Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6574-6580.DOI: 10.16085/j.issn.1000-6613.2024-1763
• Materials science and technology • Previous Articles
Received:2024-10-31
Revised:2025-01-10
Online:2025-12-08
Published:2025-11-25
Contact:
ZHANG Xilong
通讯作者:
张西龙
作者简介:房玉宝(1999—),男,硕士研究生,研究方向为纳米流体强化传热传质。E-mail:3221014820@qq.com。
基金资助:CLC Number:
FANG Yubao, ZHANG Xilong. Stability and influencing factors of Cu-H2O and Al2O3-H2O nanofluids[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6574-6580.
房玉宝, 张西龙. Cu-H2O和Al2O3-H2O纳米流体稳定性及影响因素[J]. 化工进展, 2025, 44(11): 6574-6580.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1763
| 参数 | Cu | Al2O3 | H2O |
|---|---|---|---|
| 密度ρ/kg·m-3 | 8978 | 3600 | 1000 |
| 热导率/W·(m·K)-1 | 387.6 | 40 | 0.59 |
| 比热容cp /J·(kg·K)-1 | 400 | 450 | 4186 |
| 粒径d/nm | 30 | 30 | — |
| 参数 | Cu | Al2O3 | H2O |
|---|---|---|---|
| 密度ρ/kg·m-3 | 8978 | 3600 | 1000 |
| 热导率/W·(m·K)-1 | 387.6 | 40 | 0.59 |
| 比热容cp /J·(kg·K)-1 | 400 | 450 | 4186 |
| 粒径d/nm | 30 | 30 | — |
| [11] | SHAH Janki, RANJAN Mukesh, THAREJA Prachi, et al. Tailoring stability and thermophysical properties of CuO nanofluid through ultrasonication[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(19): 10319-10328. |
| [12] | 李艳娇, 孙崇锋, 郭剑锋, 等. AlN/EG纳米流体的制备及稳定性研究[J]. 功能材料, 2015, 46(8): 8018-8022. |
| LI Yanjiao, SUN Chongfeng, GUO Jianfeng, et al. Synthesis and investigation on stability of AlN/EG nanofluids[J]. Journal of Functional Materials, 2015, 46(8): 8018-8022. | |
| [13] | JAIN Akshat, AMBEKAR Anirudha, THAJUDEEN Thaseem. Experimental investigation on the effect of size modification of alumina nano-additives on the performance and emission characteristics of a compression ignition engine[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(1): 479-494. |
| [14] | YADAV Priyanka, GUPTA Shipra Mital, SHARMA S K. Preparation and characterization of surfactant-free CNT based nanofluid in EG/water (60∶40 ratio) basefluid for refrigerant application[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(19): 10037-10050. |
| [15] | HUANG Zhixue, YANG Huan, ZHENG Lijun, et al. Preparation of amphiphilic Janus nanosheets based on thermally expandable microspheres and evaluation of their physical and chemical properties[J]. Fuel, 2024, 358: 130253. |
| [16] | 李丹, 方文军. 油基-银纳米流体的制备及稳定性研究[J]. 高校化学工程学报, 2013, 27(4): 657-662. |
| LI Dan, FANG Wenjun. Preparation and stability of oil- based silver nanofluids[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(4): 657-662. | |
| [17] | LI Xinfang, ZHU Dongsheng, WANG Xianju. Evaluation on dispersion behavior of the aqueous copper nano-suspensions[J]. Journal of Colloid and Interface Science,2007, 310(2): 456-463. |
| [18] | LEONG Kin Yuen, NAJWA Z A, KU AHMAD K Z, et al. Investigation on stability and optical properties of titanium dioxide and aluminum oxide water-based nanofluids[J]. International Journal of Thermophysics, 2017, 38(5): 77. |
| [19] | 王亚辉, 罗延旭, 刘耀, 等. 纳米流体研究进展[J]. 能源工程, 2022, 42(2): 7-16. |
| WANG Yahui, LUO Yanxu, LIU Yao, et al. Review of research progress of nanofluids[J]. Energy Engineering, 2022, 42(2): 7-16. | |
| [20] | SOLTANI Farid, TOGHRAIE Davood, KARIMIPOUR Arash. Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO3) and MWCNTs inclusions[J]. Powder Technology, 2020, 371: 37-44. |
| [21] | 李信, 杨谋存, 朱跃钊. 油基CuO纳米流体的制备及热稳定性实验研究[J]. 硅酸盐通报, 2018, 37(7): 2285-2290. |
| LI Xin, YANG Moucun, ZHU Yuezhao. Preparation and thermal stability of oil-based CuO nanofluids[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(7): 2285-2290. | |
| [22] | Paloma MARTÍNEZ-MERINO, Antonio SÁNCHEZ-CORONILLA, Rodrigo ALCÁNTARA, et al. Insights into the stability and thermal properties of WSe2-based nanofluids for concentrating solar power prepared by liquid phase exfoliation[J]. Journal of Molecular Liquids, 2020, 319: 114333. |
| [23] | ASADI Amin, ALARIFI Ibrahim M, Vakkar ALI, et al. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: Finding the optimum ultrasonication time[J]. Ultrasonics Sonochemistry, 2019, 58: 104639. |
| [24] | 张亚楠, 刘妮, 由龙涛, 等. 表面活性剂对水基纳米流体特性影响的研究进展[J]. 化工进展, 2015, 34(4): 903-910, 920. |
| ZHANG Yanan, LIU Ni, YOU Longtao, et al. Research progress in the effect of surfactants on the characteristics of H2O-based nanofluids[J]. Chemical Industry and Engineering Progress, 2015, 34(4): 903-910, 920. | |
| [25] | 陈鹏飞. Al2O3-H2O纳米流体粘度预测模型及表面张力的实验研究[D] . 昆明: 昆明理工大学, 2021. |
| CHEN Pengfei. Experimental study on viscosity prediction model and surface tension of Al2O3-H2O nanofluid[D]. Kunming: Kunming University of Science and Technology, 2021. | |
| [26] | CACUA Karen, Fredy ORDOÑEZ, ZAPATA Camilo, et al. Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123960. |
| [27] | 李凯, 魏鹤琳, 左夏华, 等. 水基炭黑-胶原蛋白纳米流体制备及稳定性实验[J]. 化工进展, 2024,43(4): 1944-1952. |
| LI Kai, WEI Helin, ZUO Xiahua, et al. Experimental study on the preparation and stability of water-based carbon black-collagen nanofluids[J]. Chemical Industry and Engineering Progress, 2024,43(4): 1944-1952. | |
| [28] | 张浩. TiO2 /水纳米流体物性及强化传热特性研究[D]. 昆明: 昆明理工大学, 2022. |
| ZHANG Hao. Study on physical properties and enhanced heat transfer characteristics of TiO2/water nanofluids[D]. Kunming: Kunming University of Science and Technology, 2022. | |
| [29] | AGARWAL Deepak Kumar, VAIDYANATHAN Aravind, SUNIL KUMAR S. Synthesis and characterization of kerosene-alumina nanofluids[J]. Applied Thermal Engineering, 2013, 60(1/2): 275-284. |
| [1] | CHOI S U, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles [J]. Asme Fed, 1995, 231(1): 99-105. |
| [2] | 张俊, 李苏巧, 彭林明, 等. 纳米流体强化气液传质研究进展[J]. 化工进展, 2013, 32(4): 732-739. |
| ZHANG Jun, LI Suqiao, PENG Linming, et al. Progress in research on gas-liquid mass transfer enhancement of nanofluids[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 732-739. | |
| [3] | 马明琰, 翟玉玲, 轩梓灏, 等. 三元混合纳米流体稳定性及热性能[J]. 化工进展, 2021, 40(8): 4179-4186. |
| MA Mingyan, ZHAI Yuling, XUAN Zihao, et al. Stability and thermal performance of ternary hybrid nanofluids[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4179-4186. | |
| [4] | SAJID Muhammad Usman, BICER Yusuf. Impacts of ultrasonication time and surfactants on stability and optical properties of CuO, Fe3O4,and CNTs/water nanofluids for spectrum selective applications[J]. Ultrasonics Sonochemistry, 2022, 88: 106079. |
| [5] | Krishna BHAT D, Pavan KUMAR S, Sandhya SHENOY U. Design, synthesis, and characterization of stable copper nanofluid with enhanced thermal conductivity[J]. Materials Today Communications, 2024, 39: 109129. |
| [6] | Pavan KUMAR S, Sandhya SHENOY U, Krishna BHAT D. A direct approach towards synthesis of copper nanofluid by one step solution phase method[J]. Journal of Crystal Growth, 2024, 630: 127591. |
| [7] | ZHANG Hao, QING Shan, XU Jiarui, et al. Stability and thermal conductivity of TiO2 /water nanofluids: A comparison of the effects of surfactants and surface modification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128492. |
| [8] | ZHANG Xusheng, YANG Bin, SHI Yue, et al. Stability, thermophysical, optical and photothermal properties of ZnO nanofluids with added anionic/cationic mixed surfactants[J]. Journal of Solid State Science and Technology, 2024, 13(5) : 053006. |
| [9] | BARAI Divya P, BHANVASE Bharat A, Gaweł ŻYŁA. Experimental investigation of thermal conductivity of water-based Fe3O4 nanofluid: An effect of ultrasonication time[J]. Nanomaterials, 2022, 12(12) : 1961. |
| [10] | 张国龙, 王宁峰, 铁生年, 等. 纳米氧化镁在丙二醇中的分散及稳定性研究[J]. 无机盐工业, 2015, 47(6): 39-42. |
| ZHANG Guolong, WANG Ningfeng, Shengnian TIE, et al. Study on dispersion and stability of MgO nanoparticles in propylene glycol[J]. Inorganic Chemicals Industry, 2015, 47(6): 39-42. |
| [1] | QIN Fei, ZHANG Zhi, SONG Guangchun, WANG Wuchang, LI Yuxing, WANG Shixin, HE Sicheng, WANG Jiangyan. Advances in research on the molecular dynamics behaviors of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 112-123. |
| [2] | MA Xiaobiao, LIU Han, WANG Weihuan, MIAO Peipei, JI Yinghui, CHEN Boyang, PENG Xiaowei, XU Qiang, JIN Fengying, MA Mingchao, WANG Yinbin, GUO Chunlei. Effect of acid and phosphorus composite modification on the catalytic cracking performance of ZSM-5 molecular sieve [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 197-204. |
| [3] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [4] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [5] | LI Zhifu, YANG Xiaodong, WANG Baocai, HU Changliu, PEI Jikai, YAN Longfang, WU Ruifang, ZHANG Changsheng, WANG Yongzhao. Synthesis and properties of high temperature retarder HJ-1 [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5092-5100. |
| [6] | LI Xiang, WU Zhangyong, JIANG Jiajun, ZHU Qichen, GONG Qiu. Tribological properties of seawater-based MoS2/SiC binary nanofluids [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4050-4060. |
| [7] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [8] | WANG Hui, LIU Jiaxu. Research progress on the synthesis of SSZ-39 zeolite and NH3-SCR application [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3892-3906. |
| [9] | LU Peng, ZHANG Di, LIU Yaoyao, YU Wanjin, LIU Wucan, ZHANG Jianjun. Research progress of catalysts for gas-phase dehydrofluorination to synthesize C2 hydrofluoroolefins [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3907-3916. |
| [10] | FU Yuanpeng, DONG Xianshu, MA Xiaomin, FAN Yuping. Mechanism study on preparation of LiNi1/3Co1/3Mn1/3O2 ternary electrode material precursor by liquid sol-gel method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3561-3569. |
| [11] | TAO Jinquan, JIA Yijing, BAI Tianyu, YAO Rongpeng, HUANG Wenbin, CUI Yan, ZHOU Yasong, WEI Qiang. Synthesis and catalytic MTP performance of Silicalite-1 zeolite with low cost [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1550-1558. |
| [12] | BAI Zhongliang, LI Ping, WANG Hui, LI Wei, ZHANG Qiang, LI Ning. Proportioning design and anti-aging performance of asphalt rejuvenator based on response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1607-1618. |
| [13] | JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833. |
| [14] | ZHANG Huanling, MA Huixia, ZHOU Feng, ZHAO Chenghao, ZHU Xiaolin, WANG Guowei, LI Chunyi. Effect of introduced In species on propane dehydrogenation over Ge/SiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 879-886. |
| [15] | WU Enxi, DAI Yi, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Advances of Co-based catalysts in non-oxidative dehydrogenation of light alkanes [J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5730-5750. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |
