Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4342-4353.DOI: 10.16085/j.issn.1000-6613.2023-1197
• Energy processes and technology • Previous Articles
ZHANG Xiaotian1(), LIU Siqi1, CUI Guomin1(
), HUANG Xiaohuang1, DUAN Huanhuan1,2, WANG Jinyang3
Received:
2023-07-14
Revised:
2023-11-02
Online:
2024-09-02
Published:
2024-08-15
Contact:
CUI Guomin
张笑恬1(), 刘思琪1, 崔国民1(
), 黄晓璜1, 段欢欢1,2, 王金阳3
通讯作者:
崔国民
作者简介:
张笑恬(1998—),女,硕士研究生,研究方向为过程系统优化。E-mail:zxt981226@163.com。
基金资助:
CLC Number:
ZHANG Xiaotian, LIU Siqi, CUI Guomin, HUANG Xiaohuang, DUAN Huanhuan, WANG Jinyang. Heat exchanger network synthesis based on directional coordination strategy to improve heat exchange unit optimization[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4342-4353.
张笑恬, 刘思琪, 崔国民, 黄晓璜, 段欢欢, 王金阳. 基于定向协调策略改进换热单元优化的换热网络综合[J]. 化工进展, 2024, 43(8): 4342-4353.
流股 | 换热潜能/kW | 流股 | 换热潜能/kW |
---|---|---|---|
H1 | 3150 | C1 | 3800 |
H2 | 9600 | C2 | 7200 |
H3 | 3130 | C3 | 5250 |
H4 | 3000 | C4 | 4200 |
H5 | 5000 | C5 | 12000 |
H6 | 4375 | C6 | 5000 |
H7 | 4200 | C7 | 5400 |
H8 | 8000 |
流股 | 换热潜能/kW | 流股 | 换热潜能/kW |
---|---|---|---|
H1 | 3150 | C1 | 3800 |
H2 | 9600 | C2 | 7200 |
H3 | 3130 | C3 | 5250 |
H4 | 3000 | C4 | 4200 |
H5 | 5000 | C5 | 12000 |
H6 | 4375 | C6 | 5000 |
H7 | 4200 | C7 | 5400 |
H8 | 8000 |
Qmin/kW | ΔLQ =100kW | ΔLQ =200kW | ΔLQ =300kW |
---|---|---|---|
5 | (10,18) | (10,14) | (9,14) |
15 | (9,18) | (9,14) | (9,13) |
25 | (9,16) | (9,13) | (9,12) |
Qmin/kW | ΔLQ =100kW | ΔLQ =200kW | ΔLQ =300kW |
---|---|---|---|
5 | (10,18) | (10,14) | (9,14) |
15 | (9,18) | (9,14) | (9,13) |
25 | (9,16) | (9,13) | (9,12) |
γ | Qmax=150kW | Qmax=250kW | Qmax=350kW | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TAC/USD·a-1 | τ1 | τ2 | TAC/USD·a-1 | τ1 | τ2 | TAC/USD·a-1 | τ1 | τ2 | |||
0.2 | 1541415 | 0.82 | 0.012 | 1544237 | 0.80 | 0.011 | 1544159 | 0.79 | 0.010 | ||
0.4 | 1552332 | 0.78 | 0.013 | 1583066 | 0.76 | 0.012 | 1628448 | 0.73 | 0.011 | ||
0.6 | 1570982 | 0.75 | 0.015 | 1619761 | 0.70 | 0.013 | 1691717 | 0.67 | 0.012 |
γ | Qmax=150kW | Qmax=250kW | Qmax=350kW | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TAC/USD·a-1 | τ1 | τ2 | TAC/USD·a-1 | τ1 | τ2 | TAC/USD·a-1 | τ1 | τ2 | |||
0.2 | 1541415 | 0.82 | 0.012 | 1544237 | 0.80 | 0.011 | 1544159 | 0.79 | 0.010 | ||
0.4 | 1552332 | 0.78 | 0.013 | 1583066 | 0.76 | 0.012 | 1628448 | 0.73 | 0.011 | ||
0.6 | 1570982 | 0.75 | 0.015 | 1619761 | 0.70 | 0.013 | 1691717 | 0.67 | 0.012 |
参考文献 | 换热单元数 | 热公用工程 /MW | 冷公用工程 /MW | 年综合费用 /USD·a-1 |
---|---|---|---|---|
Pav | 19 | 10.24 | 7.86 | 1525394① |
Fieg等[ | 15 | 10.62 | 8.24 | 1510891 |
孙涛等[ | 18 | 10.31 | 7.93 | 1506762① |
本文 | 17 | 10.43 | 8.06 | 1496744① |
参考文献 | 换热单元数 | 热公用工程 /MW | 冷公用工程 /MW | 年综合费用 /USD·a-1 |
---|---|---|---|---|
Pav | 19 | 10.24 | 7.86 | 1525394① |
Fieg等[ | 15 | 10.62 | 8.24 | 1510891 |
孙涛等[ | 18 | 10.31 | 7.93 | 1506762① |
本文 | 17 | 10.43 | 8.06 | 1496744① |
参考文献 | 换热单元数 | 热公用工程 /MW | 冷公用工程 /kW | 年综合费用 /USD·a-1 |
---|---|---|---|---|
Escobar等[ | 21 | 1.938 | 106.93 | 1537086 |
Pav | 21 | 1.938 | 106.93 | 1516482① |
Xu等[ | 21 | 1.83 | 36.6 | 1412801 |
本文 | 21 | 1.83 | 0 | 1396596① |
参考文献 | 换热单元数 | 热公用工程 /MW | 冷公用工程 /kW | 年综合费用 /USD·a-1 |
---|---|---|---|---|
Escobar等[ | 21 | 1.938 | 106.93 | 1537086 |
Pav | 21 | 1.938 | 106.93 | 1516482① |
Xu等[ | 21 | 1.83 | 36.6 | 1412801 |
本文 | 21 | 1.83 | 0 | 1396596① |
1 | RUDD Dale F. The synthesis of system designs: Ⅰ. Elementary decomposition theory[J]. AIChE Journal, 1968, 14(2): 343-349. |
2 | PAPOULIAS Soterios A, GROSSMANN Ignacio E. A structural optimization approach in process synthesis—Ⅰ: Utility systems[J]. Computers & Chemical Engineering, 1983, 7(6): 695-706. |
3 | FLOUDAS C A, CIRIC A R, GROSSMANN I E. Automatic synthesis of optimum heat exchanger network configurations[J]. AIChE Journal, 1986, 32(2): 276-290. |
4 | FURMAN Kevin C, SAHINIDIS Nikolaos V. A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century[J]. Industrial & Engineering Chemistry Research, 2002, 41(10): 2335-2370. |
5 | DURAN Marco A, GROSSMANN Ignacio E. An outer-approximation algorithm for a class of mixed-integer nonlinear programs[J]. Mathematical Programming, 1986, 36(3): 307-339. |
6 | ADJIMAN C S, ANDROULAKIS I P, FLOUDAS C A. Global optimization of mixed-integer nonlinear problems[J]. AIChE Journal, 2000, 46(9): 1769-1797. |
7 | AGUITONI Maria Claudia, PAVÃO Leandro Vitor, ANTONIO DA SILVA SÁ RAVAGNANI Mauro. Heat exchanger network synthesis combining Simulated Annealing and Differential Evolution[J]. Energy, 2019, 181: 654-664. |
8 | 严丽娣, 霍兆义, 尹洪超. 粒子群算法最优同步综合换热网络[J]. 化工进展, 2009, 28(S1): 439-442. |
YAN Lidi, HUO Zhaoyi, YIN Hongchao. Optimal synchronous comprehensive heat exchanger network based on particle swarm optimization [J]. Chemical Industry and Engineering Progress, 2009, 28(S1): 439-442. | |
9 | AGUITONI Maria Claudia, PAVÃO Leandro Vitor, SIQUEIRA Paulo Henrique, et al. Heat exchanger network synthesis using genetic algorithm and differential evolution[J]. Computers & Chemical Engineering, 2018, 117: 82-96. |
10 | 肖媛, 崔国民, 李帅龙. 一种新的用于换热网络全局优化的强制进化随机游走算法[J]. 化工学报, 2016, 67(12): 5140-5147. |
XIAO Yuan, CUI Guomin, LI Shuailong. A novel random walk algorithm with compulsive evolution for global optimization of heat exchanger networks[J]. CIESC Journal, 2016, 67(12): 5140-5147. | |
11 | LUO Xing, WEN Qingyun, FIEG Georg. A hybrid genetic algorithm for synthesis of heat exchanger networks[J]. Computers & Chemical Engineering, 2009, 33(6): 1169-1181. |
12 | LEWIN Daniel R. A generalized method for HEN synthesis using stochastic optimization—Ⅱ:The synthesis of cost-optimal networks[J]. Computers & Chemical Engineering, 1998, 22(10): 1387-1405. |
13 | Leandro PAVÃO, RAVAGNANI Mauro A S S Heat exchanger network synthesis using a genetic algorithms-particle swarm optimization hybrid method and parallel processing[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2016: 1809-1814. |
14 | PAVÃO Leandro Vitor, COSTA Caliane Bastos Borba, RAVAGNANI M A S S. Heat Exchanger Network Synthesis without stream splits using parallelized and simplified simulated Annealing and Particle Swarm Optimization[J]. Chemical Engineering Science, 2017, 158: 96-107. |
15 | 杨智华, 崔国民, 刘薇薇, 等. 换热网络中换热单元竞争分析及策略改进[J]. 系统工程, 2022, 40(6): 33-42. |
YANG Zhihua, CUI Guomin, LIU Weiwei, et al. Competition analysis and strategy improvement of heat exchange unit in heat exchange network[J]. Systems Engineering, 2022, 40(6): 33-42. | |
16 | 金艳, 崔国民, 曹美, 等. 采用换热单元数限制策略的RWCE算法优化换热网络[J]. 热能动力工程, 2020, 35(7): 21-27, 34. |
JIN Yan, CUI Guomin, CAO Mei, et al. Heat transfer network optimization using RWCE algorithm with limiting number of heat exchanger units[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(7): 21-27, 34. | |
17 | 于盛男, 崔国民, 肖媛, 等. 应用于换热网络优化的RWCE算法接受差解策略分析与改进[J]. 计算物理, 2017, 34(4): 445-452. |
YU Shengnan, CUI Guomin, XIAO Yuan, et al. An improved accepting imperfect network strategy for RWCE algorithm in heat exchanger network synthesis[J]. Chinese Journal of Computational Physics, 2017, 34(4): 445-452. | |
18 | 徐玥, 崔国民. 基于节点配置策略的有分流换热网络优化性能探析[J]. 化工进展, 2021, 40(7): 3608-3616. |
XU Yue, CUI Guomin. Analyzing optimization performance of heat exchanger network synthesis based on nodes' adjustment strategy[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3608-3616. | |
19 | Kaj-Mikael BJÖRK, PETTERSSON Frank. Optimization of large-scale heat exchanger network synthesis problems[C]//Proceedings of the IASTED International Conference on Modelling and Simulation, 2003: 313-318. |
20 | 陈子禾, 崔国民, 陈家星, 等. 参数寻优的多个体平行搜索法应用于换热网络全局最优化[J]. 热能动力工程, 2019, 34(6): 11-21. |
CHEN Zihe, CUI Guomin, CHEN Jiaxing, et al. A multi-individual parallel search method for parameter optimization and its application in heat exchanger network synthesis[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(6): 11-21. | |
21 | FIEG Georg, LUO Xing, Jacek JEŻOWSKI. A monogenetic algorithm for optimal design of large-scale heat exchanger networks[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(11/12): 1506-1516. |
22 | 孙涛, 崔国民, 肖媛. 采用结构进化增强策略的RWCE算法优化换热网络[J]. 热能动力工程, 2019, 34(8): 16-24. |
SUN Tao, CUI Guomin, XIAO Yuan. Optimization of heat exchanger network by RWCE algorithm with enhanced structure evolution strategy[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(8): 16-24. | |
23 | ESCOBAR Marcelo, TRIERWEILER Jorge O. Optimal heat exchanger network synthesis: A case study comparison[J]. Applied Thermal Engineering, 2013, 51(1/2): 801-826. |
24 | PAVÃO Leandro Vitor, COSTA Caliane Bastos Borba, RAVAGNANI Mauro Antonio Da Silva Sá. Automated heat exchanger network synthesis by using hybrid natural algorithms and parallel processing[J]. Computers & Chemical Engineering, 2016, 94: 370-386. |
25 | XU Yue, CUI Guomin, DENG Weidong, et al. Relaxation strategy for heat exchanger network synthesis with fixed capital cost[J]. Applied Thermal Engineering, 2019, 152: 184-195. |
[1] | JIAO Wenlei, LIU Zhen, CHEN Junxian, ZHANG Tianyu, JI Zhongli. Structure and performance influencing factors of vane separation components: The reviews [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4187-4202. |
[2] | HE Haixia, WAN Yameng, LI Fanfan, NIU Xinyu, ZHANG Jingwen, LI Tao, REN Baozeng. Kinetics and crystallization process of naphazoline hydrochloride in methanol-ethyl acetate system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4230-4245. |
[3] | YI Zhikang, LIU Siqi, CUI Guomin, DUAN Huanhuan, XIAO Yuan. A chessboard model for incompatible multi-component mass exchange network optimization [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2986-2995. |
[4] | WANG Dongliang, LI Jingwei, MENG Wenliang, YANG Yong, ZHOU Huairong, FAN Zongliang. Influencing factors of CO2 and H2 utilization rate in CO2 hydrogenation to methanol and process optimization design [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2843-2850. |
[5] | ZHENG Kexin, JIANG Yuxin, BI Kexin, ZHAO Qiming, CHEN Shaochen, WANG Bingbing, REN Junyu, JI Xu, QIU Tong, DAI Yiyang. Ensemble transfer learning framework for outflow compositions prediction in steam cracking process [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2880-2889. |
[6] | SHI Liu, HU Zhenzhong, LI Xian, SUN Yiming, TONG Shan, LIU Xianzhe, GUO Li, LIU Hao, PENG Bing, LI Shuo, LUO Guangqian, YAO Hong. Gas-pressurized torrefaction of biomass: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2494-2511. |
[7] | ZHANG Bao, WANG Peng, AN Yongpan, LYU Ping, JIANG Jianliang. Design and experiment of fuel cell systems for marine application [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2554-2567. |
[8] | LI Ping, CHEN Xiule, ZHANG Qiang, NIAN Tengfei, WANG Yuxing, WANG Meng. Optimization of compounding ratio of fume-suppressing asphalt and evaluation of its effect of fume suppression [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1923-1933. |
[9] | DU Yongliang, LIANG Zhuobin, GONG Yaoxu, BI Haojie, XU Zhiyuan, YUAN Hongying. Air gap membrane distillation research status and applications [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1655-1666. |
[10] | ZHANG Shuming, LIU Huazhang. Optimization of Fe1-x O ammonia synthesis catalyst by BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. |
[11] | WU Fengming, LI Shuaiqi, HE Shihui, SONG Wenji, FENG Ziping. Research progress on optimization of large temperature-lift vapor compression heat pump system [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1178-1198. |
[12] | SHAN Liang, YANG Wenqi, HONG Bo, ZHOU Rongxing, KONG Ming. Three-dimensional temperature field reconstruction of flame based on LSMR algorithm [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 659-666. |
[13] | SU Qian, DENG Xiangtian, LIU Zhenxing. Model optimization of phase fraction in oil-gas-water three-phase flow using ultrasonic testing technique [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 791-799. |
[14] | SHAN Liang, HUA Xiajie, NIU Yufeng, ZHAO Tengfei, HONG Bo, KONG Ming. Optimization method for light-field feature extraction in flame temperature field reconstruction [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 823-829. |
[15] | WANG Yue, SUN Kai, LIU Yan, CHEN Long, ZHU Xiaoyu, XU Chuanlong. Light field bubble tracking velocimetry based on the global bubble position iteration and polar coordinate system similarity algorithm [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 844-854. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 68
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |