Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 4221-4229.DOI: 10.16085/j.issn.1000-6613.2022-1764
• Energy processes and technology • Previous Articles Next Articles
GUO Jin1,2(), ZHANG Geng2,3(), CHEN Guohua3, ZHU Ming4, TAN Yue2, LI Wei2, XIA Li2, HU Kun2
Received:
2022-09-21
Revised:
2023-05-06
Online:
2023-09-19
Published:
2023-08-15
Contact:
ZHANG Geng
郭晋1,2(), 张耕2,3(), 陈国华3, 朱鸣4, 谭粤2, 李蔚2, 夏莉2, 胡昆2
通讯作者:
张耕
作者简介:
郭晋(1976—),男,博士研究生,研究方向为氢安全。E-mail:13318804328@189.cn。
基金资助:
CLC Number:
GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229.
郭晋, 张耕, 陈国华, 朱鸣, 谭粤, 李蔚, 夏莉, 胡昆. 车载液氢气瓶设计技术的研究进展[J]. 化工进展, 2023, 42(8): 4221-4229.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1764
低温材料 | 特点 |
---|---|
铝合金[ | 已应用于航空航天领域的液氢储罐,在轻量化、成形性、焊接性、耐腐蚀性等方面具有明显优势 |
钛合金[ | 具有良好的低温力学性能,重量轻,具有高的比强度,但其在成型和焊接性能方面的优势不明显,且成本相对较高,应用相对较少 |
奥氏体不锈钢[ | 应用最广泛的液氢储运容器用低温材料,良好的低温效果,但液氢低温下氢介质的存在引起塑性和韧性的下降 |
低温材料 | 特点 |
---|---|
铝合金[ | 已应用于航空航天领域的液氢储罐,在轻量化、成形性、焊接性、耐腐蚀性等方面具有明显优势 |
钛合金[ | 具有良好的低温力学性能,重量轻,具有高的比强度,但其在成型和焊接性能方面的优势不明显,且成本相对较高,应用相对较少 |
奥氏体不锈钢[ | 应用最广泛的液氢储运容器用低温材料,良好的低温效果,但液氢低温下氢介质的存在引起塑性和韧性的下降 |
1 | 陈晓露, 刘小敏, 王娟, 等. 液氢储运技术及标准化[J]. 化工进展, 2021, 40(9): 4806-4814. |
CHEN Xiaolu, LIU Xiaomin, WANG Juan, et al. Technology and standardization of liquid hydrogen storage and transportation[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4806-4814. | |
2 | ACEVES Salvador M, Francisco ESPINOSA-LOZA, Elias LEDESMA-OROZCO, et al. High-density automotive hydrogen storage with cryogenic capable pressure vessels[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1219-1226. |
3 | KNORR H. The man hydrogen propulsion system for city buses[J]. International Journal of Hydrogen Energy, 1998, 23(3): 201-208. |
4 | AMASEDER Franz, KRAINZ Guenter. Liquid hydrogen storage systems developed and manufactured for the first time for customer cars[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. |
5 | AZIZ Muhammad. Liquid hydrogen: A review on liquefaction, storage, transportation, and safety[J]. Energies, 2021, 14(18): 5917. |
6 | MORRIS A S O, BACQUART T, ALLEN N D C, et al. Challenges in hydrogen fuel sampling due to contaminant behaviour in different gas cylinders[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18167-18178. |
7 | 余王伟. 超低温储氢容器用奥氏体不锈钢焊接接头韧性研究[D]. 杭州: 浙江工业大学, 2017. |
YU Wangwei. Research on toughness of austenitic stainless steel welded joints for ultra-low temperature hydrogen storage vessel[D]. Hangzhou: Zhejiang University of Technology, 2017. | |
8 | VOGT J B, FOCT J, REGNARD C, et al. Low-temperature fatigue of 316L and 316LN austenitic stainless steels[J]. Metallurgical Transactions A, 1991, 22(10): 2385-2392. |
9 | SHIBATA K, KISHIMOTO Y, NAMURA N, et al. Cyclic softening and hardening of austenitic steels at low temperatures[M] . Fatigue at Low Temperatures: ASTM International, 1985. |
10 | QIU Yinan, YANG Huan, TONG Lige, et al. Research progress of cryogenic materials for storage and transportation of liquid hydrogen[J]. Metals, 2021, 11(7): 1101. |
11 | GAUDER Patrick, Michael SEIDENFUß. Experimental and numerical investigations of tensile specimens containing multiple flaws in the ductile-to-brittle transition region[J]. Engineering Fracture Mechanics, 2021, 248: 107714. |
12 | 党霆, 陈成澍, 陶佑卿. 常温及低温下奥氏体不锈钢低循环变形行为的研究[J]. 西南交通大学学报, 1991, 26(3): 109-116. |
DANG Ting, CHEN Chengshu, TAO Youqing. Low cyclic deformation behavior of austenitic stainless steel at room and low temperatures[J]. Journal of Southwest Jiaotong University, 1991, 26(3): 109-116. | |
13 | 李广, 曹睿, 陈剑虹. 韧脆转变低温区断裂韧度分析[J]. 机械强度, 2010, 32(3): 442-445. |
LI Guang, CAO Rui, CHEN Jianhong. Analysis on fracture toughness at lower temperature region of the ductile-brittle transition[J]. Journal of Mechanical Strength, 2010, 32(3): 442-445. | |
14 | 褚峰, 张靖, 陆春洁, 等. 船用低温钢的冲击断裂行为及韧脆转变温度曲线分析[J]. 中国测试, 2018, 44(9): 136-140. |
CHU Feng, ZHANG Jing, LU Chunjie, et al. Analysis of impact fracture behavior and ductile-brittle transition temperature curve of the low temperature ship steel[J]. China Measurement & Test, 2018, 44(9): 136-140. | |
15 | 赵翠钗. 深冷容器奥氏体不锈钢封头的铁素体含量控制——LNG低温储罐内容器S30408封头的铁素体含量控制[J]. 中国化工装备, 2018, 20(5): 17-19. |
ZHAO Cuichai. The control of ferrite content in the head of austenitic stainless steel for cryogenic vessels—The control of ferrite content in the head of S30408 for LNG storage tank[J]. China Chemical Industry Equipment, 2018, 20(5): 17-19. | |
16 | 屈莎莎, 谭粤, 李蔚, 等. 液氢储运容器用低温材料的研究进展[J]. 山东化工, 2022, 51(20): 106-109, 113. |
QU Shasha, TAN Yue, LI Wei, et al. Research progress of cryogenic materials for liquid hydrogen storage and transportation vessels[J]. Shandong Chemical Industry, 2022, 51(20): 106-109, 113. | |
17 | 谢秀娟. 国内液氢技术装备与产业应用[J]. 科学新闻, 2022, 24(2): 20-22. |
XIE Xiujuan. Domestic liquid hydrogen technology and equipment and industrial application[J]. Science News, 2022, 24(2): 20-22. | |
18 | NAYAN Niraj, NARAYANA MURTY S V S, Abhay K JHA, et al. Mechanical properties of aluminium-copper-lithium alloy AA2195 at cryogenic temperatures[J]. Materials & Design, 2014, 58: 445-450. |
19 | YURI Tetsumi, OGATA Toshio, SAITO Masahiro, et al. Effect of welding structure on high-cycle and low-cycle fatigue properties for MIG welded A5083 aluminum alloys at cryogenic temperatures[J]. Cryogenics, 2001, 41(7): 475-483. |
20 | ANTONY PRABHU T, MURUGESAN N, THOMAS THARIAN K, et al. Studies on mechanical properties of Ti-6Al-4V ELI at liquid hydrogen temperature[J]. Materials Science Forum, 2015, 830/831: 207-210. |
21 | LU Zichuan, ZHANG Xuhu, JI Wei, et al. Investigation on the deformation mechanism of Ti-5Al-2.5Sn ELI titanium alloy at cryogenic and room temperatures[J]. Materials Science and Engineering: A, 2021, 818: 141380. |
22 | FUJII H, OHMIYA S, SHIBATA K, et al. Effect of specimen diameter on tensile properties of austenitic stainless steels in liquid hydrogen and gaseous helium at 20K[J]. AIP Conference Proceedings. American Institute of Physics, 2006, 824(1):145-152. |
23 | ZHENG Chengsi, YU Wangwei. Effect of low-temperature on mechanical behavior for an AISI 304 austenitic stainless steel[J]. Materials Science and Engineering: A, 2018, 710: 359-365. |
24 | ISLAM M R, FARUQUE M, ZOGHI B, et al. Engineering Statics[M]. Boca Raton: CRC Press, 2020. |
25 | 妙丛, 张翼, 黄磊. 车载液氢容器关键技术[J]. 低温与超导, 2022, 50(4): 71-74. |
MIAO Cong, ZHANG Yi, HUANG Lei. Key technologies of liquid hydrogen container on vehicle[J]. Cryogenics & Superconductivity, 2022, 50(4): 71-74. | |
26 | 鲁丽, 杨翊仁. 充液壳体运输过程中的随机振动和瞬态分析[J]. 西南交通大学学报, 2002, 37(S1): 62-64. |
LU Li, YANG Yiren. Random vibration and transient analysis of oil-filled shells during transportation[J]. Journal of Southwest Jiaotong University, 2002, 37(S1): 62-64. | |
27 | CHUNG Soh-Myung, JEON Gyu-Mok, PARK Jong-Chun. Numerical approach to analyze fluid flow in a type C tank for liquefied hydrogen carrier (part 1: Sloshing flow)[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5609-5626. |
28 | 杜明广. 车载LNG气瓶的设计与分析[D]. 合肥: 合肥工业大学, 2016. |
DU Mingguang. Design and analysis of LNG vehicle cylinder[D]. Hefei: Hefei University of Technology, 2016. | |
29 | 刘蕊, 陈祖志, 黄强华, 等. 充装量及筒体长度对车载LNG气瓶共振频率影响的数值模拟分析[J]. 化工学报, 2019, 70(11): 4486-4496. |
LIU Rui, CHEN Zuzhi, HUANG Qianghua, et al. Numerical simulation analysis of influence of filling amount and length of cylinder on resonance frequency of vehicle LNG cylinder[J]. CIESC Journal, 2019, 70(11): 4486-4496. | |
30 | 周天送. 车载低温绝热气瓶抗振性能研究[D]. 大连: 大连理工大学, 2016. |
ZHOU Tiansong. Study on anti-vibration performance of vehicle cryogenic insulated cylinder[D]. Dalian: Dalian University of Technology, 2016. | |
31 | 刘培启, 许海洋, 段武, 等. 扁长型车载LNG气瓶振动特性分析[J]. 压力容器, 2019, 36(6): 27-33. |
LIU Peiqi, XU Haiyang, DUAN Wu, et al. Vibration characteristics analysis of flat long vehicle mounted LNG cylinder[J]. Pressure Vessel Technology, 2019, 36(6): 27-33. | |
32 | 李佳. 基于结构动力特性的随机疲劳寿命研究[D]. 天津: 天津大学, 2018. |
LI Jia. Random fatigue life study based on structural dynamic characteristics[D]. Tianjin: Tianjin University, 2018. | |
33 | 刘德玉. LNG车载气瓶动力特性分析[D]. 兰州: 兰州理工大学, 2016. |
LIU Deyu. Dynamic characteristics analysis of LNG vehicle cylinder[D]. Lanzhou: Lanzhou University of Technology, 2016. | |
34 | 古海波, 刘岩, 宋薛思, 等. 车用LNG气瓶振动试验典型失效模式[J]. 低温与特气, 2018, 36(5): 51-54. |
GU Haibo, LIU Yan, SONG Xuesi, et al. Typical failure modes in vibration test of LNG cylinders for vehicles[J]. Low Temperature and Specialty Gases, 2018, 36(5): 51-54. | |
35 | BHUYAN G S, AKHTAR A, WEBSTER C T L. Effect of hydrostatic retest on the fatigue behavior of a steel gas cylinder[J]. Journal of Pressure Vessel Technology, 1991, 113(4): 556-559. |
36 | 杨树斌, 马志鹏, 李蔚, 等. 车载LNG气瓶在振动和冲击载荷作用下的失效研究及风险应对措施[J]. 山东化工, 2019, 48(6): 157-158, 162. |
YANG Shubin, MA Zhipeng, LI Wei, et al. Failure research and risk counter-measure of LNG vehicle cylinder under vibration and impact loading[J]. Shandong Chemical Industry, 2019, 48(6): 157-158, 162. | |
37 | ZHANG Jianqiang, ZHU Jiacai, GUO Wei, et al. A machine learning-based approach to predict the fatigue life of three-dimensional cracked specimens[J]. International Journal of Fatigue, 2022, 159: 106808. |
38 | 杨兴. 有限元法对车载钢制天然气瓶疲劳分析[J]. 科技资讯, 2020, 18(4): 43-49. |
YANG Xing. Fatigue analysis of vehicle-mounted steel natural gas bottle by finite element method[J]. Science & Technology Information, 2020, 18(4): 43-49. | |
39 | 李伟. 两种车载低温绝热气瓶抗振性能研究[D]. 大连: 大连理工大学, 2018. |
LI Wei. Study on anti-vibration performance of two types of vehicle cryogenic gas cylinder[D]. Dalian: Dalian University of Technology, 2018. | |
40 | JIANG Yaobin, YU Yusong, WANG Zheng, et al. CFD simulation of heat transfer and phase change characteristics of the cryogenic liquid hydrogen tank under microgravity conditions[J]. International Journal of Hydrogen Energy, 2023, 48(19): 7026-7037. |
41 | JIANG Wenbing, SUN Peijie, LI Peng, et al. Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank[J]. Energy, 2021, 231: 120859. |
42 | KWON Hyun-Wook, HWANG In-Cheol. Design and optimization of vibration-resistant and heat-insulating support structure of fuel cylinder for LNG vehicles[J]. Journal of the Korean Institute of Gas, 2014, 18(5): 6-11. |
43 | 李阳. 低温绝热气瓶结构优化与进一步提高绝热性能的研究[D]. 上海: 上海交通大学, 2012. |
LI Yang. Study on structural optimization for further improvement in thermal insulation property of cryogenic insulated cylinder[D]. Shanghai: Shanghai Jiao Tong University, 2012. | |
44 | 徐伟强, 李倩倩, 李万青. 无人机机载低温液氢储罐结构设计与强度分析[J]. 真空科学与技术学报, 2015, 35(8): 1017-1022. |
XU Weiqiang, LI Qianqian, LI Wanqing. Simulation of mechanical strength of novel cryogenic liquid hydrogen tank for unmanned aerial vehicle[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(8): 1017-1022. | |
45 | XU Weiqiang, LI Qianqian, HUANG Minjie. Design and analysis of liquid hydrogen storage tank for high-altitude long-endurance remotely-operated aircraft[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16578-16586. |
46 | TAPEINOS Ilias G, KOUSSIOS Sotiris, GROVES Roger M. Design and analysis of a multi-cell subscale tank for liquid hydrogen storage[J]. International Journal of Hydrogen Energy, 2016, 41(5): 3676-3688. |
47 | CHOI Younseok, KIM Jungwoog, PARK Seungyup, et al. Design and analysis of liquid hydrogen fuel tank for heavy duty truck[J]. International Journal of Hydrogen Energy, 2022, 47(32): 14687-14702. |
48 | YAO Shouguang, YANG Xiaoxu. Research progress of lossless and safe storage technology for cryogenic liquid tanks[J]. International Journal of Green Energy, 2022, 19(11): 1230-1251. |
49 | 高云飞, 王博, 王浩任, 等. 液氢温区真空多层绝热材料研究进展[J]. 低温工程, 2021(6): 12-21. |
GAO Yunfei, WANG Bo, WANG Haoren, et al. Progress of vacuum multilayer insulation materials at liquid hydrogen temperatures[J]. Cryogenics, 2021(6): 12-21. | |
50 | 罗若尹, 王博, 甘智华, 等. 真空完全丧失下LNG罐式集装箱的储存规律研究[J]. 工程热物理学报, 2021, 42(8): 1930-1935. |
LUO Ruoyin, WANG Bo, GAN Zhihua, et al. Study on performance of LNG tank containers after insulating vacuum loss[J]. Journal of Engineering Thermophysics, 2021, 42(8): 1930-1935. | |
51 | 杨帆, 陈保东, 姜文全, 等. LNG低温储罐夹层真空丧失过程内壳裂纹扩展研究[J]. 中国石油大学学报(自然科学版), 2014, 38(1): 132-136. |
YANG Fan, CHEN Baodong, JIANG Wenquan, et al. Study on inner shell crack propagation of LNG cryogenic storage tank during vacuum loss[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(1): 132-136. | |
52 | 谢高峰. 高真空多层绝热低温容器完全真空丧失实验及传热机理研究[D]. 上海: 上海交通大学, 2011. |
XIE Gaofeng. The research of the experiment and the heat transfer mechanism on the high-vacuum-multilayer-insulation (hvmli) cryogenic tank after catastrophic loss of insulating vacuum[D]. Shanghai: Shanghai Jiao Tong University, 2011. | |
53 | Bent SØRENSEN, SPAZZAFUMO Giuseppe. Hydrogen and fuel cells: emerging technologies and applications[M]. 3rd ed. Amsterdam: Academic Press, 2018. |
54 | EWALD R. Requirements for advanced mobile storage systems[J]. International Journal of Hydrogen Energy, 1998, 23(9): 803-814. |
55 | MICHEL F, FIESELER H, MEYER G, et al. On-board equipment for liquid hydrogen vehicles[J]. International Journal of Hydrogen Energy, 1998, 23(3): 191-199. |
56 | WANG Ying, DAI Xingtao, YOU Hongxin, et al. Research on the design of hydrogen supply system of 70 MPa hydrogen storage cylinder for vehicles[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19189-19195. |
57 | 齐超, 孙培杰, 耑锐, 等. 长期在轨运行低温液氧贮箱内汽化过程的模拟[J]. 化工学报, 2016, 67(S2): 58-63. |
QI Chao, SUN Peijie, ZHUAN Rui, et al. Simulation of vaporization process inside cryogenic liquid oxygen tank for long-term storage in orbit[J]. CIESC Journal, 2016, 67(S2): 58-63. | |
58 | 金树峰, 陈叔平, 姚淑婷, 等. 车载LNG气瓶稳定供气及自增压气化量分析[J]. 低温与超导, 2013, 41(12): 59-62. |
JIN Shufeng, CHEN Shuping, YAO Shuting, et al. Analysis of the stable gas supply and gasification quantity of self-pressurization for LNG vehicle cylinder[J]. Cryogenics & Superconductivity, 2013, 41(12): 59-62. | |
59 | 赵康. 车载液氢汽化器换热研究[D]. 北京: 中国航天科技集团公司第一研究院, 2018. |
ZHAO Kang. Study on heat transfer of liquid hydrogen vaporizer in vehicle[D]. Beijing: The first Research Institute of China Aerospace Science and Technology Corporation, 2018. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[3] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[4] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[5] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[6] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[7] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[8] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[9] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[10] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[11] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
[12] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[13] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[14] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[15] | YANG Zhiqiang, ZENG Jijun, MA Yiding, YU Tao, ZHAO Bo, LIU Yingzhe, ZHANG Wei, LYU Jian, LI Xingwen, ZHANG Boya, TANG Nian, LI Li, SUN Dongwei. Research status and future trend of sulfur hexafluoride alternatives [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4093-4107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |