Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 1170-1182.DOI: 10.16085/j.issn.1000-6613.2024-0146

• Chemical industry park • Previous Articles    

Quantitative analysis of domino effects in large tank farms under various wind conditions and accident scenarios

ZHANG Qian1,2(), LIU Xin3, WANG Bing3, XU Jing1,2, CAO Chenxi3()   

  1. 1.School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
    2.State Key Laboratory of Green Chemical Engineering and Industrial Catalysts, Shanghai 201208, China
    3.Key Laboratory of Smart Manufacturing in Energy Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
  • Received:2024-01-17 Revised:2024-04-11 Online:2025-03-10 Published:2025-02-25
  • Contact: CAO Chenxi

复杂风速风向与事件树下储罐区多米诺事故分析

张迁1,2(), 刘鑫3, 王冰3, 徐晶1,2, 曹晨熙3()   

  1. 1.华东理工大学化工学院,上海 200237
    2.绿色化工与工业催化全国重点实验室,上海 201208
    3.华东理工大学能源化工过程智能制造教育部重点实验室,上海 200237
  • 通讯作者: 曹晨熙
  • 作者简介:张迁(1999—),男,硕士研究生,研究方向为化工园区风险评估。E-mail:714545037@qq.com
  • 基金资助:
    国家自然科学基金基础科学中心项目(61988101);国家自然科学基金面上项目(62373153);国家自然科学基金青年科学基金(62303186);中央高校基本科研业务费专项资金

Abstract:

An efficient Bayesian network (BN) construction and analysis method is proposed for multi-level domino accidents within large chemical tank farms. Leveraging probabilistic graphical model decomposition and integration, the method addresses various wind conditions and common accident modes adhering to quantitative risk assessment guidelines. It is capable of managing domino accidents involving over 102 tanks and 106 possible scenarios, facilitating automated causal and diagnostic inference. The method was applied to an example tank area derived from a realistic large chemical logistics facility in Shanghai. It revealed that domino accidents significantly contribute to the overall tank failure risk, particularly in facilities comprising numerous atmospheric-pressure liquid tanks or those situated downwind from pressurized spherical tanks. Seasonality plays a crucial role in the spatial distribution of domino accident risks due to the impact of wind on incidents like vapor cloud explosions. BN’s automatic inference capabilities were employed to identify the most probable accident sequences and infer unobserved parameters, such as leak sizes, based on actual accident progression. The approach proves invaluable for pre-accident prevention, emergency response, and post-accident investigations.

Key words: chemical tank farm, domino effect, Bayesian network, safety, process systems, computer simulation

摘要:

针对大型危险化学品储罐区多级多米诺事故,提出一种基于概率图分解与综合的贝叶斯网络(BN)高效构建与分析方法。在综合考虑多种风速风向组合以及定量风险评价标准规范涵盖的常见事故模式时,能够处理102个储罐和106个独立场景以上规模的多米诺事故,实现自动因果推理与诊断推理分析。基于上海某大型化工企业实际布局构建示例罐区,进行多米诺事故案例分析。结果表明:较多常压液体储罐的区域以及位于压力球罐下风向的储罐区受多米诺事故影响较大;由于蒸气云爆炸等事故范围受风速风向影响巨大,全罐区多米诺事故风险空间分布呈现显著的季节性变化。通过BN自动推理,不仅绘制出各罐区最可能的事故路径,还可以根据实际事故发展推测泄漏孔径等难以直接观测的情境参数,为事故预防、应急处置和事故调查提供了有力的分析工具。

关键词: 化学品罐区, 多米诺效应, 贝叶斯网络, 安全, 过程系统, 计算机模拟

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd