Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5427-5440.DOI: 10.16085/j.issn.1000-6613.2023-1624
• Energy processes and technology • Previous Articles
LIU Wenchen1(), HUANG Qiyu1(), XIE Yan2, LYU Yang3, WANG Yijie1, XU Zhenkang1, HAN Jipu4
Received:
2023-09-13
Revised:
2023-11-01
Online:
2024-10-29
Published:
2024-10-15
Contact:
HUANG Qiyu
刘文臣1(), 黄启玉1(), 谢雁2, 吕杨3, 王毅杰1, 徐榛康1, 韩吉普4
通讯作者:
黄启玉
作者简介:
刘文臣(1998—),男,博士研究生,研究方向为高含水含蜡原油低温集输黏壁机理。E-mail:lwc980907@163.com。
基金资助:
CLC Number:
LIU Wenchen, HUANG Qiyu, XIE Yan, LYU Yang, WANG Yijie, XU Zhenkang, HAN Jipu. Research progress of low-temperature gathering and transportation of high water cut crude oil[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5427-5440.
刘文臣, 黄启玉, 谢雁, 吕杨, 王毅杰, 徐榛康, 韩吉普. 高含水原油低温集输研究进展[J]. 化工进展, 2024, 43(10): 5427-5440.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1624
研究方法 | 研究者 | 时间/年 | 判别方法 | 优点 | 存在的不足 |
---|---|---|---|---|---|
现场试验 | 刘晓燕[ 王志华[ | 2005 2014 | 井口回压迅速上升超过管输安全运行压力 | 油样未老化,基础物性保持良好,贴近实际集输工况,试验现象更加直观可靠;更侧重于解决工程实际问题 | 为便于观察流型,现场试验所用管材多为透明玻璃管,其界面性质和保温性能较实际输送钢管存在差异 |
转轮流动 模拟器 | 吴迪等[ 刘保君[ | 1999 2005 | 凝油黏附到转轮内壁产生偏心扭矩,10%峰值扭矩与平均扭矩差距开始突增的温度点 | 控温精度高,方便操作 | 装置受外界因素干扰严重,且不能模拟实际集输管路流动情况 |
凝滞点 测试法 | 宋承毅[ | 2014 | 随着温度降低,下层游离水的剪切作用无法破坏上层胶凝态油包水乳状液结构,凝点管中油相停止流动 | 实验装置简单,便于操作 | 文献中的管流剪切驱动力来自重力,与真实管内流动特性不相符 |
石蜡 沉积杯法 | 丁振军[ | 2013 | 测试不同温度下黏壁质量直至黏壁质量发生突增,发生突增的温度视为黏壁温度 | 设备结构简单,造价成本低廉,便于现场人员确定集输温度下限 | 实验结果受主观因素影响较大,实验数据不稳定;缺少独立控温装置,无法进行带压条件下集输温度界限的确定 |
改进冷指 实验 | 贾治渊[ 韩善鹏等[ | 2017 2018 | 将冷指壁面上黏壁厚度发生突增的温度视为黏壁温度 | 能够模拟实际管流剪切率,且能实现油样的可持续更新 | 冷指内油水混合物的流动形态与现场不一致;仅能反映局部管道的黏壁情况,无法预测实际管道的黏壁情况 |
环道实验 | 郑海敏等[ | 2015 | 测试段压差数值急剧上升的温度视为黏壁温度 | 能够模拟实际管道流场,实时监测管道内压力的波动情况 | 难以取样和测试黏壁厚度,仅能利用压力数据计算平均黏壁厚度;过泵剪切乳化和油品老化严重;温度场分布与实际管道差异较大 |
控温搅拌 模拟罐系统 | 张燕等[ 崔悦等[ | 2020 | 将黏壁质量突增的温度视为黏壁发生温度 | 是现阶段处理凝油黏壁温度最简单、快捷和有效的研究方法之一,并可进行带压模拟实验 | 重复性实验黏壁量存在一定偏差,人为操作误差较大,需要多次测量求其平均值 |
黏壁测试 装置 | 李昂[ | 2021 | 低温条件下黏壁厚度显著增加的温度即黏壁温度 | 装置简单,仅需在搅拌釜中形成低温环境即可,实验结果较为直观 | 恒温槽不密闭,温度场易受外界环境影响;测试样片与现场管道存在差异 |
研究方法 | 研究者 | 时间/年 | 判别方法 | 优点 | 存在的不足 |
---|---|---|---|---|---|
现场试验 | 刘晓燕[ 王志华[ | 2005 2014 | 井口回压迅速上升超过管输安全运行压力 | 油样未老化,基础物性保持良好,贴近实际集输工况,试验现象更加直观可靠;更侧重于解决工程实际问题 | 为便于观察流型,现场试验所用管材多为透明玻璃管,其界面性质和保温性能较实际输送钢管存在差异 |
转轮流动 模拟器 | 吴迪等[ 刘保君[ | 1999 2005 | 凝油黏附到转轮内壁产生偏心扭矩,10%峰值扭矩与平均扭矩差距开始突增的温度点 | 控温精度高,方便操作 | 装置受外界因素干扰严重,且不能模拟实际集输管路流动情况 |
凝滞点 测试法 | 宋承毅[ | 2014 | 随着温度降低,下层游离水的剪切作用无法破坏上层胶凝态油包水乳状液结构,凝点管中油相停止流动 | 实验装置简单,便于操作 | 文献中的管流剪切驱动力来自重力,与真实管内流动特性不相符 |
石蜡 沉积杯法 | 丁振军[ | 2013 | 测试不同温度下黏壁质量直至黏壁质量发生突增,发生突增的温度视为黏壁温度 | 设备结构简单,造价成本低廉,便于现场人员确定集输温度下限 | 实验结果受主观因素影响较大,实验数据不稳定;缺少独立控温装置,无法进行带压条件下集输温度界限的确定 |
改进冷指 实验 | 贾治渊[ 韩善鹏等[ | 2017 2018 | 将冷指壁面上黏壁厚度发生突增的温度视为黏壁温度 | 能够模拟实际管流剪切率,且能实现油样的可持续更新 | 冷指内油水混合物的流动形态与现场不一致;仅能反映局部管道的黏壁情况,无法预测实际管道的黏壁情况 |
环道实验 | 郑海敏等[ | 2015 | 测试段压差数值急剧上升的温度视为黏壁温度 | 能够模拟实际管道流场,实时监测管道内压力的波动情况 | 难以取样和测试黏壁厚度,仅能利用压力数据计算平均黏壁厚度;过泵剪切乳化和油品老化严重;温度场分布与实际管道差异较大 |
控温搅拌 模拟罐系统 | 张燕等[ 崔悦等[ | 2020 | 将黏壁质量突增的温度视为黏壁发生温度 | 是现阶段处理凝油黏壁温度最简单、快捷和有效的研究方法之一,并可进行带压模拟实验 | 重复性实验黏壁量存在一定偏差,人为操作误差较大,需要多次测量求其平均值 |
黏壁测试 装置 | 李昂[ | 2021 | 低温条件下黏壁厚度显著增加的温度即黏壁温度 | 装置简单,仅需在搅拌釜中形成低温环境即可,实验结果较为直观 | 恒温槽不密闭,温度场易受外界环境影响;测试样片与现场管道存在差异 |
序号 | 油田 | 油井井号 | 试验期间液量含水率/% | 试验期间产液量/m3∙d-1 | 井口压力/MPa | 进间温度/℃ | 黏壁温度/℃ |
---|---|---|---|---|---|---|---|
1 | 吉林油田 | 致密区块让70-12-14 | 73.0 | 38.77 | 1.50 | 27 | 27 |
2 | 华北油田 | 西47-18X | — | — | 0.60 | 26~28 | 30 |
3 | 大庆油田 | X4-2-F17 | 96.1 | 47.20 | 0.65 | 20 | 22 |
4 | 胜利油田 | — | 94.2 | 22.20 | 1.10 | 17 | 29 |
序号 | 油田 | 油井井号 | 试验期间液量含水率/% | 试验期间产液量/m3∙d-1 | 井口压力/MPa | 进间温度/℃ | 黏壁温度/℃ |
---|---|---|---|---|---|---|---|
1 | 吉林油田 | 致密区块让70-12-14 | 73.0 | 38.77 | 1.50 | 27 | 27 |
2 | 华北油田 | 西47-18X | — | — | 0.60 | 26~28 | 30 |
3 | 大庆油田 | X4-2-F17 | 96.1 | 47.20 | 0.65 | 20 | 22 |
4 | 胜利油田 | — | 94.2 | 22.20 | 1.10 | 17 | 29 |
序号 | 油田 | 集输干线 | 试验期间液量含水率/% | 试验期间产液量/t∙d-1 | 集输干线压力/MPa | 外输温度/℃ | 节约费用/CNY·d-1 |
---|---|---|---|---|---|---|---|
1 | 江苏油田 | 韦5-韦8 | 83 | 1000~1100 | 1.24增至1.31 | 55降至39 | 1932 |
2 | 江苏油田 | 韦8-韦2 | 90 | 900~950 | 0.90增至1.00 | 45降至40 | 518 |
3 | 江苏油田 | 陈2-陈3 | 90 | 820~860 | 1.30增至1.35 | 50降至43 | 941.73 |
序号 | 油田 | 集输干线 | 试验期间液量含水率/% | 试验期间产液量/t∙d-1 | 集输干线压力/MPa | 外输温度/℃ | 节约费用/CNY·d-1 |
---|---|---|---|---|---|---|---|
1 | 江苏油田 | 韦5-韦8 | 83 | 1000~1100 | 1.24增至1.31 | 55降至39 | 1932 |
2 | 江苏油田 | 韦8-韦2 | 90 | 900~950 | 0.90增至1.00 | 45降至40 | 518 |
3 | 江苏油田 | 陈2-陈3 | 90 | 820~860 | 1.30增至1.35 | 50降至43 | 941.73 |
1 | 黄维和, 宫敬, 王军. 碳中和愿景下油气储运学科的任务[J]. 油气储运, 2022, 41(6): 607-613. |
HUANG Weihe, GONG Jing, WANG Jun. Tasks of oil & gas storage and transportation discipline under the vision of carbon neutrality[J]. Oil & Gas Storage and Transportation, 2022, 41(6): 607-613. | |
2 | SHI Jing, LAO Liyun, YEUNG Hoi. Water-lubricated transport of high-viscosity oil in horizontal pipes: The water holdup and pressure gradient[J]. International Journal of Multiphase Flow, 2017, 96: 70-85. |
3 | Yang LYU, HUANG Qiyu. Flow characteristics of heavy oil-water flow during high water-content cold transportation[J]. Energy, 2023, 262: 125441. |
4 | 魏蕾. 高含水易凝高黏原油集油管道水力热力计算方法[D]. 北京: 中国石油大学(北京), 2013. |
WEI Lei. Hydraulic and thermal calculation method of the waxy and high viscosity crude oil gathering pipeline in high water cut[D]. Beijing: China University of Petroleum (Beijing), 2013. | |
5 | 郁辰阳. 用搅拌法测量油水混合物当量黏度的研究及应用[D]. 北京: 中国石油大学(北京), 2013. |
YU Chenyang. The study and application of measuring the equivalent viscosity of oil and water mixtures by using the stirring method[D]. Beijing: China University of Petroleum (Beijing), 2013. | |
6 | 李玉星, 冯叔初, 舒军星. 高气油比混输管路水力计算模型的比较[J]. 油气储运, 2001, 20(7): 21-24, 27. |
LI Yuxing, FENG Shuchu, SHU Junxing. The comparison between pressure calculation models for the high GOR multiphase flow pipeline[J]. Oil & Gas Storage and Transportation, 2001, 20(7): 21-24, 27. | |
7 | TAITEL Yemada, DUKLER A E. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J]. AIChE Journal, 1976, 22(1): 47-55. |
8 | CHISHOLM D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12): 1767-1778. |
9 | BAKER Ovid. Design of pipelines for the simultaneous flow of oil and gas[J]. Oil and Gas Journal, 1953, 53(12): 185-195. |
10 | MUKHERJEE Hemanta, BRILL James P. Empirical equations to predict flow patterns in two-phase inclined flow[J]. International Journal of Multiphase Flow, 1985, 11(3): 299-315. |
11 | SUNDER RAJ T, CHAKRABARTI D P, DAS G. Liquid-liquid stratified flow through horizontal conduits[J]. Chemical Engineering & Technology, 2005, 28(8): 899-907. |
12 | BRAUNER N, MOALEM MARON D, ROVINSKY J. A two-fluid model for stratified flows with curved interfaces[J]. International Journal of Multiphase Flow, 1998, 24(6): 975-1004. |
13 | 中华人民共和国住房和城乡建设部. 油田油气集输设计规范: [S]. 北京: 中国计划出版社, 2016. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of oil-gas gathering and transportation systems of oilfield: [S]. Beijing: China Planning Press, 2016. | |
14 | 郭敬红. 高含水期油气水混输温度界限及压降试验研究[D]. 大庆: 大庆石油学院, 2005. |
GUO Jinghong. The testing study of temperature limit and pressure drop for oil-gas-water mixed transportation during extracting oil of highly-watery[D]. Daqing: Daqing Petroleum Institute, 2005. | |
15 | 刘晓燕, 张艳, 刘立君, 等. 特高含水期油气水混输管道压降计算方法研究[J]. 工程热物理学报, 2006, 27(4): 615-618. |
LIU Xiaoyan, ZHANG Yan, LIU Lijun, et al. Research on pressure drop calculation method for oil-gas-water in horizontal pipeline with supper high-water-cut[J]. Journal of Engineering Thermophysics, 2006, 27(4): 615-618. | |
16 | 刘佳佳. 油气水三相流混输管路压降计算方法研究[D]. 大庆: 大庆石油学院, 2010. |
LIU Jiajia. Study on pressure drop calculation of transmission line with mixed oil-gas-water three-phase flow[D]. Daqing: Daqing Petroleum Institute, 2010. | |
17 | ALVES I N, ALHANATI F J S, SHOHAM Ovadia. A unified model for predicting flowing temperature distribution in wellbores and pipelines[J]. SPE Production Engineering, 1992, 7(4): 363-367. |
18 | GOULD Thomas L. Compositional two-phase flow in pipelines[J]. Journal of Petroleum Technology, 1979, 31(3): 373-384. |
19 | 刘晓燕. 特高含水期油气水管道安全混输界限确定及水力热力计算方法研究[D]. 大庆: 大庆石油学院, 2005. |
LIU Xiaoyan. The limit confirming and hydraulic/thermodynamic calculation method research for oil-gas-water mixing transportation safe in pipeline during oil producing with supper high water cut[D]. Daqing: Daqing Petroleum Institute, 2005. | |
20 | CZARNECKI Jan, TCHOUKOV Plamen, DABROS Tadeusz. Possible role of asphaltenes in the stabilization of water-in-crude oil emulsions[J]. Energy & Fuels, 2012, 26(9): 5782-5786. |
21 | SYUNYAEV R Z, BALABIN R M, AKHATOV I S, et al. Adsorption of petroleum asphaltenes onto reservoir rock sands studied by near-infrared (NIR) spectroscopy[J]. Energy & Fuels, 2009, 23(3): 1230-1236. |
22 | 崔悦. 高含水含蜡原油粘壁机理研究[D]. 北京: 中国石油大学(北京), 2020. |
CUI Yue. Study on the wall sticking mechanism of waxy crude oil during high water-cut period[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
23 | 时浩. 高含水稠油不加热集输方案研究[D]. 北京: 中国石油大学(北京), 2021. |
SHI Hao. Study on wall sticking characteristics of crude oil in high water cut with unheated gathering and transportation[D]. Beijing: China University of Petroleum (Beijing), 2021. | |
24 | 王志华, 许云飞, 戚向东, 等. 乳状液稳定性影响因素及其分子动力学模拟研究进展[J]. 油田化学, 2021, 38(2): 360-367. |
WANG Zhihua, XU Yunfei, QI Xiangdong, et al. Research progress on influencing factors of emulsion stability with molecular dynamics simulation[J]. Oilfield Chemistry, 2021, 38(2): 360-367. | |
25 | GAN Yifan, CHENG Qinglin, CHU Shengli, et al. Molecular dynamics simulation of waxy crude oil multiphase system depositing and sticking on pipeline inner walls and the micro influence mechanism of surface physical-chemical characteristics[J]. Energy & Fuels, 2021, 35(5): 4012-4028. |
26 | Yang LYU, HUANG Qiyu, LIU Luoqian, et al. Experimental and molecular dynamics simulation investigations of adhesion in heavy oil/water/pipeline wall systems during cold transportation[J]. Energy, 2022, 250: 123811. |
27 | Yang LYU, HUANG Qiyu, LI Rongbin, et al. Effect of temperature on wall sticking of heavy oil in low-temperature transportation[J]. Journal of Petroleum Science and Engineering, 2021, 206: 108944. |
28 | 李明远, 甄鹏, 吴肇亮, 等. 原油乳状液稳定性研究 Ⅵ.界面膜特性与原油乳状液稳定性[J]. 石油学报(石油加工), 1998, 14(3): 1-5. |
LI Mingyuan, ZHEN Peng, WU Zhaoliang, et al. Investigation of stability of water in crude oil emulsions Ⅵ. Properties of interfacial film and stability of crude oil emulsions[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1998, 14(3): 1-5. | |
29 | 王志华. 含水原油低温集输胶凝淤积行为及治理研究[D]. 大庆: 东北石油大学, 2014. |
WANG Zhihua. Study on gelling deposition behavior and control of oil-water two-phase system in cooling gathering & transportation[D]. Daqing: Northeast Petroleum University, 2014. | |
30 | 李晓宇. 高含水原油不加热集输边界条件研究[D]. 北京: 中国石油大学(北京), 2021. |
LI Xiaoyu. Study on unheated gathering and transportation boundary conditions of high water-cut crude oil[D]. Beijing: China University of Petroleum (Beijing), 2021. | |
31 | 黑树楠. 高含水含蜡原油管道集油温度下限研究[D]. 北京: 中国石油大学(北京), 2022. |
Shunan HEI. Research on the lower limit of gathering and transportation temperature for high water cut waxy crude oil pipeline[D]. Beijing: China University of Petroleum (Beijing), 2022. | |
32 | YANG Fei, LI Chuanxian, XIA Binghuan, et al. Solubility and rheological properties of live crude oils[J]. Advanced Materials Research, 2012, 524/525/526/527: 1881-1888. |
33 | 李秉繁, 刘刚, 陈雷. CH4在原油体系中溶解规律及影响机理[J]. 化工进展, 2021, 40(8): 4205-4222. |
LI Bingfan, LIU Gang, CHEN Lei. Dissolution of CH4 in the crude oil system: Behaviors and mechanisms[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4205-4222. | |
34 | 鲁彦伯. 溶气原油流变性研究及模型的建立[D]. 东营: 中国石油大学(华东), 2011. |
LU Yanbo. Research on reological property of live crude oil and foundation of model[D]. Dongying: China University of Petroleum (East China), 2011. | |
35 | 李传宪, 阎孔尧, 杨爽, 等. CO2溶胀和CH4协同作用下长庆原油流动性的改善[J]. 石油化工高等学校学报, 2017, 30(5): 86-92. |
LI Chuanxian, YAN Kongyao, YANG Shuang, et al. CO2 swelling and synergistic effect of CH4 on rheological improvement of Changqing crude oil[J]. Journal of Petrochemical Universities, 2017, 30(5): 86-92. | |
36 | 龙震. 溶气含水原油流动性研究[D]. 北京: 中国石油大学(北京), 2018. |
LONG Zhen. Study on flow characteristics of gas-saturated crude oil and gas-saturated emulsion[D]. Beijing: China University of Petroleum (Beijing), 2018. | |
37 | 孔维敏. 高含水溶气原油不加热集输流动特性研究[D]. 北京: 中国石油大学(北京), 2021. |
KONG Weimin. Research on flow characteristics of high water-cut dissolved gas crude oil gathering and transportation without heating[D]. Beijing: China University of Petroleum (Beijing), 2021. | |
38 | COUTO G H, CHEN H, DELLECASE E, et al. An investigation of two-phase oil/water paraffin deposition[J]. SPE Production & Operations, 2008, 23(1): 49-55. |
39 | ZHENG Haimin, HUANG Qiyu, WANG Changhui. Wall sticking of high water-cut crude oil transported at temperatures below the gel point[J]. Journal of Geophysics and Engineering, 2015, 12(6): 1008-1014. |
40 | 贾治渊. 高含水油田不加热集输边界条件研究[D]. 北京: 中国石油大学(北京), 2017. |
JIA Zhiyuan. Study on the boundary conditions of unheated gathering and transportation in high water cut oilfield[D]. Beijing: China University of Petroleum (Beijing), 2017. | |
41 | 鲁晓醒, 檀为建, 胡雄翼, 等. 高含水期原油低温集输黏壁特性实验[J]. 油气储运, 2019, 38(11): 1245-1250. |
LU Xiaoxing, TAN Weijian, HU Xiongyi, et al. Experiment on wall sticking characteristics during the low-temperature gathering and transportation of crude oil in the period of high water cut[J]. Oil & Gas Storage and Transportation, 2019, 38(11): 1245-1250. | |
42 | 孔维敏, 张士英, 邱振东, 等. 高含水油田单井降温集输试验[J]. 油气田地面工程, 2021, 40(10): 17-22. |
KONG Weimin, ZHANG Shiying, QIU Zhendong, et al. Single-well temperature lowering gathering and transportation test in high water- cut oilfield[J]. Oil-Gas Field Surface Engineering, 2021, 40(10): 17-22. | |
43 | 张燕. 高含水原油低温特性及集油边界条件研究[D]. 北京: 中国石油大学(北京), 2020. |
ZHANG Yan. Study on low temperature characteristics and low temperature gathering and transportation boundary conditions of high water-cut crude oil[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
44 | 辛寅昌, 董晓燕, 卞介萍, 等. 高矿化度稠油流动的影响因素及改善原油流动的方法[J]. 石油学报, 2010, 31(3): 480-485. |
XIN Yinchang, DONG Xiaoyan, BIAN Jieping, et al. Affecting factors for flow ability of high-salinity heavy oil and methods for improving oil mobility[J]. Acta Petrolei Sinica, 2010, 31(3): 480-485. | |
45 | 张莹. 常温输送高含水稠油粘壁机理研究[D]. 北京: 中国石油大学(北京), 2018. |
ZHANG Ying. Study on the sticking wall mechanism of high water-cut heavy oil[D]. Beijing: China University of Petroleum (Beijing), 2018. | |
46 | 吕杨, 朱国承, 霍富永, 等. 不加热集油粘壁规律研究进展[J]. 化工进展, 2020, 39(2): 478-488. |
Yang LYU, ZHU Guocheng, HUO Fuyong, et al. Research progress on wall sticking of gelled crude oil at low-temperature transportation[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 478-488. | |
47 | 程成. 特高含水条件下原油粘壁实验研究[D]. 北京: 中国石油大学(北京), 2017. |
CHENG Cheng. Experimental study on wall-sticking of crude oil under ultra high water cut[D]. Beijing: China University of Petroleum (Beijing), 2017. | |
48 | 李小龙, 韩文超, 陈高磊, 等. 管道不加热集输粘壁行为与粘附理论[J]. 油气储运, 2022, 41(12): 1455-1463. |
LI Xiaolong, HAN Wenchao, CHEN Gaolei, et al. Wall sticking behavior and adhesion theory of oil in low-temperature gathering and transportation by pipeline[J]. Oil & Gas Storage and Transportation, 2022, 41(12): 1455-1463. | |
49 | 张富强. 玻璃钢管道原油低温集输粘附与界面特性研究[D]. 北京: 中国石油大学(北京), 2022. |
ZHANG Fuqiang. Study on adhesion and interface characteristics of FRP pipeline in crude oil gathering and transportation at low temperature[D]. Beijing: China University of Petroleum (Beijing), 2022. | |
50 | 李昂. 高含水原油黏壁效应及表面黏附特性研究[D]. 北京: 中国石油大学(北京), 2021. |
LI Ang. Study on the wall sticking and adhesion characteristics of high water-cut crude oil[D]. Beijing: China University of Petroleum (Beijing), 2021. | |
51 | Yang LYU, HUANG Qiyu, ZHANG Fuqiang, et al. Study on adhesion of heavy oil/brine/substrate system under shear flow condition[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109225. |
52 | 程显闻. 溶气高含水原油的低温集输研究[D]. 北京: 中国石油大学(北京), 2023. |
CHENG Xianwen. Study on the low temperature gathering and transportation of gas-saturated crude oil during high water-cut period[D]. Beijing: China University of Petroleum (Beijing), 2023. | |
53 | XU Peiyang, HE Limin, YANG Donghai, et al. Blocking characteristics of high water-cut crude oil in low-temperature gathering and transportation pipeline[J]. Chemical Engineering Research and Design, 2021, 173: 224-233. |
54 | ZHANG Yan, HUANG Qiyu, CUI Yue, et al. Estimating wall sticking occurrence temperature based on adhesion force theory[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106778. |
55 | 吴迪, 孙青峰, 艾广智. 用转轮流动模拟器测定集油温度下限[J]. 油气田地面工程, 1999, 18(6): 34-35. |
WU Di, SUN Qingfeng, AI Guangzhi. Application of turning wheel flowing simulator in determination of oil-gathering temperature limits[J]. Oil-Gas Field Surface Engineering, 1999, 18(6): 34-35. | |
56 | 刘保君. 高含水油井常温集输实验和理论研究[D]. 大庆: 大庆石油学院, 2005. |
LIU Baojun. Theoretical and experimental studies of collection and transport in high water cut oil well at normal temperature[D]. Daqing: Daqing Petroleum Institute, 2005. | |
57 | 宋承毅. 特高含水原油凝滞点及其变化规律研究[J]. 油气田地面工程, 2014, 33(11): 18-20, 21. |
SONG Chengyi. Study on freezing point and its variation law of ultra-high water cut crude oil[J]. Oil-Gas Field Surface Engineering, 2014, 33(11): 18-20, 21. | |
58 | 丁振军. 高含水、高黏、易凝原油单井不加热集油的边界条件的确定[D]. 北京: 中国石油大学(北京), 2013. |
DING Zhenjun. Determination of the boundary conditions in the single well gathering system of high-water-cut, highly viscous, and high-gel-point crude oil without heating[D]. Beijing: China University of Petroleum (Beijing), 2013. | |
59 | 韩善鹏, 贾治渊, 赵芸黎, 等. 板北油田不加热集油问题研究[J]. 北京石油化工学院学报, 2018, 26(2): 56-60. |
HAN Shanpeng, JIA Zhiyuan, ZHAO Yunli, et al. Study of the gathering pipelines unheated operation in banbei oilfield[J]. Journal of Beijing Institute of Petro-chemical Technology, 2018, 26(2): 56-60. | |
60 | CUI Yue, HUANG Qiyu, ZHANG Yan, et al. A new method for predicting wall sticking occurrence temperature of high water cut crude oil[J]. China Petroleum Processing & Petrochemical Technology, 2020, 22(2): 56-63. |
[1] | LI Sheng, CHEN Yazhou, JIANG Wei, PENG Jie, FAN Caiwei, SHAO Meng. Numerical simulation of proton exchange membrane fuel cell catalyst ink mixing process [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4800-4809. |
[2] | HE Haixia, WAN Yameng, LI Fanfan, NIU Xinyu, ZHANG Jingwen, LI Tao, REN Baozeng. Kinetics and crystallization process of naphazoline hydrochloride in methanol-ethyl acetate system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4230-4245. |
[3] | XIANG Rui, AI Bo, WU Gaosheng, LI Yuzhe, ZONG Rui, XU Baoyun, DU Lijun. Measurement and regression of solid-liquid binary equilibrium data for lithium battery additive FEC-VC system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4246-4252. |
[4] | YIN Chenyang, LIU Yongfeng, CHEN Ruizhe, ZHANG Lu, SONG Jin’ou, LIU Haifeng. Kinetic simulation of n-hexane pyrolysis reaction based on quantitative calculations [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4273-4282. |
[5] | LIU Yucan, GAO Zhonglu, XU Xinyi, JI Xianguo, ZHANG Yan, SUN Hongwei, WANG Gang. Adsorption performance and mechanism of diuron from water by calcium-modified water hyacinth-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4630-4641. |
[6] | ZENG Wuqing, WANG Yu, BU Qingguo, MA Shuo, BAI Dongming, ZHANG Zongjian, ZHANG Peng, MA Dandan, WANG Shengbo, WANG Runqi, WU Liwen, LIU Chen, MA Hongting. Influence of mixed burning of aged refuse on the incineration characteristics of waste furnace [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4642-4653. |
[7] | DING Lu, WANG Peiyao, KONG Lingxue, BAI Jin, YU Guangsuo, LI Wen, WANG Fuchen. Progress on reaction models for coal gasification processes [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3593-3612. |
[8] | CAO Jingpei, YAO Naiyu, PANG Xinbo, ZHAO Xiaoyan, ZHAO Jingping, CAI Shijie, XU Min, FENG Xiaobo, YI Fengjiao. Research progress and development history of coal pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3620-3636. |
[9] | GU Songqi, SUN Fanfei, WEI Yao, SONG Xingfei, NAN Bing, LI Lina, HUANG Yuying. Time-resolved thermochemical in-situ XAFS methodology [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3747-3755. |
[10] | SHAO Wei, MA Zhuang, ZHENG Hongwei, LIU Guangju, GAO Xiang, XIE Jian, HE Qinggang. Recent advances of organic materials for aqueous rechargeable batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3872-3890. |
[11] | MA Dong, XIE Guilin, TIAN Zhihua, WANG Qinhui, ZHANG Jianguo, SONG Huilin, ZHONG Jin. Analysis of high temperature reduction process of phosphogypsum by coal gasification fine slag in fluidized bed [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3479-3491. |
[12] | ZHOU Qiuming, NIU Congcong, LYU Shuaishuai, LI Hongwei, WEN Fuli, XU Run, LI Mingfeng. Promoting CO2 hydrogenation to methanol through product transformation and separation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2776-2785. |
[13] | PANG Shuxin, WANG Hao, WANG Jianyu, ZHU Kake, LIU Zhicheng. Thermodynamic calculation of methane combined reforming to synthesis gas process based on Aspen Plus [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2890-2900. |
[14] | WANG Debin, LIN Mengyu, YANG Xue, DONG Dianquan. Preparation and adsorption properties of zinc-doped titanium-based cesium ion sieves [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1953-1961. |
[15] | LIU Shida, WANG Haiyan, HOU Shuandi, LIU Zhongsheng, LIAO Changjian, WANG Kuanling. Recent advances in safely efficient deep emission reduction, recovery and thermal oxidation of VOCs from petrochemical storage tanks in China [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2063-2076. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |