08 |
5~14 | 3.13 | 7.50 | 12.20 |
6~15 | 13.02 | 25.04 | 52.08 |
7~17 | 3.65 | 7.29 | 16.00 |
8~18 | 3.13 | 6.75 | 12.20 |
9~16 | 18.75 | 37.50 | 75.00 |
10~15 | 3.13 | 6.75 | 12.20 |
11~18 | 3.65 | 7.50 | 15.79 |
12~16 | 6.77 | 13.54 | 27.08 |
13~14 | 6.77 | 13.54 | 27.08 |
捕集量要求 | 无捕集封存量 要求 | 有总捕集封存量要求 | 有源捕集封存量要求 |
---|---|---|---|
1~17 | 6.25 | 13.00 | 25.00 |
2~15 | 6.25 | 13.00 | 25.00 |
3~16 | 9.90 | 21.79 | 39.24 |
4~18 | 6.77 | 13.54 | 27.08 |
5~14 | 3.13 | 7.50 | 12.20 |
6~15 | 13.02 | 25.04 | 52.08 |
7~17 | 3.65 | 7.29 | 16.00 |
8~18 | 3.13 | 6.75 | 12.20 |
9~16 | 18.75 | 37.50 | 75.00 |
10~15 | 3.13 | 6.75 | 12.20 |
11~18 | 3.65 | 7.50 | 15.79 |
12~16 | 6.77 | 13.54 | 27.08 |
13~14 | 6.77 | 13.54 | 27.08 |
管路系统类型 | 捕集量要求 | 管道固定成本/108CNY | 占比/% | 运输成本/108CNY·a-1 | 占比/% | 总成本/108CNY | 约当年均成本/108CNY·a-1 |
---|---|---|---|---|---|---|---|
无中间节点 | 无捕集封存量要求 | 3.00 | 24.24 | 0.94 | 75.76 | 12.38 | 1.30 |
有总捕集封存量要求 | 3.00 | 23.64 | 0.97(3.19%) | 76.36 | 12.69(2.50%) | 1.33 | |
有源捕集封存量要求 | 3.00 | 23.01 | 1.00(6.38%) | 76.99 | 13.05(5.41%) | 1.37 | |
有中间节点 | 无捕集封存量要求 | 2.97 | 26.15 | 0.84 | 73.85 | 11.34 | 1.20 |
有总捕集封存量要求 | 3.14(5.72%) | 25.97 | 0.89(5.95%) | 74.03 | 12.08(6.53%) | 1.28 | |
有源捕集封存量要求 | 3.27(10.10%) | 25.50 | 0.95(13.10%) | 74.50 | 12.82(13.05%) | 1.35 |
管路系统类型 | 捕集量要求 | 管道固定成本/108CNY | 占比/% | 运输成本/108CNY·a-1 | 占比/% | 总成本/108CNY | 约当年均成本/108CNY·a-1 |
---|---|---|---|---|---|---|---|
无中间节点 | 无捕集封存量要求 | 3.00 | 24.24 | 0.94 | 75.76 | 12.38 | 1.30 |
有总捕集封存量要求 | 3.00 | 23.64 | 0.97(3.19%) | 76.36 | 12.69(2.50%) | 1.33 | |
有源捕集封存量要求 | 3.00 | 23.01 | 1.00(6.38%) | 76.99 | 13.05(5.41%) | 1.37 | |
有中间节点 | 无捕集封存量要求 | 2.97 | 26.15 | 0.84 | 73.85 | 11.34 | 1.20 |
有总捕集封存量要求 | 3.14(5.72%) | 25.97 | 0.89(5.95%) | 74.03 | 12.08(6.53%) | 1.28 | |
有源捕集封存量要求 | 3.27(10.10%) | 25.50 | 0.95(13.10%) | 74.50 | 12.82(13.05%) | 1.35 |
目标 | 变量个数 | 约束个数 | 求解时间/s | 迭代次数/次 |
---|---|---|---|---|
总捕集封存量最大 | 3234(2090) | 5154 | 29.688 | 44321 |
项目总成本最小 | 3321(2177) | 5237 | 37.078 | 51454 |
目标 | 变量个数 | 约束个数 | 求解时间/s | 迭代次数/次 |
---|---|---|---|---|
总捕集封存量最大 | 3234(2090) | 5154 | 29.688 | 44321 |
项目总成本最小 | 3321(2177) | 5237 | 37.078 | 51454 |
情景 | t1 | t2 | t3 | t4 |
---|---|---|---|---|
总捕集封存量最大 | 1451 | 1468 | 870 | 322 |
项目总成本最小 | 1386 | 1289 | 829 | 145 |
情景 | t1 | t2 | t3 | t4 |
---|---|---|---|---|
总捕集封存量最大 | 1451 | 1468 | 870 | 322 |
项目总成本最小 | 1386 | 1289 | 829 | 145 |
目标函数 | 周期 | 管道固定成本/108CNY | 运输成本/108CNY·a-1 | 每个周期成本/108CNY | 捕集封存量/Mt | 单位捕集封存成本/108CNY·Mt-1 |
---|---|---|---|---|---|---|
总捕集封存量最大 | t1 | 3.99 | 1.66 | 12.28 | 131.25 | 0.09 |
t2 | 0 | 1.41 | 7.03 | 96.82 | 0.07 | |
t3 | 0 | 1.25 | 6.26 | 55.12 | 0.11 | |
t4 | 0 | 0.79 | 3.97 | 8.97 | 0.44 | |
汇总 | 3.99 | — | 29.54 | 292.16 | 0.10 | |
项目总成本最小 | t1 | 3.39 | 1.30 | 9.88 | 95.70 | 0.10 |
t2 | 0 | 1.28 | 6.39 | 81.45 | 0.08 | |
t3 | 0 | 1.20 | 5.98 | 55.12 | 0.11 | |
t4 | 0.23 | 0.65 | 3.48 | 8.97 | 0.39 | |
汇总 | 3.62 | — | 25.73 | 241.24 | 0.11 |
目标函数 | 周期 | 管道固定成本/108CNY | 运输成本/108CNY·a-1 | 每个周期成本/108CNY | 捕集封存量/Mt | 单位捕集封存成本/108CNY·Mt-1 |
---|---|---|---|---|---|---|
总捕集封存量最大 | t1 | 3.99 | 1.66 | 12.28 | 131.25 | 0.09 |
t2 | 0 | 1.41 | 7.03 | 96.82 | 0.07 | |
t3 | 0 | 1.25 | 6.26 | 55.12 | 0.11 | |
t4 | 0 | 0.79 | 3.97 | 8.97 | 0.44 | |
汇总 | 3.99 | — | 29.54 | 292.16 | 0.10 | |
项目总成本最小 | t1 | 3.39 | 1.30 | 9.88 | 95.70 | 0.10 |
t2 | 0 | 1.28 | 6.39 | 81.45 | 0.08 | |
t3 | 0 | 1.20 | 5.98 | 55.12 | 0.11 | |
t4 | 0.23 | 0.65 | 3.48 | 8.97 | 0.39 | |
汇总 | 3.62 | — | 25.73 | 241.24 | 0.11 |
1 | FORTUNATO Andrés, HERWARTZ Helmut, LÓPEZ Ramón E, et al. Carbon dioxide atmospheric concentration and hydrometeorological disasters[J]. Natural Hazards, 2022, 112(1): 57-74. |
2 | PENG Xu, TAO Xiaoma, ZHANG Hao, et al. CO2 emissions from the electricity sector during China’s economic transition: From the production to the consumption perspective[J]. Sustainable Production and Consumption, 2021, 27: 1010-1020. |
3 | 张帅. 基于超结构的碳捕集与封存网络综合研究[D]. 大连: 大连理工大学, 2021. |
ZHANG Shuai. Research on superstructure based carbon capture and storage network synthesis[D]. Dalian: Dalian University of Technology, 2021. | |
4 | NOCITO Francesco, DIBENEDETTO Angela. Atmospheric CO2 mitigation technologies: Carbon capture utilization and storage[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 21: 34-43. |
5 | Mai BUI, ADJIMAN Claire S, BARDOW André, et al. Carbon capture and storage (CCS): The way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
6 | ZHANG Shuai, ZHUANG Yu, LIU Linlin, et al. Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109280. |
7 | 孙亮, 陈文颖. 基于GAMS的CCUS源汇匹配动态规划模型[J]. 清华大学学报(自然科学版), 2013, 53(4): 421-426. |
SUN Liang, CHEN Wenying. CCUS source-sink matching dynamic programming model based on GAMS[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(4): 421-426. | |
8 | 孙亮, 陈文颖. 中国大陆CCUS源汇静态匹配管网布局[J]. 清华大学学报(自然科学版), 2015, 55(6): 678-683. |
SUN Liang, CHEN Wenying. Pipeline networks for CCUS by static programming in the Chinese Mainland[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(6): 678-683. | |
9 | 高华. 全球碳捕捉与封存(CCS)技术现状及应用前景[J]. 煤炭经济研究, 2020, 40(5): 33-38. |
GAO Hua. Research on global CCS technology status and application prospect[J]. Coal Economic Research, 2020, 40(5): 33-38. | |
10 | ZHANG Z X, WANG G X, MASSAROTTO P, et al. Optimization of pipeline transport for CO2 sequestration[J]. Energy Conversion and Management, 2006, 47(6): 702-715. |
11 | WAREING Christopher J, FAIRWEATHER Michael, FALLE Samuel A E G, et al. Modelling ruptures of buried high pressure dense phase CO2 pipelines in carbon capture and storage applications—Part I. Validation[J]. International Journal of Greenhouse Gas Control, 2015, 42: 701-711. |
12 | 陈兵, 房启超, 白世星. 含杂质超临界CO2输送管道的停输影响因素[J]. 天然气化工(C1化学与化工), 2020, 45(3): 84-89. |
CHEN Bing, FANG Qichao, BAI Shixing. Research on the factors influencing the shutdown of the transport pipeline of supercritical CO2 containing impurities[J]. Natural Gas Chemical Industry, 2020, 45(3): 84-89. | |
13 | VANDEGINSTE V, PIESSENS K. Pipeline design for a least-cost router application for CO2 transport in the CO2 sequestration cycle[J]. International Journal of Greenhouse Gas Control, 2008, 2(4): 571-581. |
14 | WANG Z, FIMBRES WEIHS G A, CARDENAS G I, et al. Optimal pipeline design for CCS projects with anticipated increasing CO2 flow rates[J]. International Journal of Greenhouse Gas Control, 2014, 31: 165-174. |
15 | MCCOY Sean T, RUBIN Edward S. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage[J]. International Journal of Greenhouse Gas Control, 2008, 2(2): 219-229. |
16 | ZHANG Dongjie, WANG Zhe, SUN Jining, et al. Economic evaluation of CO2 pipeline transport in China[J]. Energy Conversion and Management, 2012, 55: 127-135. |
17 | 赵青. 含杂质CO2不同相态管输节流及减压特性研究[D]. 东营: 中国石油大学(华东), 2015. |
ZHAO Qing. Throttling process and decompression property for pipeline transportation of anthropogenic CO2 in different phase[D]. Dongying: China University of Petroleum (Huadong), 2015. | |
18 | KILGALLON R, GILFILLAN S M V, HASZELDINE R S, et al. Odourisation of CO2 pipelines in the UK: Historical and current impacts of smell during gas transport[J]. International Journal of Greenhouse Gas Control, 2015, 37: 504-512. |
19 | 宁雯宇, 陈磊, 韩喜龙, 等. CO2管道输送技术现状研究[J]. 当代化工, 2014, 43(7): 1280-1282. |
NING Wenyu, CHEN Lei, HAN Xilong, et al. Research situation of the CO2 pipeline transportation technology[J]. Contemporary Chemical Industry, 2014, 43(7): 1280-1282. | |
20 | 李昕. 二氧化碳输送管道关键技术研究现状[J]. 油气储运, 2013, 32(4): 343-348. |
LI Xin. Status of key technology research on carbon dioxide pipeline[J]. Oil & Gas Storage and Transportation, 2013, 32(4): 343-348. | |
21 | KOORNNEEF J, SPRUIJT M, MOLAG M, et al. Uncertainties in risk assessment of CO2 pipelines[J]. Energy Procedia, 2009, 1(1): 1587-1594. |
22 | VIANELLO Chiara, MOCELLIN Paolo, MACCHIETTO Sandro, et al. Risk assessment in a hypothetical network pipeline in UK transporting carbon dioxide[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 515-527. |
23 | KNOOPE M M J, GUIJT W, RAMÍREZ A, et al. Improved cost models for optimizing CO2 pipeline configuration for point-to-point pipelines and simple networks[J]. International Journal of Greenhouse Gas Control, 2014, 22: 25-46. |
24 | LUO Xiaobo, WANG Meihong, Eni OKO, et al. Simulation-based techno-economic evaluation for optimal design of CO2 transport pipeline network[J]. Applied Energy, 2014, 132: 610-620. |
25 | KAZMIERCZAK Tomasz, BRANDSMA Ruut, NEELE Filip, et al. Algorithm to create a CCS low-cost pipeline network[J]. Energy Procedia, 2009, 1(1): 1617-1623. |
26 | FIMBRES WEIHS G A, WILEY D E, HO M. Steady-state optimisation of CCS pipeline networks for cases with multiple emission sources and injection sites: south-east Queensland case study[J]. Energy Procedia, 2011, 4: 2748-2755. |
27 | FIMBRES WEIHS G A, WILEY D E. Steady-state design of CO2 pipeline networks for minimal cost per tonne of CO2 avoided[J]. International Journal of Greenhouse Gas Control, 2012, 8: 150-168. |
28 | TAN Raymond R, AVISO Kathleen B, BANDYOPADHYAY Santanu, et al. Optimal source-sink matching in carbon capture and storage systems with time, injection rate, and capacity constraints[J]. Environmental Progress & Sustainable Energy, 2013, 32(2): 411-416. |
29 | ELAHI Nasim, SHAH Nilay, KORRE Anna, et al. Multi-period least cost optimisation model of an integrated carbon dioxide capture transportation and storage infrastructure in the UK[J]. Energy Procedia, 2014, 63: 2655-2662. |
30 | ZHOU Chengchuan, LIU Pei, LI Zheng. A superstructure-based mixed-integer programming approach to optimal design of pipeline network for large-scale CO2 transport[J]. AIChE Journal, 2014, 60(7): 2442-2461. |
31 | ZHANG Shuai, ZHUANG Yu, LIU Linlin, et al. Optimization-based approach for CO2 utilization in carbon capture, utilization and storage supply chain[J]. Computers & Chemical Engineering, 2020, 139: 106885. |
32 | FOX R W, MCDONALD R T. Introduction to fluid mechanics[M]. New York: John Wiley & Sons, 1973. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[4] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[5] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[6] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[7] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[8] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[9] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[10] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[11] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[12] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[13] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[14] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[15] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |