Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 1170-1182.DOI: 10.16085/j.issn.1000-6613.2024-0146
• Chemical industry park • Previous Articles
ZHANG Qian1,2(), LIU Xin3, WANG Bing3, XU Jing1,2, CAO Chenxi3(
)
Received:
2024-01-17
Revised:
2024-04-11
Online:
2025-03-10
Published:
2025-02-25
Contact:
CAO Chenxi
张迁1,2(), 刘鑫3, 王冰3, 徐晶1,2, 曹晨熙3(
)
通讯作者:
曹晨熙
作者简介:
张迁(1999—),男,硕士研究生,研究方向为化工园区风险评估。E-mail:714545037@qq.com。
基金资助:
CLC Number:
ZHANG Qian, LIU Xin, WANG Bing, XU Jing, CAO Chenxi. Quantitative analysis of domino effects in large tank farms under various wind conditions and accident scenarios[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1170-1182.
张迁, 刘鑫, 王冰, 徐晶, 曹晨熙. 复杂风速风向与事件树下储罐区多米诺事故分析[J]. 化工进展, 2025, 44(2): 1170-1182.
泄漏状态 | 泄漏孔径/mm | 最长泄漏时间/min |
---|---|---|
大孔泄漏 | 100 | 10 |
中孔泄漏 | 25 | 20 |
小孔泄漏 | 5 | 30 |
完全破裂 | — | 5 |
泄漏状态 | 泄漏孔径/mm | 最长泄漏时间/min |
---|---|---|
大孔泄漏 | 100 | 10 |
中孔泄漏 | 25 | 20 |
小孔泄漏 | 5 | 30 |
完全破裂 | — | 5 |
物质分类 | 连续释放 | 瞬时释放 | 立即点燃概率 |
---|---|---|---|
类别0 (中/高活性) | <10kg/s | <1000kg | 0.2 |
10~100kg/s | 1000~10000kg | 0.5 | |
>100kg/s | >10000kg | 0.7 | |
类别0 (低活性) | <10kg/s | <1000kg | 0.02 |
10~100kg/s | 1000~10000kg | 0.04 | |
>100kg/s | >10000kg | 0.09 | |
类别1 | 任意速率 | 任意量 | 0.065 |
类别2 | 任意速率 | 任意量 | 0.01 |
类别3或类别4 | 任意速率 | 任意量 | 0 |
物质分类 | 连续释放 | 瞬时释放 | 立即点燃概率 |
---|---|---|---|
类别0 (中/高活性) | <10kg/s | <1000kg | 0.2 |
10~100kg/s | 1000~10000kg | 0.5 | |
>100kg/s | >10000kg | 0.7 | |
类别0 (低活性) | <10kg/s | <1000kg | 0.02 |
10~100kg/s | 1000~10000kg | 0.04 | |
>100kg/s | >10000kg | 0.09 | |
类别1 | 任意速率 | 任意量 | 0.065 |
类别2 | 任意速率 | 任意量 | 0.01 |
类别3或类别4 | 任意速率 | 任意量 | 0 |
物质类别 | 燃烧性 | 条件 |
---|---|---|
类别0 | 极度易燃 | 闪点<0℃、沸点≤35℃的液体或暴露于空气中,在正常温度和压力下可以点燃的气体 |
类别1 | 高可燃性 | 闪点<21℃的液体,但不是极度易燃的 |
类别2 | 可燃 | 21℃≤闪点≤55℃的液体 |
类别3 | 可燃 | 55℃<闪点≤100℃的液体 |
类别4 | 可燃 | 闪点>100℃的液体 |
物质类别 | 燃烧性 | 条件 |
---|---|---|
类别0 | 极度易燃 | 闪点<0℃、沸点≤35℃的液体或暴露于空气中,在正常温度和压力下可以点燃的气体 |
类别1 | 高可燃性 | 闪点<21℃的液体,但不是极度易燃的 |
类别2 | 可燃 | 21℃≤闪点≤55℃的液体 |
类别3 | 可燃 | 55℃<闪点≤100℃的液体 |
类别4 | 可燃 | 闪点>100℃的液体 |
事故类型 | 物理效应 | 所用模型 |
---|---|---|
池火 | 热辐射 | 源项模型、液池燃烧模型 |
闪火 | — | 源项模型、高斯扩散模型、闪火后果模型 |
火球 | 热辐射 | 火球后果模型 |
喷射火 | 热辐射 | 源项模型、喷射火后果模型 |
蒸气云爆炸 | 超压 | 源项模型、高斯扩散模型、TNT当量模型[ |
事故类型 | 物理效应 | 所用模型 |
---|---|---|
池火 | 热辐射 | 源项模型、液池燃烧模型 |
闪火 | — | 源项模型、高斯扩散模型、闪火后果模型 |
火球 | 热辐射 | 火球后果模型 |
喷射火 | 热辐射 | 源项模型、喷射火后果模型 |
蒸气云爆炸 | 超压 | 源项模型、高斯扩散模型、TNT当量模型[ |
扩展向量类型 | 目标储罐类型 | 阈值 | 概率模型 |
---|---|---|---|
热辐射 | 常压储罐 | 15kW/m2 | γ = 12.54 - 1.847 ln(ttf) ln(ttf) = -1.128 lnQ - 2.667×10 -5V +9.887 |
压力储罐 | 50kW/m2 | γ= 12.54 - 1.847 ln(ttf) ln (ttf) = -0.947 lnQ + 8.835V0.032 | |
超压 | 常压储罐 | 15kPa | γ= -18.96 + 2.44 ln p |
压力储罐 | 32kPa | γ= -42.44 + 4.33 lnp |
扩展向量类型 | 目标储罐类型 | 阈值 | 概率模型 |
---|---|---|---|
热辐射 | 常压储罐 | 15kW/m2 | γ = 12.54 - 1.847 ln(ttf) ln(ttf) = -1.128 lnQ - 2.667×10 -5V +9.887 |
压力储罐 | 50kW/m2 | γ= 12.54 - 1.847 ln(ttf) ln (ttf) = -0.947 lnQ + 8.835V0.032 | |
超压 | 常压储罐 | 15kPa | γ= -18.96 + 2.44 ln p |
压力储罐 | 32kPa | γ= -42.44 + 4.33 lnp |
罐区编号 | 储存物质 | 储罐种类 | 储存温度/℃ | 储存压力/Pa | 储罐高度/m | 储罐半径/m | 物料体积/m3 | 罐区围堰面积/m2 |
---|---|---|---|---|---|---|---|---|
1号罐区 | 聚二苯基甲烷二异氰酸酯 | 拱顶罐 | 293.15 | 101325 | 14 | 5 | 950 | 5760 |
2号罐区 | 丙酮 | 内浮顶罐 | 298.15 | 101325 | 21 | 9.2 | 4750 | 7220 |
3号罐区 | 甲苯二异氰酸酯 | 拱顶罐 | 298.15 | 101325 | 16 | 6.7 | 1900 | 2573 |
4号罐区 | 甲基丙烯酸甲酯 | 拱顶罐 | 298.15 | 101325 | 16 | 7.4 | 2508 | 5690 |
5号罐区 | 68%硝酸 | 拱顶罐 | 298.15 | 101325 | 20 | 9.45 | 4750 | 2337 |
6号罐区 | 氨 | 全容罐 | 240.15 | 101325 | 32.2 | 22.75 | 45000 | 4058 |
7号罐区 | 苯酚 | 拱顶罐 | 298.15 | 101325 | 20 | 12.98 | 9500 | 6079 |
8号罐区 | 异丙基苯 | 内浮顶罐 | 298.15 | 101325 | 21.2 | 11.5 | 7600 | 5880 |
9号罐区 | 丙烯 | 压力球罐 | 298.15 | 1000000 | 18 | 9 | 503 | 4120 |
罐区编号 | 储存物质 | 储罐种类 | 储存温度/℃ | 储存压力/Pa | 储罐高度/m | 储罐半径/m | 物料体积/m3 | 罐区围堰面积/m2 |
---|---|---|---|---|---|---|---|---|
1号罐区 | 聚二苯基甲烷二异氰酸酯 | 拱顶罐 | 293.15 | 101325 | 14 | 5 | 950 | 5760 |
2号罐区 | 丙酮 | 内浮顶罐 | 298.15 | 101325 | 21 | 9.2 | 4750 | 7220 |
3号罐区 | 甲苯二异氰酸酯 | 拱顶罐 | 298.15 | 101325 | 16 | 6.7 | 1900 | 2573 |
4号罐区 | 甲基丙烯酸甲酯 | 拱顶罐 | 298.15 | 101325 | 16 | 7.4 | 2508 | 5690 |
5号罐区 | 68%硝酸 | 拱顶罐 | 298.15 | 101325 | 20 | 9.45 | 4750 | 2337 |
6号罐区 | 氨 | 全容罐 | 240.15 | 101325 | 32.2 | 22.75 | 45000 | 4058 |
7号罐区 | 苯酚 | 拱顶罐 | 298.15 | 101325 | 20 | 12.98 | 9500 | 6079 |
8号罐区 | 异丙基苯 | 内浮顶罐 | 298.15 | 101325 | 21.2 | 11.5 | 7600 | 5880 |
9号罐区 | 丙烯 | 压力球罐 | 298.15 | 1000000 | 18 | 9 | 503 | 4120 |
罐区编号 | 储存物质 | 储存温度/℃ | 管道压力/Pa | 围堰内管道长度/m | 管道上阀门直径/m | 泵房面积/m2 |
---|---|---|---|---|---|---|
1号罐区 | 聚二苯基甲烷二异氰酸酯 | 293.15 | 340000 | 8.96 | 152.4 | 294 |
2号罐区 | 丙酮 | 298.15 | 470000 | 10.45 | 152.4 | 306 |
3号罐区 | 甲苯二异氰酸酯 | 298.15 | 937000 | 10.41 | 152.4 | 324 |
4号罐区 | 甲基丙烯酸甲酯 | 298.15 | 580000 | 12.56 | 101.6 | 209.44 |
5号罐区 | 68%硝酸 | 298.15 | 1300000 | 9.01 | 203.2 | 179.7 |
6号罐区 | 氨 | 240.15 | 1880000 | 56 | 152.4 | 179.7 |
7号罐区 | 苯酚 | 328.15 | 800000 | 18.375 | 254 | 203.49 |
8号罐区 | 异丙基苯 | 298.15 | 1690000 | 18.375 | 203.2 | 361.56 |
9号罐区 | 丙烯 | 298.15 | 1900000 | 16.15 | 152.4 | 166.69 |
罐区编号 | 储存物质 | 储存温度/℃ | 管道压力/Pa | 围堰内管道长度/m | 管道上阀门直径/m | 泵房面积/m2 |
---|---|---|---|---|---|---|
1号罐区 | 聚二苯基甲烷二异氰酸酯 | 293.15 | 340000 | 8.96 | 152.4 | 294 |
2号罐区 | 丙酮 | 298.15 | 470000 | 10.45 | 152.4 | 306 |
3号罐区 | 甲苯二异氰酸酯 | 298.15 | 937000 | 10.41 | 152.4 | 324 |
4号罐区 | 甲基丙烯酸甲酯 | 298.15 | 580000 | 12.56 | 101.6 | 209.44 |
5号罐区 | 68%硝酸 | 298.15 | 1300000 | 9.01 | 203.2 | 179.7 |
6号罐区 | 氨 | 240.15 | 1880000 | 56 | 152.4 | 179.7 |
7号罐区 | 苯酚 | 328.15 | 800000 | 18.375 | 254 | 203.49 |
8号罐区 | 异丙基苯 | 298.15 | 1690000 | 18.375 | 203.2 | 361.56 |
9号罐区 | 丙烯 | 298.15 | 1900000 | 16.15 | 152.4 | 166.69 |
罐区编号 | 储存物质 | 储存温度/℃ | 排气压力/Pa |
---|---|---|---|
6号罐区 | 氨 | 240.15 | 6010000 |
9号罐区 | 丙烯 | 298.15 | 2500000 |
罐区编号 | 储存物质 | 储存温度/℃ | 排气压力/Pa |
---|---|---|---|
6号罐区 | 氨 | 240.15 | 6010000 |
9号罐区 | 丙烯 | 298.15 | 2500000 |
风向 | 受影响储罐编号 | 升级概率/a-1 | |
---|---|---|---|
BN方法 | QRA方法 | ||
E | FD02TK02 | 0.035 | 0.035 |
ESE | FD03TK10 | 0.1 | 0.1 |
SSE | FD06TK02 | 0.15 | 0.15 |
S | FD08TK02 | 0.026 | 0.026 |
SSW | FD08TK03 | 0.049 | 0.049 |
SW | FD08TK06 | 0.025 | 0.025 |
WSW | FD08TK07 | 0.0000031 | 0.0000031 |
风向 | 受影响储罐编号 | 升级概率/a-1 | |
---|---|---|---|
BN方法 | QRA方法 | ||
E | FD02TK02 | 0.035 | 0.035 |
ESE | FD03TK10 | 0.1 | 0.1 |
SSE | FD06TK02 | 0.15 | 0.15 |
S | FD08TK02 | 0.026 | 0.026 |
SSW | FD08TK03 | 0.049 | 0.049 |
SW | FD08TK06 | 0.025 | 0.025 |
WSW | FD08TK07 | 0.0000031 | 0.0000031 |
风向 | 失效概率/a-1 | 计算时间/s | ||
---|---|---|---|---|
传统方法 | 本文方法 | 传统方法 | 本文方法 | |
SE | 5.548×10-16 | 5.544×10-16 | 2.389×10-2 | 9.956×10-4 |
SSE | 6.613×10-12 | 6.605×10-12 | 7.965×10-3 | 9.959×10-4 |
S | 5.057×10-12 | 5.057×10-12 | 4.978×10-3 | 9.956×10-4 |
SSW | 1.204×10-18 | 1.204×10-18 | 1.991×10-3 | 9.956×10-4 |
SW | 5.795×10-16 | 5.795×10-16 | 1.992×10-3 | 9.956×10-4 |
综合风向 | 1.167×10-11 | 1.166×10-11 | 2.688×10-2 | 2.994×10-3 |
风向 | 失效概率/a-1 | 计算时间/s | ||
---|---|---|---|---|
传统方法 | 本文方法 | 传统方法 | 本文方法 | |
SE | 5.548×10-16 | 5.544×10-16 | 2.389×10-2 | 9.956×10-4 |
SSE | 6.613×10-12 | 6.605×10-12 | 7.965×10-3 | 9.959×10-4 |
S | 5.057×10-12 | 5.057×10-12 | 4.978×10-3 | 9.956×10-4 |
SSW | 1.204×10-18 | 1.204×10-18 | 1.991×10-3 | 9.956×10-4 |
SW | 5.795×10-16 | 5.795×10-16 | 1.992×10-3 | 9.956×10-4 |
综合风向 | 1.167×10-11 | 1.166×10-11 | 2.688×10-2 | 2.994×10-3 |
风向 | 风速/m·s-1 | 风速风向组合频率 | 风向角度/(°) |
---|---|---|---|
N | 3.8 | 0.111 | 0 |
NNE | 3.5 | 0.143 | 22.5 |
NE | 3.2 | 0.108 | 45 |
ENE | 2.7 | 0.076 | 67.5 |
E | 2.1 | 0.045 | 90 |
ESE | 2.6 | 0.064 | 112.5 |
SE | 1.9 | 0.029 | 135 |
SSE | 2.4 | 0.015 | 157.5 |
S | 3.9 | 0.0226 | 180 |
SSW | 5.5 | 0.012 | 202.5 |
SW | 2.9 | 0.026 | 225 |
WSW | 2.3 | 0.044 | 247.5 |
W | 2.7 | 0.067 | 270 |
WNW | 3.6 | 0.055 | 292.5 |
NW | 4.4 | 0.058 | 315 |
NNW | 3.9 | 0.12 | 337.5 |
风向 | 风速/m·s-1 | 风速风向组合频率 | 风向角度/(°) |
---|---|---|---|
N | 3.8 | 0.111 | 0 |
NNE | 3.5 | 0.143 | 22.5 |
NE | 3.2 | 0.108 | 45 |
ENE | 2.7 | 0.076 | 67.5 |
E | 2.1 | 0.045 | 90 |
ESE | 2.6 | 0.064 | 112.5 |
SE | 1.9 | 0.029 | 135 |
SSE | 2.4 | 0.015 | 157.5 |
S | 3.9 | 0.0226 | 180 |
SSW | 5.5 | 0.012 | 202.5 |
SW | 2.9 | 0.026 | 225 |
WSW | 2.3 | 0.044 | 247.5 |
W | 2.7 | 0.067 | 270 |
WNW | 3.6 | 0.055 | 292.5 |
NW | 4.4 | 0.058 | 315 |
NNW | 3.9 | 0.12 | 337.5 |
风向 | 风速/m·s-1 | 风速风向组合频率 | 风向角度/(°) |
---|---|---|---|
N | 2.7 | 0.035 | 0 |
NNE | 3.3 | 0.072 | 22.5 |
NE | 3.8 | 0.088 | 45 |
ENE | 3.5 | 0.1 | 67.5 |
E | 3.4 | 0.099 | 90 |
ESE | 3.4 | 0.1189 | 112.5 |
SE | 2.5 | 0.0877 | 135 |
SSE | 3 | 0.078 | 157.5 |
S | 3.8 | 0.077 | 180 |
SSW | 3.8 | 0.051 | 202.5 |
SW | 3.9 | 0.055 | 225 |
WSW | 3 | 0.046 | 247.5 |
W | 2.5 | 0.022 | 270 |
WNW | 3 | 0.021 | 292.5 |
NW | 2.5 | 0.017 | 315 |
NNW | 2.8 | 0.033 | 337.5 |
风向 | 风速/m·s-1 | 风速风向组合频率 | 风向角度/(°) |
---|---|---|---|
N | 2.7 | 0.035 | 0 |
NNE | 3.3 | 0.072 | 22.5 |
NE | 3.8 | 0.088 | 45 |
ENE | 3.5 | 0.1 | 67.5 |
E | 3.4 | 0.099 | 90 |
ESE | 3.4 | 0.1189 | 112.5 |
SE | 2.5 | 0.0877 | 135 |
SSE | 3 | 0.078 | 157.5 |
S | 3.8 | 0.077 | 180 |
SSW | 3.8 | 0.051 | 202.5 |
SW | 3.9 | 0.055 | 225 |
WSW | 3 | 0.046 | 247.5 |
W | 2.5 | 0.022 | 270 |
WNW | 3 | 0.021 | 292.5 |
NW | 2.5 | 0.017 | 315 |
NNW | 2.8 | 0.033 | 337.5 |
事故类型 | 泄漏状态 | 一级多米诺节点 | 二级多米诺节点 | ||||
---|---|---|---|---|---|---|---|
FD08TK03 | FD08TK04 | FD08TK01 | FD08TK05 | FD08TK06 | FD08TK02 | ||
池火 | 大孔泄漏 | 2.03×10-4 | 7.90×10-5 | 7.30×10-5 | 6.60×10-5 | 2.02×10-7 | |
中孔泄漏 | 2.00×10-6 | 3.23×10-7 | 7.89×10-4 | 7.29×10-4 | 6.59×10-4 | 2.00×10-6 | |
小孔泄漏 | 5.91×10-8 | 3.18×10-8 | 3.16×10-4 | 2.92×10-4 | 2.64×10-4 | 8.07×10-7 | |
完全破裂 | 6.23×10-1 | 4.01×10-4 | 1.56×10-4 | 1.44×10-4 | 1.31×10-4 | 3.99×10-7 | |
闪火 | 大孔泄漏 | 8.36×10-7 | 4.64×10-7 | 4.70×10-3 | 4.34×10-3 | 3.93×10-3 | 1.20×10-5 |
中孔泄漏 | 8.00×10-6 | 5.00×10-6 | 4.34×10-2 | 3.92×10-2 | 1.20×10-4 | ||
小孔泄漏 | 3.00×10-6 | 2.00×10-6 | 1.86×10-2 | 1.72×10-2 | 1.56×10-2 | 4.80×10-5 | |
完全破裂 | 2.00×10-6 | 9.31×10-7 | 9.43×10-3 | 8.72×10-3 | 7.88×10-3 | 2.40×10-5 | |
VCE | 大孔泄漏 | 1.20×10-4 | 3.33×10-7 | 3.10×10-3 | 2.87×10-3 | 2.59×10-3 | 8.00×10-6 |
中孔泄漏 | 1.20×10-3 | 3.00×10-6 | 3.10×10-2 | 2.87×10-2 | 2.59×10-2 | 7.90×10-5 | |
小孔泄漏 | 4.84×10-4 | 1.00×10-6 | 1.25×10-2 | 1.15×10-2 | 1.04×10-2 | 3.20×10-5 | |
完全破裂 | 2.44×10-4 | 6.75×10-7 | 6.29×10-3 | 5.82×10-3 | 5.26×10-3 | 1.60×10-5 |
事故类型 | 泄漏状态 | 一级多米诺节点 | 二级多米诺节点 | ||||
---|---|---|---|---|---|---|---|
FD08TK03 | FD08TK04 | FD08TK01 | FD08TK05 | FD08TK06 | FD08TK02 | ||
池火 | 大孔泄漏 | 2.03×10-4 | 7.90×10-5 | 7.30×10-5 | 6.60×10-5 | 2.02×10-7 | |
中孔泄漏 | 2.00×10-6 | 3.23×10-7 | 7.89×10-4 | 7.29×10-4 | 6.59×10-4 | 2.00×10-6 | |
小孔泄漏 | 5.91×10-8 | 3.18×10-8 | 3.16×10-4 | 2.92×10-4 | 2.64×10-4 | 8.07×10-7 | |
完全破裂 | 6.23×10-1 | 4.01×10-4 | 1.56×10-4 | 1.44×10-4 | 1.31×10-4 | 3.99×10-7 | |
闪火 | 大孔泄漏 | 8.36×10-7 | 4.64×10-7 | 4.70×10-3 | 4.34×10-3 | 3.93×10-3 | 1.20×10-5 |
中孔泄漏 | 8.00×10-6 | 5.00×10-6 | 4.34×10-2 | 3.92×10-2 | 1.20×10-4 | ||
小孔泄漏 | 3.00×10-6 | 2.00×10-6 | 1.86×10-2 | 1.72×10-2 | 1.56×10-2 | 4.80×10-5 | |
完全破裂 | 2.00×10-6 | 9.31×10-7 | 9.43×10-3 | 8.72×10-3 | 7.88×10-3 | 2.40×10-5 | |
VCE | 大孔泄漏 | 1.20×10-4 | 3.33×10-7 | 3.10×10-3 | 2.87×10-3 | 2.59×10-3 | 8.00×10-6 |
中孔泄漏 | 1.20×10-3 | 3.00×10-6 | 3.10×10-2 | 2.87×10-2 | 2.59×10-2 | 7.90×10-5 | |
小孔泄漏 | 4.84×10-4 | 1.00×10-6 | 1.25×10-2 | 1.15×10-2 | 1.04×10-2 | 3.20×10-5 | |
完全破裂 | 2.44×10-4 | 6.75×10-7 | 6.29×10-3 | 5.82×10-3 | 5.26×10-3 | 1.60×10-5 |
1 | ZHOU Jianfeng, RENIERS Genserik. Probabilistic analysis of domino effects by using a matrix-based simulation approach[J]. Risk Analysis, 2020, 40(10): 1913-1927. |
2 | 国务院天津港“ 8·12”瑞海公司危险品仓库特别重大火灾爆炸事故调查组. 天津港“8·12”瑞海公司危险品仓库特别重大火灾爆炸事故调查报告[EB/OL]. (2016-02-05) [2023-11-24]. . |
3 | 魏思佳. 如何切实提高风险隐患排查整改质量——也说聊城鲁西化工“5·1”爆炸着火事故[J]. 中国应急管理, 2023(5): 90-93. |
WEI Sijia. How to improve the quality of investigation and rectification of potential risks—Also on the “5.1” explosion and fire accident of Luxi chemical industry in Liaocheng[J]. China Emergency Management, 2023(5): 90-93. | |
4 | AMENDOLA A, CASSIDY K. Special issue:The Seveso Ⅱ directive (96/82/EC) on the control of major accident hazards involving dangerous substances[J]. Journal of Hazardous Materials, 1999, 65(1/2): 9-11. |
5 | WITTER Ray E. Guidelines for hazard evaluation procedures: Second edition[J]. Plant/Operations Progress, 1992, 11(2): 50-52. |
6 | ANTONIONI Giacomo, SPADONI Gigliola, COZZANI Valerio. Application of domino effect quantitative risk assessment to an extended industrial area[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(5): 614-624. |
7 | LANDUCCI Gabriele, ANTONIONI Giacomo, TUGNOLI Alessandro, et al. Probabilistic assessment of domino effect triggered by fire: Implementation in quantitative risk assessment[J]. Chemical Engineering Transactions, 2012, 26: 195-200. |
8 | XU Yuanyuan, RENIERS Genserik, YANG Ming, et al. Uncertainties and their treatment in the quantitative risk assessment of domino effects: Classification and review[J]. Process Safety and Environmental Protection, 2023, 172: 971-985. |
9 | 贾梅生, 陈国华, 胡昆. 化工园区多米诺事故风险评价与防控技术综述[J]. 化工进展, 2017, 36(4): 1534-1543. |
JIA Meisheng, CHEN Guohua, HU Kun. Review of risk assessment and pre-control of domino effect in chemical industry park[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1534-1543. | |
10 | ZENG Chuchu, QIAN Yu, LIU Yongsheng. Domino effect index for chemical plants based on fishbone analysis[M]//Materials in Environmental Engineering. Berlin: De Gruyter, 2017: 837-846. |
11 | ZHOU Jianfeng, RENIERS Genserik, COZZANI Valerio. A Petri-net approach for firefighting force allocation analysis of fire emergency response with backups[J]. Reliability Engineering & System Safety, 2023, 229: 108847. |
12 | SU Mingqing, WEI Lijun, ZHOU Shennan, et al. Study on dynamic probability and quantitative risk calculation method of domino accident in pool fire in chemical storage tank area[J]. International Journal of Environmental Research and Public Health, 2022, 19(24): 16483. |
13 | 赵景斌, 王彦富, 王涛, 等. 基于蒙特卡洛模拟和动态事件树的储罐脆弱性评估[J]. 化工进展, 2023, 42(5): 2751-2759. |
ZHAO Jingbin, WANG Yanfu, WANG Tao, et al. Vulnerability assessment of storage tanks based on Monte Carlo simulation and dynamic event tree[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2751-2759. | |
14 | KABIR Golam, SUDA Haruki, CRUZ Ana Maria, et al. Earthquake-related Natech risk assessment using a Bayesian belief network model[J]. Structure and Infrastructure Engineering, 2019, 15(6): 725-739. |
15 | KAMIL Mohammad Zaid, Mohammed TALEB-BERROUANE, KHAN Faisal, et al. Dynamic domino effect risk assessment using Petri-nets[J]. Process Safety and Environmental Protection, 2019, 124: 308-316. |
16 | HUANG Kongxing, CHEN Guohua, KHAN Faisal, et al. Dynamic analysis for fire-induced domino effects in chemical process industries[J]. Process Safety and Environmental Protection, 2021, 148: 686-697. |
17 | KHAKZAD Nima, KHAN Faisal, AMYOTTE Paul, et al. Domino effect analysis using Bayesian networks[J]. Risk Analysis, 2013, 33(2): 292-306. |
18 | KHAKZAD Nima. Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures[J]. Reliability Engineering & System Safety, 2015, 138: 263-272. |
19 | 王贝贝, 李丽, 关忠慧, 等. 化工装置多级多米诺效应定量风险评价模型的建立及应用[J]. 工业安全与环保, 2019, 45(12): 42-45, 54. |
WANG Beibei, LI Li, GUAN Zhonghui, et al. Establishment and application of multi-stage domino effect quantitative risk assessment model for chemical plant[J]. Industrial Safety and Environmental Protection, 2019, 45(12): 42-45, 54. | |
20 | ZENG Tao, CHEN Guohua, YANG Yunfeng, et al. Developing an advanced dynamic risk analysis method for fire-related domino effects[J]. Process Safety and Environmental Protection, 2020, 134: 149-160. |
21 | CUI Xingmin, ZHANG Mingguang, PAN Wenjie. Dynamic probability analysis on accident chain of atmospheric tank farm based on Bayesian network[J]. Process Safety and Environmental Protection, 2022, 158: 146-158. |
22 | COZZANI Valerio, GUBINELLI Gianfilippo, ANTONIONI Giacomo, et al. The assessment of risk caused by domino effect in quantitative area risk analysis[J]. Journal of Hazardous Materials, 2005, 127(1/2/3): 14-30. |
23 | LI Xiaofeng, CHEN Guohua, AMYOTTE Paul, et al. Modeling and analysis of domino effect in petrochemical storage tank farms under the synergistic effect of explosion and fire[J]. Process Safety and Environmental Protection, 2023, 176: 706-715. |
24 | DING Long, JI Jie, KHAN Faisal. Combining uncertainty reasoning and deterministic modeling for risk analysis of fire-induced domino effects[J]. Safety Science, 2020, 129: 104802. |
25 | MALIK Asher Ahmed, NASIF Mohammad Shakir, MOKHTAR Ainul Akmar, et al. Numerical investigation of the effect of weather conditions on the escalation and propagation of fire-induced domino effect[J]. Process Safety Progress, 2021, 40(4): 296-308. |
26 | 潘世豪, 窦站, 李杨, 等. 基于图模型的储罐区火灾事故多米诺效应评定[J]. 中国安全科学学报, 2019, 29(6): 83-89. |
PAN Shihao, DOU Zhan, LI Yang, et al. Evaluation of domino effect in fire accidents in storage tank area based on graph model[J]. China Safety Science Journal, 2019, 29(6): 83-89. | |
27 | ALILECHE Nassim, OLIVIER Damien, ESTEL Lionel, et al. Analysis of domino effect in the process industry using the event tree method[J]. Safety Science, 2017, 97: 10-19. |
28 | Kemal ÖZFIRAT M, Erkan ÖZKAN, KAHRAMAN Bayram, et al. Integration of risk matrix and event tree analysis: A natural stone plant case[J]. Sādhanā, 2017, 42(10): 1741-1749. |
29 | RAMZALI Nahid, LAVASANI Mohammad Reza Miri, GHODOUSI Jamal. Safety barriers analysis of offshore drilling system by employing fuzzy event tree analysis[J]. Safety Science, 2015, 78: 49-59. |
30 | 中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. 危险化学品生产装置和储存设施外部安全防护距离确定方法: [S]. 北京: 中国标准出版社, 2019. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Determination method of external safety distance for hazardous chemicals production units and storage installations: [S]. Beijing: Standards Press of China, 2019. | |
31 | 中华人民共和国应急管理部 化工企业定量风险评价导则: A [S]. 北京: 煤炭工业出版社, 2013. |
State Administration of Work Safety. Guidelines for chemical process safety management: A [S]. Beijing: China Coal Industry Publishing House, 2013. | |
32 | UIJT DE HAAG P A M, ALE B J M. Guidelines for quantitative risk assessment[M]//The Hague: Committee for the Prevention of Disasters, 2005. |
33 | WANG Jingdong, ZHANG Ting, SONG Jingkuan, et al. A survey on learning to hash[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 769-790. |
34 | COZZANI Valerio, ANTONIONI Giacomo, SPADONI Gigliola. Quantitative assessment of domino scenarios by a GIS-based software tool[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(5): 463-477. |
35 | LI Yuntao, YU Lin, JING Qi. Dynamic risk assessment method for urban hydrogen refueling stations: A novel dynamic Bayesian network incorporating multiple equipment states and accident cascade effects[J]. International Journal of Hydrogen Energy, 2024, 54: 1367-1385. |
36 | 党文义, 刘昌华. 压缩气体容器物理爆炸计算模型[J]. 大庆石油学院学报, 2010, 34(2): 104-107, 130-131. |
DANG Wenyi, LIU Changhua. Physical explosion calculation models of the pressurized gas vessels[J]. Journal of Daqing Petroleum Institute, 2010, 34(2): 104-107, 130-131. | |
37 | ZHANG Mingguang, ZHENG Feng, CHEN Fuzhen, et al. Propagation probability of domino effect based on analysis of accident chain in storage tank area[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103962. |
38 | MORAL Serafín, CANO Andrés, Manuel GÓMEZ-OLMEDO. Computation of kullback-leibler divergence in Bayesian networks[J]. Entropy, 2021, 23(9): 1122. |
39 | 夏晨曦, 韩辉, 李伟敏. 基于贝叶斯网络的粉尘爆炸多米诺效应分析[J]. 化工进展, 2016, 35(S2): 110-115. |
XIA Chenxi, HAN Hui, LI Weimin. Domino effect analysis of dust explosions using Bayesian networks[J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 110-115. | |
40 | WANG Yuhan, YANG Dan, PENG Xin, et al. Causal network structure learning based on partial least squares and causal inference of nonoptimal performance in the wastewater treatment process[J]. Processes, 2022, 10(5): 909. |
41 | XU Qingqing, LIU Hao, SONG Zhenhua, et al. Dynamic risk assessment for underground gas storage facilities based on Bayesian network[J]. Journal of Loss Prevention in the Process Industries, 2023, 82: 104961. |
[1] | ZHAO Qi, QIAN Xiaodong, XIAO Fangxiong, CHEN Li, XU Zhan. Construction and application analysis of a quantitative evaluation system for urban gas safety resilience [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 174-179. |
[2] | CHEN Wangmi, XI Beidou, LI Mingxiao, YE Meiying, HOU Jiaqi, YU Chengze, WEI Yufang, MENG Fanhua. Research progress on carbon emission reduction technology for pyrolysis system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 479-503. |
[3] | YIN Ran, MU Ye, HUO Fuyong, CAO Qinliang, LIN Ganggui, WANG Yijie, HUANG Qiyu. Influence of crude oil composition and wax crystal structure on the damage and recovery of JH shale oil structure [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 590-596. |
[4] | XU Qingqing, ZHANG Xuan, ZHAO Ruidong, XIONG Xin, JIANG Lumeng, YU Shengyang. Bayesian network risk assessment method for hydrogen blending natural gas pipeline leakage [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 61-70. |
[5] | ZHANG Xiaotian, LIU Siqi, CUI Guomin, HUANG Xiaohuang, DUAN Huanhuan, WANG Jinyang. Heat exchanger network synthesis based on directional coordination strategy to improve heat exchange unit optimization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4342-4353. |
[6] | SHAO Wei, MA Zhuang, ZHENG Hongwei, LIU Guangju, GAO Xiang, XIE Jian, HE Qinggang. Recent advances of organic materials for aqueous rechargeable batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3872-3890. |
[7] | YI Zhikang, LIU Siqi, CUI Guomin, DUAN Huanhuan, XIAO Yuan. A chessboard model for incompatible multi-component mass exchange network optimization [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2986-2995. |
[8] | WU Qi, BAI Boyang, YIN Yongjie, MA Xiaoxun. Relationship between the structure of macerals of Ordos lignite and its pyrolysis characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2370-2385. |
[9] | LIU Shida, WANG Haiyan, HOU Shuandi, LIU Zhongsheng, LIAO Changjian, WANG Kuanling. Recent advances in safely efficient deep emission reduction, recovery and thermal oxidation of VOCs from petrochemical storage tanks in China [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2063-2076. |
[10] | ZHANG Jiajun, GUO Liping. Latest progress in hydrogen pipeline transportation technology [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6692-6699. |
[11] | YANG Yutao, WANG Da, WU Zhanhua, SHENG Min. Limitations of the application of the Gygax cooling failure model for reactivity hazards assessment of chemical processes [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6379-6389. |
[12] | LIU Wenchen, HUANG Qiyu, XIE Yan, LYU Yang, WANG Yijie, XU Zhenkang, HAN Jipu. Research progress of low-temperature gathering and transportation of high water cut crude oil [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5427-5440. |
[13] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[14] | GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229. |
[15] | QIAO Xu, ZHANG Zhuxiu. Consideration and exploration of the development path for inherent safety of chemical engineering [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3319-3324. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 17
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 28
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |