Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 5234-5241.DOI: 10.16085/j.issn.1000-6613.2023-1416
• Resources and environmental engineering • Previous Articles
WANG Yanan(), LIU Linlin(
), ZHUANG Yu, DU Jian
Received:
2023-08-14
Revised:
2023-10-13
Online:
2024-09-30
Published:
2024-09-15
Contact:
LIU Linlin
通讯作者:
刘琳琳
作者简介:
王亚男(1998—),男,硕士研究生,研究方向为过程系统工程。E-mail:W.Y.N@mail.dlut.edu.cn。
基金资助:
CLC Number:
WANG Yanan, LIU Linlin, ZHUANG Yu, DU Jian. Synchronous optimization and heat integration of the production process from EO to EG based on surrogate model[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5234-5241.
王亚男, 刘琳琳, 庄钰, 都健. 基于代理模型的环氧乙烷制乙二醇工艺优化同步热集成[J]. 化工进展, 2024, 43(9): 5234-5241.
流股 | 温度/℃ | 压力/kPa | 质量流量/kg·h-1 | ||||
---|---|---|---|---|---|---|---|
EO | H2O | MEG | DEG | TEG | |||
EO | 5 | 100 | 27700 | 0 | 0 | 0 | 0 |
H2O | 30 | 100 | 0 | 12583.2 | 0 | 0 | 0 |
M101-OUT | 24.4378 | 100 | 27700 | 101950 | 0.57 | 1.36×10-6 | 1.55×10-10 |
P101-OUT | 24.8473 | 1200 | 27700 | 101950 | 0.57 | 1.36×10-6 | 1.55×10-10 |
R101-IN | 80 | 1200 | 27700 | 101950 | 0.57 | 1.36×10-6 | 1.55×10-10 |
R101-OUT | 100.002 | 1170 | 0 | 90832.1 | 37591 | 1202.09 | 25.68 |
RE | 30 | 100 | 0 | 89366.5 | 0.57 | 1.36×10-6 | 1.55×10-10 |
流股 | 温度/℃ | 压力/kPa | 质量流量/kg·h-1 | ||||
---|---|---|---|---|---|---|---|
EO | H2O | MEG | DEG | TEG | |||
EO | 5 | 100 | 27700 | 0 | 0 | 0 | 0 |
H2O | 30 | 100 | 0 | 12583.2 | 0 | 0 | 0 |
M101-OUT | 24.4378 | 100 | 27700 | 101950 | 0.57 | 1.36×10-6 | 1.55×10-10 |
P101-OUT | 24.8473 | 1200 | 27700 | 101950 | 0.57 | 1.36×10-6 | 1.55×10-10 |
R101-IN | 80 | 1200 | 27700 | 101950 | 0.57 | 1.36×10-6 | 1.55×10-10 |
R101-OUT | 100.002 | 1170 | 0 | 90832.1 | 37591 | 1202.09 | 25.68 |
RE | 30 | 100 | 0 | 89366.5 | 0.57 | 1.36×10-6 | 1.55×10-10 |
流股 | 温度/℃ | 压力/kPa | 质量流量/kg·h-1 | |||
---|---|---|---|---|---|---|
H2O | MEG | DEG | TEG | |||
T201-IN | 140.00 | 1100 | 90832.1 | 37591 | 1202.09 | 25.68 |
T201-D | 143.69 | 400 | 41242.4 | 1.96×10-6 | — | — |
T202-IN | 105.00 | 100 | 49589.6 | 37590.9 | 1202.09 | 25.68 |
T202-D | 99.65 | 100 | 27477.9 | 2.65×10-3 | 1.47×10-9 | — |
T203-IN | 55.00 | 100 | 22111.7 | 37590.9 | 1202.09 | 25.68 |
T203-D | 45.80 | 10 | 14641.9 | 4.69×10-6 | — | — |
T204-IN | 66.56 | 10 | 7469.88 | 37590.9 | 1202.09 | 25.68 |
T204-D | 45.81 | 10 | 6907.06 | 0.5 | 9.36×10-7 | 1.47×10-10 |
T205-IN | 113.76 | 10 | 562.82 | 37590.4 | 1202.09 | 25.68 |
MEG | 110.43 | 10 | 562.82 | 37549.5 | — | — |
DEG+TEG | 170.41 | 10 | — | 40.87 | 1202.09 | 25.68 |
流股 | 温度/℃ | 压力/kPa | 质量流量/kg·h-1 | |||
---|---|---|---|---|---|---|
H2O | MEG | DEG | TEG | |||
T201-IN | 140.00 | 1100 | 90832.1 | 37591 | 1202.09 | 25.68 |
T201-D | 143.69 | 400 | 41242.4 | 1.96×10-6 | — | — |
T202-IN | 105.00 | 100 | 49589.6 | 37590.9 | 1202.09 | 25.68 |
T202-D | 99.65 | 100 | 27477.9 | 2.65×10-3 | 1.47×10-9 | — |
T203-IN | 55.00 | 100 | 22111.7 | 37590.9 | 1202.09 | 25.68 |
T203-D | 45.80 | 10 | 14641.9 | 4.69×10-6 | — | — |
T204-IN | 66.56 | 10 | 7469.88 | 37590.9 | 1202.09 | 25.68 |
T204-D | 45.81 | 10 | 6907.06 | 0.5 | 9.36×10-7 | 1.47×10-10 |
T205-IN | 113.76 | 10 | 562.82 | 37590.4 | 1202.09 | 25.68 |
MEG | 110.43 | 10 | 562.82 | 37549.5 | — | — |
DEG+TEG | 170.41 | 10 | — | 40.87 | 1202.09 | 25.68 |
输出变量 | 单位 | 输出变量 | 单位 |
---|---|---|---|
E101热负荷 | kW | T204塔板7温度 | ℃ |
R101热负荷 | kW | T204塔板8温度 | ℃ |
R101-OUT流股MEG流量 | kg/h | T205冷凝器热负荷 | kW |
R101-OUT流股DEG流量 | kg/h | T205再沸器热负荷 | kW |
R101-OUT流股流量 | kg/h | T205塔板1温度 | ℃ |
R101-OUT流股H2O流量 | kg/h | T205塔板2温度 | ℃ |
R101-OUT流股温度 | ℃ | T205塔板30温度 | ℃ |
T201冷凝器热负荷 | kW | T205塔板31温度 | ℃ |
T201再沸器热负荷 | kW | E201热负荷 | kW |
T201塔板10温度 | ℃ | E202热负荷 | kW |
T202冷凝器热负荷 | kW | E203热负荷 | kW |
T202再沸器热负荷 | kW | E204热负荷 | kW |
T202塔板9温度 | ℃ | E205热负荷 | kW |
T202塔板10温度 | ℃ | E206热负荷 | kW |
T203冷凝器热负荷 | kW | E207热负荷 | kW |
T203再沸器热负荷 | kW | E208热负荷 | kW |
T203塔板9温度 | ℃ | PRODUCT流股MEG流量 | kg/h |
T203塔板10温度 | ℃ | PRODUCT流股流量 | kg/h |
T204冷凝器热负荷 | kW | PRODUCT流股H2O流量 | kg/h |
T204再沸器热负荷 | kW | PRODUCT中MEG分率 | % |
输出变量 | 单位 | 输出变量 | 单位 |
---|---|---|---|
E101热负荷 | kW | T204塔板7温度 | ℃ |
R101热负荷 | kW | T204塔板8温度 | ℃ |
R101-OUT流股MEG流量 | kg/h | T205冷凝器热负荷 | kW |
R101-OUT流股DEG流量 | kg/h | T205再沸器热负荷 | kW |
R101-OUT流股流量 | kg/h | T205塔板1温度 | ℃ |
R101-OUT流股H2O流量 | kg/h | T205塔板2温度 | ℃ |
R101-OUT流股温度 | ℃ | T205塔板30温度 | ℃ |
T201冷凝器热负荷 | kW | T205塔板31温度 | ℃ |
T201再沸器热负荷 | kW | E201热负荷 | kW |
T201塔板10温度 | ℃ | E202热负荷 | kW |
T202冷凝器热负荷 | kW | E203热负荷 | kW |
T202再沸器热负荷 | kW | E204热负荷 | kW |
T202塔板9温度 | ℃ | E205热负荷 | kW |
T202塔板10温度 | ℃ | E206热负荷 | kW |
T203冷凝器热负荷 | kW | E207热负荷 | kW |
T203再沸器热负荷 | kW | E208热负荷 | kW |
T203塔板9温度 | ℃ | PRODUCT流股MEG流量 | kg/h |
T203塔板10温度 | ℃ | PRODUCT流股流量 | kg/h |
T204冷凝器热负荷 | kW | PRODUCT流股H2O流量 | kg/h |
T204再沸器热负荷 | kW | PRODUCT中MEG分率 | % |
输出变量 | MAPE/% | R2 | 输出变量 | MAPE/% | R2 |
---|---|---|---|---|---|
E101热负荷 | 4.46×10-1 | 0.9924 | T204塔板7温度 | 3.80×10-1 | 0.9938 |
R101热负荷 | 5.87×10-1 | 0.9961 | T204塔板8温度 | 2.59×10-1 | 0.9974 |
R101-OUT流股MEG流量 | 1.86×10-2 | 0.9990 | T205冷凝器热负荷 | 5.13×10-1 | 0.9958 |
R101-OUT流股DEG流量 | 4.66×10-2 | 0.9741 | T205再沸器热负荷 | 5.08×10-1 | 0.9958 |
R101-OUT流股流量 | 1.74×10-2 | 0.9991 | T205塔板1温度 | 2.48×10-1 | 0.9976 |
R101-OUT流股H2O流量 | 1.74×10-2 | 0.9991 | T205塔板2温度 | 2.95×10-2 | 0.9989 |
R101-OUT流股温度 | 2.03×10-1 | 0.9919 | T205塔板30温度 | 6.94×10-2 | 0.9984 |
T201冷凝器热负荷 | 1.98×10-1 | 0.9991 | T205塔板31温度 | 4.20×10-2 | 0.9984 |
T201再沸器热负荷 | 7.04×10-1 | 0.9991 | E201热负荷 | 3.06 | 0.9924 |
T201塔板10温度 | 7.40×10-3 | 0.9986 | E202热负荷 | 2.06×10-1 | 0.9991 |
T202冷凝器热负荷 | 5.65×10-1 | 0.9969 | E203热负荷 | 19.89 | 0.9934 |
T202再沸器热负荷 | 4.32×10-1 | 0.9968 | E204热负荷 | 5.71×10-1 | 0.9968 |
T202塔板9温度 | 5.09×10-3 | 0.9980 | E205热负荷 | 1.35×10-1 | 0.9971 |
T202塔板10温度 | 3.04×10-2 | 0.9968 | E206热负荷 | 2.66×10-1 | 0.9978 |
T203冷凝器热负荷 | 2.59×10-1 | 0.9979 | E207热负荷 | 1.77×10-1 | 0.9989 |
T203再沸器热负荷 | 2.56×10-1 | 0.9978 | E208热负荷 | 7.13×10-1 | 0.9972 |
T203塔板9温度 | 3.60×10-2 | 0.9966 | PRODUCT流股MEG流量 | 2.58×10-2 | 0.9979 |
T203塔板10温度 | 6.21×10-2 | 0.9988 | PRODUCT流股流量 | 7.41×10-2 | 0.9982 |
T204冷凝器热负荷 | 1.60×10-1 | 0.9991 | PRODUCT流股H2O流量 | 1.07 | 0.9991 |
T204再沸器热负荷 | 1.66×10-1 | 0.9969 | PRODUCT流股MEG分率 | 6.20×10-2 | 0.9988 |
输出变量 | MAPE/% | R2 | 输出变量 | MAPE/% | R2 |
---|---|---|---|---|---|
E101热负荷 | 4.46×10-1 | 0.9924 | T204塔板7温度 | 3.80×10-1 | 0.9938 |
R101热负荷 | 5.87×10-1 | 0.9961 | T204塔板8温度 | 2.59×10-1 | 0.9974 |
R101-OUT流股MEG流量 | 1.86×10-2 | 0.9990 | T205冷凝器热负荷 | 5.13×10-1 | 0.9958 |
R101-OUT流股DEG流量 | 4.66×10-2 | 0.9741 | T205再沸器热负荷 | 5.08×10-1 | 0.9958 |
R101-OUT流股流量 | 1.74×10-2 | 0.9991 | T205塔板1温度 | 2.48×10-1 | 0.9976 |
R101-OUT流股H2O流量 | 1.74×10-2 | 0.9991 | T205塔板2温度 | 2.95×10-2 | 0.9989 |
R101-OUT流股温度 | 2.03×10-1 | 0.9919 | T205塔板30温度 | 6.94×10-2 | 0.9984 |
T201冷凝器热负荷 | 1.98×10-1 | 0.9991 | T205塔板31温度 | 4.20×10-2 | 0.9984 |
T201再沸器热负荷 | 7.04×10-1 | 0.9991 | E201热负荷 | 3.06 | 0.9924 |
T201塔板10温度 | 7.40×10-3 | 0.9986 | E202热负荷 | 2.06×10-1 | 0.9991 |
T202冷凝器热负荷 | 5.65×10-1 | 0.9969 | E203热负荷 | 19.89 | 0.9934 |
T202再沸器热负荷 | 4.32×10-1 | 0.9968 | E204热负荷 | 5.71×10-1 | 0.9968 |
T202塔板9温度 | 5.09×10-3 | 0.9980 | E205热负荷 | 1.35×10-1 | 0.9971 |
T202塔板10温度 | 3.04×10-2 | 0.9968 | E206热负荷 | 2.66×10-1 | 0.9978 |
T203冷凝器热负荷 | 2.59×10-1 | 0.9979 | E207热负荷 | 1.77×10-1 | 0.9989 |
T203再沸器热负荷 | 2.56×10-1 | 0.9978 | E208热负荷 | 7.13×10-1 | 0.9972 |
T203塔板9温度 | 3.60×10-2 | 0.9966 | PRODUCT流股MEG流量 | 2.58×10-2 | 0.9979 |
T203塔板10温度 | 6.21×10-2 | 0.9988 | PRODUCT流股流量 | 7.41×10-2 | 0.9982 |
T204冷凝器热负荷 | 1.60×10-1 | 0.9991 | PRODUCT流股H2O流量 | 1.07 | 0.9991 |
T204再沸器热负荷 | 1.66×10-1 | 0.9969 | PRODUCT流股MEG分率 | 6.20×10-2 | 0.9988 |
项目 | 初始工艺 | 初始工艺+热集成 | 参数优化分步热集成 | 参数优化同步热集成 |
---|---|---|---|---|
冷公用工程/kW | 1.37×105 | 7.17×104 | 7.12×104 | 6.84×104 |
热公用工程/kW | 1.21×105 | 5.58×104 | 5.47×104 | 5.27×104 |
总公用工程费用/USD·a-1 | 2.62×107 | 1.32×107 | 1.30×107 | 1.25×107 |
未进行热集成所需冷公用工程量/kW | — | 1.37×105 | 1.31×105 | 1.34×105 |
未进行热集成所需热公用工程量/kW | — | 1.21×105 | 1.14×105 | 1.18×105 |
热集成节省的冷/热公用工程量/kW | — | 6.51×104 | 5.98×104 | 6.54×104 |
冷公用工程节省百分比/% | — | 53.84 | 52.23 | 55.38 |
热公用工程节省百分比/% | — | 47.60 | 45.62 | 48.87 |
环氧乙烷费用/USD·a-1 | 2.25×108 | 2.25×108 | 2.25×108 | 2.25×108 |
乙二醇收益/USD·a-1 | 2.87×108 | 2.87×108 | 2.91×108 | 2.91×108 |
总收益/USD·a-1 | 3.62×107 | 4.92×107 | 5.28×107 | 5.33×107 |
项目 | 初始工艺 | 初始工艺+热集成 | 参数优化分步热集成 | 参数优化同步热集成 |
---|---|---|---|---|
冷公用工程/kW | 1.37×105 | 7.17×104 | 7.12×104 | 6.84×104 |
热公用工程/kW | 1.21×105 | 5.58×104 | 5.47×104 | 5.27×104 |
总公用工程费用/USD·a-1 | 2.62×107 | 1.32×107 | 1.30×107 | 1.25×107 |
未进行热集成所需冷公用工程量/kW | — | 1.37×105 | 1.31×105 | 1.34×105 |
未进行热集成所需热公用工程量/kW | — | 1.21×105 | 1.14×105 | 1.18×105 |
热集成节省的冷/热公用工程量/kW | — | 6.51×104 | 5.98×104 | 6.54×104 |
冷公用工程节省百分比/% | — | 53.84 | 52.23 | 55.38 |
热公用工程节省百分比/% | — | 47.60 | 45.62 | 48.87 |
环氧乙烷费用/USD·a-1 | 2.25×108 | 2.25×108 | 2.25×108 | 2.25×108 |
乙二醇收益/USD·a-1 | 2.87×108 | 2.87×108 | 2.91×108 | 2.91×108 |
总收益/USD·a-1 | 3.62×107 | 4.92×107 | 5.28×107 | 5.33×107 |
1 | 蔡庆用. 环氧乙烷水合制乙二醇工艺流程模拟[D]. 兰州: 兰州理工大学, 2017. |
CAI Qingyong. Simulation of ethylene glycol production by ethylene oxide[D]. Lanzhou: Lanzhou University of Technology, 2017. | |
2 | 李瑞琦, 宋艺凡. 我国乙二醇市场供求预测与发展建议[J]. 合成纤维工业, 2021, 44(5): 77-82. |
LI Ruiqi, SONG Yifan. Supply and demand forecast and development suggestions on ethylene glycol market in China[J]. China Synthetic Fiber Industry, 2021, 44(5): 77-82. | |
3 | 杨志剑, 任楠, 唐颐. 环氧乙烷催化水合制备乙二醇的研究进展[J]. 石油化工, 2010, 39(5): 562-569. |
YANG Zhijian, REN Nan, TANG Yi. Advances in preparation of ethylene glycol via catalytic hydration of ethylene oxide[J]. Petrochemical Technology, 2010, 39(5): 562-569. | |
4 | 宋泓阳, 孙晓岩, 项曙光. 人工神经网络在化工过程中的应用进展[J]. 化工进展, 2016, 35(12): 3755-3762. |
SONG Hongyang, SUN Xiaoyan, XIANG Shuguang. Progress on the application of artificial neural network in chemical industry[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3755-3762. | |
5 | BIEGLER Lorenz T, LANG Yidong, LIN Weijie. Multi-scale optimization for process systems engineering[J]. Computers and Chemical Engineering, 2014, 60: 17-30. |
6 | QUIRANTE Natalia, CABALLERO José A. Large scale optimization of a sour water stripping plant using surrogate models[J]. Computers and Chemical Engineering, 2016, 92: 143-162. |
7 | 毛健, 赵红东, 姚婧婧. 人工神经网络的发展及应用[J]. 电子设计工程, 2011, 19(24): 62-65. |
MAO Jian, ZHAO Hongdong, YAO Jingjing. Application and prospect of artificial neural network[J]. Electronic Design Engineering, 2011, 19(24): 62-65. | |
8 | 张俊成. 基于BP神经网络和Aspen Plus的甲醇四塔精馏的节能优化[D]. 成都: 西南石油大学, 2017. |
ZHANG Juncheng. Energy-saving optimization of four-tower distillation of methanol based on BP neural network and Aspen Plus[D]. Chengdu: Southwest Petroleum University, 2017. | |
9 | 田水苗, 曹萃文. 基于数据驱动的蜡油加氢装置产品预测与多目标操作优化[J]. 石油学报(石油加工), 2021, 37(1): 79-87. |
TIAN Shuimiao, CAO Cuiwen. Data-driven product prediction and multi-objective optimal operations of wax oil hydrotreating unit[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(1): 79-87. | |
10 | RAHIMPOUR M R, SHAYANMEHR M, NAZARI M. Modeling and simulation of an industrial ethylene oxide (EO) reactor using artificial neural networks (ANN)[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6044-6052. |
11 | DURAN M A, GROSSMANN I E. Simultaneous optimization and heat integration of chemical processes[J]. AIChE Journal, 1986, 32(1): 123-138. |
12 | 何文军, 费泰康, 王嘉华, 等. 环氧乙烷非均相催化水合动力学及均温反应器热稳定性分析[J]. 化学反应工程与工艺, 2017, 33(4): 326-334. |
HE Wenjun, FEI Taikang, WANG Jiahua, et al. Heterogeneous catalytic hydration kinetics of ethylene oxide and thermal-stability of homogeneous temperature reactor[J]. Chemical Reaction Engineering and Technology, 2017, 33(4): 326-334. | |
13 | 屈力刚, 刘洪侠, 李铭, 等. 基于Sobol序列采样点分布策略的研究与应用[J]. 锻压装备与制造技术, 2019, 54(6): 101-105. |
QU Ligang, LIU Hongxia, LI Ming, et al. Research and application of sampling point distribution strategy based on Sobol sequence[J]. China Metalforming Equipment & Manufacturing Technology, 2019, 54(6): 101-105. | |
14 | HOLLAND J H. Adaptation in natural and artificial systems[M]. Ann Arbor: University of Michigan Press, 1975. |
[1] | LUO Shifa, WANG Kan, ZHANG Bingjian, CHEN Qinglin. Analysis and evaluation of heat integration schemes for crude oil distillation unit [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4810-4816. |
[2] | CUI Yi, LI Mengyuan, YANG Lu, LI Haidong, ZHANG Qiqi, CHANG Chenglin, WANG Yufei. New method for automatic design of intensified shell and tube heat exchanger with twisted-tape insert [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4824-4832. |
[3] | ZHANG Jiaxin, ZHANG Miao, DAI Yiyang, DONG Lichun. Design and application of enhanced deep convolutional neural networks model for fault diagnosis in practical chemical processes [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4833-4844. |
[4] | WANG Yucheng, GUO Xiong, LUAN Xinqi, ZHOU Jian, LI Xiang, XING Linguang, ZHOU Xueyun, LIU Ying, WANG Deyong, WU Xuejuan, PAN Qi, LIU Jianxin, ZHAO Zhenxia, ZHAO Zhongxing. Production process optimization of vitamin U and its thermal decomposition mechanism [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5157-5167. |
[5] | HE Haixia, WAN Yameng, LI Fanfan, NIU Xinyu, ZHANG Jingwen, LI Tao, REN Baozeng. Kinetics and crystallization process of naphazoline hydrochloride in methanol-ethyl acetate system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4230-4245. |
[6] | ZHANG Xiaotian, LIU Siqi, CUI Guomin, HUANG Xiaohuang, DUAN Huanhuan, WANG Jinyang. Heat exchanger network synthesis based on directional coordination strategy to improve heat exchange unit optimization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4342-4353. |
[7] | HUAI Liye, ZHONG Zhaoping, YANG Yuxuan. Characteristics and mechanism of desulfurization gypsum to α-hemihydrate gypsum: Experiments and simulations [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4694-4703. |
[8] | JIAO Wenlei, LIU Zhen, CHEN Junxian, ZHANG Tianyu, JI Zhongli. Structure and performance influencing factors of vane separation components: The reviews [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4187-4202. |
[9] | LI Kai, WEI Helin, YIN Zhifan, ZUO Xiahua, YU Xiaoyu, YIN Hongyuan, YANG Weimin, YAN Hua, AN Ying. Prediction of thermal conductivity and viscosity of water-based carbon black nanofluids based on GA-BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4138-4147. |
[10] | XIONG Yuanfan, LI Huashan, GONG Yulie. Multi-objective optimal design of evaporative condenser using zeotropic working fluid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2950-2960. |
[11] | XIAN Xuequan, DU Fangli, LIU Zhonglin, LIU Wanyu, LI Yanming, LONG Siyu, HUANG Hualin. Preparation and formation mechanism of vaterite calcium carbonate microspheres by PEG/Na2CO3 aqueous two-phase emulsion method [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3221-3231. |
[12] | WANG Dongliang, LI Jingwei, MENG Wenliang, YANG Yong, ZHOU Huairong, FAN Zongliang. Influencing factors of CO2 and H2 utilization rate in CO2 hydrogenation to methanol and process optimization design [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2843-2850. |
[13] | ZHENG Kexin, JIANG Yuxin, BI Kexin, ZHAO Qiming, CHEN Shaochen, WANG Bingbing, REN Junyu, JI Xu, QIU Tong, DAI Yiyang. Ensemble transfer learning framework for outflow compositions prediction in steam cracking process [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2880-2889. |
[14] | SHI Liu, HU Zhenzhong, LI Xian, SUN Yiming, TONG Shan, LIU Xianzhe, GUO Li, LIU Hao, PENG Bing, LI Shuo, LUO Guangqian, YAO Hong. Gas-pressurized torrefaction of biomass: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2494-2511. |
[15] | ZHANG Bao, WANG Peng, AN Yongpan, LYU Ping, JIANG Jianliang. Design and experiment of fuel cell systems for marine application [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2554-2567. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 81
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 127
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |