Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 4138-4147.DOI: 10.16085/j.issn.1000-6613.2023-0961
• Resources and environmental engineering • Previous Articles
LI Kai(), WEI Helin, YIN Zhifan, ZUO Xiahua, YU Xiaoyu, YIN Hongyuan, YANG Weimin, YAN Hua, AN Ying()
Received:
2023-06-12
Revised:
2023-08-06
Online:
2024-08-14
Published:
2024-07-10
Contact:
AN Ying
李凯(), 魏鹤琳, 尹志凡, 左夏华, 于晓宇, 尹宏远, 杨卫民, 阎华, 安瑛()
通讯作者:
安瑛
作者简介:
李凯(1998—),男,硕士研究生,研究方向为纳米流体光热转换。Email:13834742296@163.com。
基金资助:
CLC Number:
LI Kai, WEI Helin, YIN Zhifan, ZUO Xiahua, YU Xiaoyu, YIN Hongyuan, YANG Weimin, YAN Hua, AN Ying. Prediction of thermal conductivity and viscosity of water-based carbon black nanofluids based on GA-BP neural network model[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4138-4147.
李凯, 魏鹤琳, 尹志凡, 左夏华, 于晓宇, 尹宏远, 杨卫民, 阎华, 安瑛. 基于GA-BP神经网络模型预测水基炭黑-胶原蛋白纳米流体热导率和黏度[J]. 化工进展, 2024, 43(7): 4138-4147.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0961
影响因素 | 热导率 | 黏度 |
---|---|---|
炭黑质量分数 | 0.852 | 0.746 |
胶原蛋白质量分数 | 0.667 | 0.856 |
温度 | 0.808 | 0.538 |
影响因素 | 热导率 | 黏度 |
---|---|---|
炭黑质量分数 | 0.852 | 0.746 |
胶原蛋白质量分数 | 0.667 | 0.856 |
温度 | 0.808 | 0.538 |
1 | BAHIRAEI Mehdi, RAHMANI Reza, YAGHOOBI Ali, et al. Recent research contributions concerning use of nanofluids in heat exchangers: A critical review[J]. Applied Thermal Engineering, 2018, 133: 137-159. |
2 | YAZDANIFARD Farideh, AMERI Mehran, Ehsan EBRAHIMNIA-BAJESTAN. Performance of nanofluid-based photovoltaic/thermal systems: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 323-352. |
3 | SAJID Muhammad Usman, Hafiz Muhammad ALI. Recent advances in application of nanofluids in heat transfer devices: A critical review[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 556-592. |
4 | SAHIN Ahmet Z, UDDIN Mohammed Ayaz, YILBAS Bekir S, et al. Performance enhancement of solar energy systems using nanofluids: An updated review[J]. Renewable Energy, 2020, 145: 1126-1148. |
5 | CUCE Erdem, CUCE Pinar Mert, GUCLU Tamer, et al. On the use of nanofluids in solar energy applications[J]. Journal of Thermal Science, 2020, 29(3): 513-534. |
6 | MADHESH D, PARAMESHWARAN R, KALAISELVAM S. Experimental investigation on convective heat transfer and rheological characteristics of Cu-TiO2 hybrid nanofluids[J]. Experimental Thermal and Fluid Science, 2014, 52: 104-115. |
7 | YANG Liu, XU Jianyong, DU Kai, et al. Recent developments on viscosity and thermal conductivity of nanofluids[J]. Powder Technology, 2017, 317: 348-369. |
8 | CHIAM H W, AZMI W H, USRI N A, et al. Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture[J]. Experimental Thermal and Fluid Science, 2017, 81: 420-429. |
9 | SYAM SUNDAR L, VENKATA RAMANA E, SINGH Manoj K, et al. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study[J]. International Communications in Heat and Mass Transfer, 2014, 56: 86-95. |
10 | SYAM SUNDAR L, SINGH Manoj K, SOUSA Antonio C M. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications[J]. International Communications in Heat and Mass Transfer, 2013, 44: 7-14. |
11 | ALAWI Omer A, SIDIK Nor Azwadi Che, XIAN Hongwei, et al. Thermal conductivity and viscosity models of metallic oxides nanofluids[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1314-1325. |
12 | LEE Gyoung-Ja, KIM Chang Kyu, LEE Min ku, et al. Thermal conductivity enhancement of ZnO nanofluid using a one-step physical method[J]. Thermochimica Acta, 2012, 542: 24-27. |
13 | ESFE Hemmat Mohammad, AFRAND Masoud, GHAREHKHANI Samira, et al. An experimental study on viscosity of alumina-engine oil: Effects of temperature and nanoparticles concentration[J]. International Communications in Heat and Mass Transfer, 2016, 76: 202-208. |
14 | BARATPOUR Mohsen, KARIMIPOUR Arash, AFRAND Masoud, et al. Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol[J]. International Communications in Heat and Mass Transfer, 2016, 74: 108-113. |
15 | WUSIMAN Kuerbanjiang, JEONG Hyomin, TULUGAN Kelimu, et al. Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS[J]. International Communications in Heat and Mass Transfer, 2013, 41: 28-33. |
16 | KIM Nam-Jin, PARK Sung-Seek, Sang Hoon LIM, et al. A study on the characteristics of carbon nanofluids at the room temperature (25℃)[J]. International Communications in Heat and Mass Transfer, 2011, 38(3): 313-318. |
17 | XU J Z, GAO B Z, KANG F Y. A reconstruction of Maxwell model for effective thermal conductivity of composite materials[J]. Applied Thermal Engineering, 2016, 102: 972-979. |
18 | CHEN Haisheng, DING Yulong, HE Yurong, et al. Rheological behaviour of ethylene glycol based titania nanofluids[J]. Chemical Physics Letters, 2007, 444(4/5/6): 333-337. |
19 | AFRAND Masoud, TOGHRAIE Davood, SINA Nima. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: Development of a new correlation and modeled by artificial neural network[J]. International Communications in Heat and Mass Transfer, 2016, 75: 262-269. |
20 | KHDHER Abdolbaqi Mohammed, SIDIK Nor Azwadi Che, HAMZAH Wan Azmi Wan, et al. An experimental determination of thermal conductivity and electrical conductivity of bio glycol based Al2O3 nanofluids and development of new correlation[J]. International Communications in Heat and Mass Transfer, 2016, 73: 75-83. |
21 | VILLARRUBIA Gabriel, DE PAZ Juan F, CHAMOSO Pablo, et al. Artificial neural networks used in optimization problems[J]. Neurocomputing, 2018, 272: 10-16. |
22 | Seongmin HEO, LEE Jay H. Fault detection and classification using artificial neural networks[J]. IFAC-PapersOnLine, 2018, 51(18): 470-475. |
23 | CHRIS TSENG H, ALMOGAHED Bassam. Modular neural networks with applications to pattern profiling problems[J]. Neurocomputing, 2009, 72(10/11/12): 2093-2100. |
24 | David Daniel COX, DEAN Thomas. Neural networks and neuroscience-inspired computer vision[J]. Current Biology, 2014, 24(18): R921-R929. |
25 | ADUN Humphrey, Ifeoluwa WOLE-OSHO, OKONKWO Eric C, et al. A neural network-based predictive model for the thermal conductivity of hybrid nanofluids[J]. International Communications in Heat and Mass Transfer, 2020, 119: 104930. |
26 | QING Haohua, HAMEDI Sajad, EFTEKHARI S ALI, et al. A well-trained feed-forward perceptron Artificial Neural Network (ANN) for prediction the dynamic viscosity of Al2O3-MWCNT ( 40 ∶ 60 ) -Oil SAE50 hybrid nano-lubricant at different volume fraction of nanoparticles, temperatures, and shear rates[J]. International Communications in Heat and Mass Transfer, 2021, 128: 105624. |
27 | ESFE Hemmat Mohammad, MOTAHARI Kazem, SANATIZADEH Ehsan, et al. Estimation of thermal conductivity of CNTs-water in low temperature by artificial neural network and correlation[J]. International Communications in Heat and Mass Transfer, 2016, 76: 376-381. |
28 | ESFE Hemmat Mohammad, ROSTAMIAN Hadi, AFRAND Masoud, et al. Modeling and estimation of thermal conductivity of MgO-water/EG ( 60 ∶ 40 ) by artificial neural network and correlation[J]. International Communications in Heat and Mass Transfer, 2015, 68: 98-103. |
29 | ESFE Hemmat Mohammad, HASSANI AHANGAR Mohammad Reza, REJVANI Mousa, et al. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data[J]. International Communications in Heat and Mass Transfer, 2016, 75: 192-196. |
30 | ESFE Hemmat Mohammd, WONGWISES Somchai, NADERI Ali, et al. Thermal conductivity of Cu/TiO2-water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation[J]. International Communications in Heat and Mass Transfer, 2015, 66: 100-104. |
31 | ESFE Hemmat Mohammad, SAEDODIN Seyfolah, NADERI Ali, et al. Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods[J]. International Communications in Heat and Mass Transfer, 2015, 63: 35-40. |
32 | ESFE Hemmat Mohammad, AFRAND Masoud, YAN Wei-Mon, et al. Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3-water nanofluids using experimental data[J]. International Communications in Heat and Mass Transfer, 2015, 66: 246-249. |
33 | ESFE Hemmat Mohammad, BAHIRAEI Mehdi, HAJMOHAMMAD Mohammad Hadi, et al. Rheological characteristics of MgO/oil nanolubricants: Experimental study and neural network modeling[J]. International Communications in Heat and Mass Transfer, 2017, 86: 245-252. |
34 | ESFE Hemmat Mohammad, SAEDODIN Seyfolah, SINA Nima, et al. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid[J]. International Communications in Heat and Mass Transfer, 2015, 68: 50-57. |
35 | ZHANG Huiying, YAN Suying, GAO Hongjian, et al. Experimental investigation and prediction of changes in thermal conductivity of carbon nanotube nanofluid[J]. International Communications in Heat and Mass Transfer, 2021, 127: 105526. |
36 | 李凯, 魏鹤琳, 左夏华, 等. 水基炭黑-胶原蛋白纳米流体制备及稳定性实验[J]. 化工进展, 2024, 43(4): 1944-1952. |
LI Kai, WEI Helin, ZUO Xiahua, et al. Experimental study on the preparation and stability of water-based carbon black-collagen nanofluids[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1944-1952. | |
37 | 李浩然. ZnO纳米流体传热特性实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
LI Haoran. Experimental investigation on heat transfer characteristics of ZnO nanofluids[D]. Harbin: Harbin Institute of Technology, 2015. | |
38 | LI Xiaoke, ZOU Changjun, CHEN Wenjing, et al. Experimental investigation of β-cyclodextrin modified carbon nanotubes nanofluids for solar energy systems: Stability, optical properties and thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2016, 157: 572-579. |
39 | WEN Jin, LI Xiaoke, CHEN Wenjing, et al. Systematical investigation on the solar-thermal conversion performance of TiN plasmonic nanofluids for the direct absorption solar collectors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126837. |
40 | 杨丰源. SX区块优势通道识别与分布特征研究[D]. 大庆: 东北石油大学, 2017. |
YANG Fengyuan. Research on the identifying and distribution characteristics the thief zones in SX area[D]. Daqing: Northeast Petroleum University, 2017. | |
41 | 刘璐, 杨丹, 陈睿杰, 等. 基于KPCA-GA-BP神经网络的POI质量预测研究[J]. 电信科学, 2023, 39(1): 108-116. |
LIU Lu, YANG Dan, CHEN Ruijie, et al. Research on POI quality prediction based on KPCA-GA-BP neural network[J]. Telecommunications Science, 2023, 39(1): 108-116. |
[1] | WANG Dingyou, CHEN Jian, FAN Ruxin, LI Dashun. Mechanism and engineering technology development of hydrocarbons pyrolysis to produce carbon black [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3551-3566. |
[2] | JING Peiyu, ZHU Yu, SUN Jie, HUANG Wanni, GUO Yuying, WANG Yating, ZHENG Zhiyi, DING Wei. Analysis of drag reduction characteristics of water ring transportation in high viscosity oil horizontal pipeline [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2996-3006. |
[3] | WU Xining, ZHANG Ning, QIN Jiamin, XU Long, WEI Chaoyang, MA Xiaoxun. Performance of methanol-based nanofluids with enhanced CO2 absorption under low cooling demand [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2811-2822. |
[4] | LI Nan, GAO Dangge, LYU Bin, TANG Litao, CHEN Ken, ZHENG Chi, MA Jianzhong. Research progress of leather collagen in flexible intelligent wearable field [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2645-2660. |
[5] | LI Kai, WEI Helin, ZUO Xiahua, YANG Weimin, YAN Hua, AN Ying. Experimental study on the preparation and stability of water-based carbon black-collagen nanofluids [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1944-1952. |
[6] | WANG Bing, WANG Lei, HUANG Xinru, YUAN Hongpeng, LAI Xiaojuan, LI Peng. Synthesis and performance test of an acid and alkali resistant high strength resin [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1992-2000. |
[7] | WANG Kai, LUO Mingliang, LI Mingzhong, HUANG Feifei, PU Chunsheng, PU Jingyang, FAN Qiao. Research progress of polyethyleneimine crosslinked polymer gel system in water-drive reservoirs [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1506-1523. |
[8] | LIU Zepeng, ZENG Jijun, TANG Xiaobo, ZHAO Bo, HAN Sheng, LIAO Yuanhao, ZHANG Wei. Thermodynamic properties of four alkyl imidazolium phosphate ionic liquids [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1484-1491. |
[9] | LIU Zepeng, ZENG Jijun, LIAO Yuanhao, TANG Xiaobo, ZHAO Bo, HAN Sheng, ZHANG Wei. Thermodynamic properties of 1-ethyl-3-methylimidazolium methyl phosphonate and 1-ethyl-3-methylimidazolium ethyl phosphonate [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1054-1062. |
[10] | ZHANG Dailing, DING Yumei, ZUO Xiahua, LI Haowei, YANG Weimin, YAN Hua, AN Ying. Photothermal characteristics of waste toner nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4791-4798. |
[11] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
[12] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[13] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[14] | PANG Nanjiong, WANG Xiaoling, LIAO Xuepin, SHI Bi. Separation of boron isotopes by collagen fibers-immobilized black wattle tannin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2616-2625. |
[15] | LI Guangwen, HUA Qucheng, HUANG Zuoxin, DA Zhijian. Progress on polymethacrylate as viscosity index improvers for lube oil [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1562-1571. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |