25 |
KUMAR Ravinder, STREZOV, Vladimir. Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110152.
|
26 |
KABIR G, HAMEED B H. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 945-967.
|
27 |
SHI Wen, JIA Jingfu, GAO Yahui, et al. Influence of ultrasonic pretreatment on the yield of bio-oil prepared by thermo-chemical conversion of rice husk in hot-compressed water[J]. Bioresource Technology, 2013, 146: 355-362.
|
28 |
LI Zhixia, CAO Jiangfei, HUANG Kai, et al. Alkaline pretreatment and the synergic effect of water and tetralin enhances the liquefaction efficiency of bagasse[J]. Bioresource Technology, 2015, 177: 159-168.
|
29 |
LEMOINE F, MAUPIN I, LEMÉE L, et al. Alternative fuel production by catalytic hydroliquefaction of solid municipal wastes, primary sludges and microalgae[J]. Bioresource Technology, 2013, 142: 1-8.
|
30 |
MOHAN Dinesh, PITTMAN Charles U, STEELE Philip H. Pyrolysis of wood/biomass for bio-oil: A critical review[J]. Energy & Fuels, 2006, 20(3): 848-889.
|
31 |
MOLINDER Roger, Linda SANDSTRÖM, WIINIKKA Henrik. Characteristics of particles in pyrolysis oil[J]. Energy & Fuels, 2016, 30(11): 9456-9462.
|
32 |
Ersan PÜTÜN. Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst[J]. Energy, 2010, 35(7): 2761-2766.
|
33 |
LU Qiang, ZHANG Zhifei, DONG Changqing, et al. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: An analytical PY-GC/MS study[J]. Energies, 2010, 3(11): 1805-1820.
|
34 |
JARVIS Jacqueline M, ALBRECHT Karl O, BILLING Justin M, et al. Assessment of hydrotreatment for hydrothermal liquefaction biocrudes from sewage sludge, microalgae, and pine feedstocks[J]. Energy & Fuels, 2018, 32(8): 8483-8493.
|
35 |
陈裕鹏, 黄艳琴, 阴秀丽, 等. 藻类生物质水热液化制备生物油的研究进展[J]. 石油学报(石油加工), 2014, 30(4): 756-763.
|
|
CHEN Yupeng, HUANG Yanqin, YIN Xiuli, et al. Research progress of producing bio-oil from hydrothermal liquefaction of algae[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(4): 756-763.
|
36 |
KREVELEN Van. Coal-Topology-Physic-Chemistry-Constitution[M]. 3ed ed. Amsterdam: Elsevier, 1993: 190-216.
|
37 |
FOGASSY Gabriella, THEGARID Nicolas, TOUSSAINT Guy, et al. Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units[J]. Applied Catalysis B: Environmental, 2010, 96(3/4): 476-485.
|
38 |
HUBER George W, CORMA Avelino. Synergies between bio- and oil refineries for the production of fuels from biomass[J]. Angewandte Chemie International Edition, 2007, 46(38): 7184-7201.
|
39 |
OSMONT Antoine, CATOIRE Laurent, Iskender GÖKALP, et al. Thermochemistry of C-C and C-H bond breaking in fatty acid methyl esters[J]. Energy & Fuels, 2007, 21(4): 2027-2032.
|
40 |
GUISNET M, MAGNOUX P. Organic chemistry of coke formation[J]. Applied Catalysis A: General, 2001, 212(1/2): 83-96.
|
41 |
PINHO Andrea De Rezende, DE ALMEIDA Marlon B B, MENDES Fabio Leal, et al. Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production[J]. Fuel, 2017, 188: 462-473.
|
42 |
HUYNH Thuan Minh, ARMBRUSTER Udo, ATIA Hanan, et al. Upgrading of bio-oil and subsequent co-processing under FCC conditions for fuel production[J]. Reaction Chemistry & Engineering, 2016, 1(2): 239-251.
|
43 |
SAUVANAUD L, MATHIEU Y, CORMA A, et al. Co-processing of lignocellulosic biocrude with petroleum gas oils[J]. Applied Catalysis A: General, 2018, 551: 139-145.
|
44 |
PINHO Andrea De Rezende, DE ALMEIDA Marlon B B, MENDES Fabio Leal, et al. Co-processing raw bio-oil and gasoil in an FCC unit[J]. Fuel Processing Technology, 2015, 131: 159-166.
|
45 |
Susan VAN DYK, SU Jianping, EBADIAN Mahmood, et al. Production of lower carbon-intensity fuels by co-processing biogenic feedstocks: Potential and challenges for refineries[J]. Fuel, 2022, 324: 124636.
|
46 |
HAN Xue, WANG Haoxiang, ZENG Yimin, et al. Advancing the application of bio-oils by co-processing with petroleum intermediates: A review[J]. Energy Conversion and Management: X, 2021, 10: 100069.
|
47 |
Nguyen LE-PHUC, Phuong T NGO, Quan L M HA, et al. Efficient hydrodeoxygenation of guaiacol and fast-pyrolysis oil from rice straw over PtNiMo/SBA-15 catalyst for co-processing in fluid catalytic cracking process[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103552.
|
48 |
Eduardo SANTILLAN-JIMENEZ, PACE Robert, MORGAN Tonya, et al. Co-processing of hydrothermal liquefaction algal bio-oil and petroleum feedstock to fuel-like hydrocarbons via fluid catalytic cracking[J]. Fuel Processing Technology, 2019, 188: 164-171.
|
49 |
ESCHENBACHER Andreas, MYRSTAD Trond, BECH Niels, et al. Co-processing of wood and wheat straw derived pyrolysis oils with FCC feed—Product distribution and effect of deoxygenation[J]. Fuel, 2020, 260: 116312.
|
50 |
WU Le, YANG Yong, YAN Ting, et al. Sustainable design and optimization of co-processing of bio-oil and vacuum gas oil in an existing refinery[J]. Renewable and Sustainable Energy Reviews, 2020, 130: 109952.
|
51 |
GOEDKOOP Mark. The Eco-indicator 99: A damage oriented method for life cycle impact assessment[M]. 3rd ed. Netherlands: PRé Consultants; 2001: 41-61.
|
52 |
吴乐, 汤杰国, 朱强, 等. 加氢反应过程对炼油厂加氢系统氢耗影响的分析[J]. 石油学报(石油加工), 2016, 32(5): 1030-1037.
|
|
WU Le, TANG Jieguo, ZHU Qiang, et al. Analysis of effects of hydrogenation on hydrogen consumption of hydrotreating system in a refinery[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(5): 1030-1037.
|
53 |
WU Le, YAN Ting, LEI Qingyu, et al. Operational optimization of co-processing of heavy oil and bio-oil based on the coordination of desulfurization and deoxygenation[J]. Energy, 2022, 239: 122558.
|
54 |
李大东. 加氢处理工艺与工程[M]. 北京: 中国石化出版社, 2004: 1316-1374.
|
|
LI Dadong. Hydrogenation process and engineering[M]. Beijing: China Petrochemical Press, 2004: 1316-1374.
|
55 |
CHOUDHARY Tushar V, PARROTT Stephen, JOHNSON Byron. Unraveling heavy oil desulfurization chemistry: Targeting clean fuels[J]. Environmental Science & Technology, 2008, 42(6): 1944-1947.
|
56 |
董婷, 韩兴华, 高磊, 等. 苯酚和苯甲醚加氢脱氧宏观动力学[J]. 化学反应工程与工艺, 2019, 35(2): 138-142.
|
|
DONG Ting, HAN Xinghua, GAO Lei, et al. Macroscopic kinetics of hydrodeoxygenation of phenol and anisole[J]. Chemical Reaction Engineering and Technology, 2019, 35(2): 138-142.
|
1 |
ZHANG Xugang, ZHANG Mingyue, ZHANG Hua, et al. A review on energy, environment and economic assessment in remanufacturing based on life cycle assessment method[J]. Journal of Cleaner Production, 2020, 255: 120160.
|
2 |
KANG Yating, YANG Qing, BARTOCCI Pietro, et al. Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109842.
|
3 |
KHOSHNEVISAN Benyamin, TABATABAEI Meisam, TSAPEKOS Panagiotis, et al. Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109493.
|
4 |
UNEP. Converting waste agricultural biomass into a resource[M]. Osaka: United Nations Environment Programme, 2009.
|
5 |
TRIPATHI Nimisha, HILLS Colin D, SINGH Raj S, et al. Biomass waste utilisation in low-carbon products: Harnessing a major potential resource[J]. NPJ Climate and Atmospheric Science, 2019, 2: 35.
|
6 |
郭鹏坤, 李攀, 常春, 等. 计算机模拟技术在生物质转化中的应用研究进展[J]. 化工进展, 2020, 39(8): 3027-3040.
|
|
GUO Pengkun, LI Pan, CHANG Chun, et al. Advances in the application of computer simulation technology in biomass conversion[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3027-3040.
|
7 |
MIRKOUEI Amin, HAAPALA Karl R, SESSIONS John, et al. A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 15-35.
|
8 |
DE MIGUEL MERCADER Ferran, GROENEVELD Michiel J, KERSTEN Sascha R A, et al. Hydrodeoxygenation of pyrolysis oil fractions: Process understanding and quality assessment through co-processing in refinery units[J]. Energy & Environmental Science, 2011, 4(3): 985-997.
|
9 |
WU Le, WANG Yuqi, ZHENG Lan, et al. Design and optimization of bio-oil co-processing with vacuum gas oil in a refinery[J]. Energy Conversion and Management, 2019, 195: 620-629.
|
10 |
WANG Chenxi, VENDERBOSCH Robbie, FANG Yunming. Co-processing of crude and hydrotreated pyrolysis liquids and VGO in a pilot scale FCC riser setup[J]. Fuel Processing Technology, 2018, 181: 157-165.
|
11 |
Nguyen LE-PHUC, Phuong T NGO, Quan L M HA, et al. Efficient hydrodeoxygenation of guaiacol and fast-pyrolysis oil from rice straw over PtNiMo/SBA-15 catalyst for co-processing in fluid catalytic cracking process[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103552.
|
57 |
WU Le, LIU Yongzhong, ZHANG Qundan. Operational optimization of a hydrotreating system based on removal of sulfur compounds in hydrotreaters coupled with a fluid catalytic cracker[J]. Energy & Fuels, 2017, 31(9): 9850-9862.
|
58 |
WU Le, WANG Yuqi, ZHENG Lan, et al. Techno-economic analysis of bio-oil co-processing with vacuum gas oil to transportation fuels in an existing fluid catalytic cracker[J]. Energy Conversion and Management, 2019, 197: 111901.
|
59 |
VASALOS I A, LAPPAS A A, KOPALIDOU E P, et al. Biomass catalytic pyrolysis: Process design and economic analysis[J]. WIREs Energy and Environment, 2016, 5(3): 370-383.
|
60 |
RAFATI Mohammad, WANG Lijun, DAYTON David C, et al. Techno-economic analysis of production of Fischer-Tropsch liquids via biomass gasification: The effects of Fischer-Tropsch catalysts and natural gas co-feeding[J]. Energy Conversion and Management, 2017, 133: 153-166.
|
61 |
WU Le, WANG Yuqi, ZHENG Lan, et al. Multi-objective operational optimization of a hydrotreating process based on hydrogenation reaction kinetics[J]. Industrial & Engineering Chemistry Research, 2018, 57(46): 15785-15793.
|
62 |
SEIDER Warren D, SEADER J D, LEWIN Daniel R, et al. Product and process design principles: Synthesis, analysis, and evaluation[M]. 3rd ed. Hoboken, NJ: John Wiley, 2009: 371-466.
|
63 |
LAMPERT David J, CAI Hao, ELGOWAINY Amgad. Wells to wheels: Water consumption for transportation fuels in the United States[J]. Energy & Environmental Science, 2016, 9(3): 787-802.
|
64 |
TESSUM Christopher W, HILL Jason D, MARSHALL Julian D. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(52): 18490-18495.
|
65 |
DUNN Jennifer B. Biofuel and bioproduct environmental sustainability analysis[J]. Current Opinion in Biotechnology, 2019, 57: 88-93.
|
66 |
柳恒饶, 刘光斌, 熊万明, 等. 不同温度下晚松生物质热解成分分析[J]. 广州化工, 2016, 44(11): 71-75.
|
|
LIU Hengrao, LIU Guangbin, XIONG Wanming, et al. Analysis of pyrolytic component of pinus rigida at different temperature[J]. Guangzhou Chemical Industry, 2016, 44(11): 71-75.
|
67 |
WANG Huamin, MALE Jonathan, WANG Yong. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catalysis, 2013, 3(5): 1047-1070.
|
12 |
LINDFORS Christian, PAASIKALLIO Ville, KUOPPALA Eeva, et al. Co-processing of dry bio-oil, catalytic pyrolysis oil, and hydrotreated bio-oil in a micro activity test unit[J]. Energy & Fuels, 2015, 29(6): 3707-3714.
|
13 |
MANARA P, BEZERGIANNI S, PFISTERER U. Study on phase behavior and properties of binary blends of bio-oil/fossil-based refinery intermediates: A step toward bio-oil refinery integration[J]. Energy Conversion and Management, 2018, 165: 304-315.
|
14 |
NARANOV E R, DEMENT’EV K I, GERZELIEV I M, et al. The role of zeolite catalysis in modern petroleum refining: Contribution from domestic technologies[J]. Petroleum Chemistry, 2019, 59(3): 247-261.
|
15 |
宋海涛, 达志坚, 朱玉霞, 等. 不同类型VGO的烃类组成及其催化裂化反应性能研究[J]. 石油炼制与化工, 2012, 43(2): 1-8.
|
|
SONG Haitao, Zhijian DA, ZHU Yuxia, et al. A study of the hydrocarbon composition and catalytic cracking performance of different vgo[J]. Petroleum Processing and Petrochemicals, 2012, 43(2): 1-8.
|
16 |
WANG Chenxi, LI Mingrui, FANG Yunming. Coprocessing of catalytic-pyrolysis-derived bio-oil with VGO in a pilot-scale FCC riser[J]. Industrial & Engineering Chemistry Research, 2016, 55(12): 3525-3534.
|
17 |
陈雄华. 两粘度计算国外中间基原油VGO分子量的公式[J]. 广东化工, 2012, 39(12): 75-76.
|
|
CHEN Xionghua. Two viscosity calculate formula of foreign middle base oil VGO molecular weight[J]. Guangdong Chemical Industry, 2012, 39(12): 75-76.
|
18 |
PATWARDHAN Pushkaraj R, BROWN Robert C, SHANKS Brent H. Product distribution from the fast pyrolysis of hemicellulose[J]. ChemSusChem, 2011, 4(5): 636-643.
|
19 |
SHAFIZADEH Fred, FURNEAUX Richard H, COCHRAN Todd G, et al. Production of levoglucosan and glucose from pyrolysis of cellulosic materials[J]. Journal of Applied Polymer Science, 1979, 23(12): 3525-3539.
|
20 |
HUBER George W, IBORRA Sara, CORMA Avelino. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098.
|
21 |
牛琦. 典型藻类生物质热解实验与机理研究[D]. 天津: 天津大学, 2018.
|
|
NIU Qi. Experimental and mechanism study on pyrolysis of typical algae biomass[D]. Tianjin: Tianjin University, 2018.
|
22 |
VAMVUKA D. Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-An overview[J]. International Journal of Energy Research, 2011, 35(10): 835-862.
|
23 |
AGBLEVOR Foster A, MANTE O, MCCLUNG R, et al. Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels[J]. Biomass and Bioenergy, 2012, 45: 130-137.
|
24 |
WESTERHOF Roel J M, KUIPERS Norbert J M, KERSTEN Sascha R A, et al. Controlling the water content of biomass fast pyrolysis oil[J]. Industrial & Engineering Chemistry Research, 2007, 46(26): 9238-9247.
|
68 |
李波, 丁帅, 郭海军, 等. 生物油加氢脱氧催化剂研究进展[J]. 新能源进展, 2021, 9(6): 524-532.
|
|
LI Bo, DING Shuai, GUO Haijun, et al. Research progress of bio-oil hydrodeoxygenation catalysts[J]. Advances in New and Renewable Energy, 2021, 9(6): 524-532.
|
69 |
LORICERA C V, CASTAÑO P, INFANTES-MOLINA A, et al. Designing supported ZnNi catalysts for the removal of oxygen from bio-liquids and aromatics from diesel[J]. Green Chemistry, 2012, 14(10): 2759-2770.
|
70 |
WANG Yuxin, WU Jinhu, WANG Shengnian. Hydrodeoxygenation of bio-oil over Pt-based supported catalysts: Importance of mesopores and acidity of the support to compounds with different oxygen contents[J]. RSC Advances, 2013, 3(31): 12635-12640.
|
71 |
LIU Qiying, ZUO Hualiang, ZHANG Qi, et al. Hydrodeoxygenation of palm oil to hydrocarbon fuels over Ni/SAPO-11 catalysts[J]. Chinese Journal of Catalysis, 2014, 35(5): 748-756.
|
72 |
LI Zhenghua, Kimberly MAGRINI-BAIR, WANG Huamin, et al. Tracking renewable carbon in bio-oil/crude co-processing with VGO through 13C/12C ratio analysis[J]. Fuel, 2020, 275: 117770.
|
73 |
张蓓蓓. 我国生物质原料资源及能源潜力评估[D]. 北京: 中国农业大学, 2018.
|
|
ZHANG Beibei. Assessment of raw material supply capability and energy potential of biomass resources in china[D]. Beijing: China Agricultural University, 2018.
|
74 |
宁艳春, 杨雨富, 伊凤, 等. 生物质能是我国能源结构转型的重要途径[J]. 化学工业, 2022, 40(2): 33-35.
|
|
NING Yanchun, YANG Yufu, YI Feng, et al. Biomass energy, an essential route for China’s energy structure transformation[J]. Chemical Industry, 2022, 40(2): 33-35.
|