Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (2): 820-833.DOI: 10.16085/j.issn.1000-6613.2024-0201
• Industrial catalysis • Previous Articles Next Articles
JIA Yijing(), TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong(
)
Received:
2024-01-26
Revised:
2024-03-08
Online:
2025-03-10
Published:
2025-02-25
Contact:
ZHOU Yasong
贾亦静(), 陶金泉, 黄文斌, 刘昊然, 李蓉蓉, 姚荣鹏, 白天瑜, 魏强, 周亚松(
)
通讯作者:
周亚松
作者简介:
贾亦静(1997—),女,博士研究生,研究方向为CO2加氢催化材料及催化剂。E-mail:1021336045@qq.com。
基金资助:
CLC Number:
JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833.
贾亦静, 陶金泉, 黄文斌, 刘昊然, 李蓉蓉, 姚荣鹏, 白天瑜, 魏强, 周亚松. CO2加氢制低碳烯烃Fe基催化剂研究进展[J]. 化工进展, 2025, 44(2): 820-833.
1 | 董亮. “碳中和” 前景下的国际气候治理与中国的政策选择[J]. 外交评论(外交学院学报), 2021, 38(6): 132-154, 8. |
DONG Liang. International climate governance and China’s policy selection under carbon neutrality[J]. Foreign Affairs Review, 2021, 38(6): 132-154, 8. | |
2 | 邓一荣, 汪永红, 赵岩杰, 等. 碳中和背景下二氧化碳封存研究进展与展望[J]. 地学前缘, 2023, 30(4): 429-439. |
DENG Yirong, WANG Yonghong, ZHAO Yanjie, et al. Carbon dioxide storage in China: Current status, main challenges, and future outlooks[J]. Earth Science Frontiers, 2023, 30(4): 429-439. | |
3 | 武永光. CCUS技术进展和应用情况[J]. 当代化工研究, 2022(11): 118-120. |
WU Yongguang. Advances and application of CCUS technology[J]. Modern Chemical Research, 2022(11): 118-120. | |
4 | 周健, 邓一荣. 中国碳捕集与封存(CCS): 现状、挑战与展望[J]. 环境科学与管理, 2021, 46(8): 5-8. |
ZHOU Jian, DENG Yirong. Carbon capture and storage promotion in China: Current status, challenges and prospects[J]. Environmental Science and Management, 2021, 46(8): 5-8. | |
5 | 邹才能, 吴松涛, 杨智, 等. 碳中和战略背景下建设碳工业体系的进展、挑战及意义[J]. 石油勘探与开发, 2023, 50(1): 190-205. |
ZOU Caineng, WU Songtao, YANG Zhi, et al. Progress, challenge and significance of building a carbon industry system in the context of carbon neutrality strategy[J]. Petroleum Exploration and Development, 2023, 50(1): 190-205. | |
6 | 孟照鑫, 何青, 胡华为, 等. 我国氢能产业发展现状与思考[J]. 现代化工, 2022, 42(1): 1-6, 12. |
MENG Zhaoxin, HE Qing, HU Huawei, et al. Development situation and consideration of hydrogen energy industry in China[J]. Modern Chemical Industry, 2022, 42(1): 1-6, 12. | |
7 | 张帆. “双碳” 目标下CCUS产业化模式面临的挑战、对策及发展方向[J]. 现代化工, 2022, 42(9): 13-17. |
ZHANG Fan. Challenges, countermeasures and development direction of CCUS industrialization mode under ‘carbon emission peaking’ and ‘carbon neutrality’ goals[J]. Modern Chemical Industry, 2022, 42(9): 13-17. | |
8 | ZHOU Wei, CHENG Kang, KANG Jincan, et al. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228. |
9 | TORRES GALVIS Hirsa M, DE JONG Krijn P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catalysis, 2013, 3(9): 2130-2149. |
10 | 王旭. Fe基催化剂的设计、改性及其催化CO2加氢制低碳烯烃性能研究[D]. 银川: 宁夏大学, 2018. |
WANG Xu. Study on the design, modification and catalytic performance of iron-based catalysts for CO2 hydrogenation to light olefins[D]. Yinchuan: Ningxia University, 2018. | |
11 | WANG Qiang, CHEN Yao, LI Zhenhua. Research progress of catalysis for low-carbon olefins synthesis through hydrogenation of CO2 [J]. Journal of Nanoscience and Nanotechnology, 2019, 19(6): 3162-3172. |
12 | 张超, 张玉龙, 朱明辉, 等. CO2高值化利用新途径: 铁基催化剂CO2加氢制烯烃研究进展[J]. 化工进展, 2021, 40(2): 577-593. |
ZHANG Chao, ZHANG Yulong, ZHU Minghui, et al. New pathway for CO2 high-valued utilization: Fe-based catalysts for CO2 hydrogenation to low olefins[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 577-593. | |
13 | YE Runping, DING Jie, GONG Weibo, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nature Communications, 2019, 10: 5698. |
14 | LIU Wenqi, CHENG Sifan, MALHI Haripal Singh, et al. Hydrogenation of CO2 to olefins over iron-based catalysts: A review[J]. Catalysts, 2022, 12(11): 1432. |
15 | 王晨, 张建利, 高新华, 等. 二氧化碳加氢制长链线性α-烯烃铁基催化剂研究进展[J]. 燃料化学学报, 2023, 51(1): 67-84. |
WANG Chen, ZHANG Jianli, GAO Xinhua, et al. Research progress on iron-based catalysts for CO2 hydrogenation to long-chain linear α-olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 67-84. | |
16 | 王建伟, 钟顺和. CO2吸附活化的研究进展[J]. 化学进展, 1998, 10(4): 374-380. |
WANG Jianwei, ZHONG Shunhe. Research progress on adsorption and activation of CO2 [J]. Progress in Chemistry, 1998, 10(4): 374-380. | |
17 | Jeonghyun KO, KIM Byung-Kook, HAN Jeong Woo. Density functional theory study for catalytic activation and dissociation of CO2 on bimetallic alloy surfaces[J]. The Journal of Physical Chemistry C, 2016, 120(6): 3438-3447. |
18 | 李静, 邓廷云, 杨林, 等. CO2吸附活化及催化加氢制低碳烯烃的研究进展[J]. 化工进展, 2013, 32(2): 340-345. |
LI Jing, DENG Tingyun, YANG Lin, et al. Research progress of adsorption/activation and catalytic hydrogenation of CO2 [J]. Chemical Industry and Engineering Progress, 2013, 32(2): 340-345. | |
19 | 索掌怀, 寇元, 王弘立. 还原条件对CO2加氢用Fe/TiO2催化剂结构的影响[J]. 催化学报, 2001, 22(4): 348-352. |
SUO Zhanghuai, KOU Yuan, WANG Hongli. Influence of reduction conditions on structure of Fe/TiO2 catalyst for hydrogenation of carbon dioxide[J]. Chinese Journal of Catalysis, 2001, 22(4): 348-352. | |
20 | WANG Haozhi, NIE Xiaowa, CHEN Yonggang, et al. Facet effect on CO2 adsorption, dissociation and hydrogenation over Fe catalysts: Insight from DFT[J]. Journal of CO2 Utilization, 2018, 26: 160-170. |
21 | NIE Xiaowa, HAN Guangxiu, SONG Chunshan, et al. Computational identification of facet-dependent CO2 initial activation and hydrogenation over iron carbide catalyst[J]. Journal of CO2 Utilization, 2022, 59: 101967. |
22 | FEDOROV Aleksandr, LUND Henrik, KONDRATENKO Vita A, et al. Elucidating reaction pathways occurring in CO2 hydrogenation over Fe-based catalysts[J]. Applied Catalysis B: Environmental, 2023, 328: 122505. |
23 | LIU Junhui, ZHANG Guanghui, JIANG Xiao, et al. Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons[J]. Catalysis Today, 2021, 371: 162-170. |
24 | LANDAU M V, MEIRI N, UTSIS N, et al. Conversion of CO2, CO, and H2 in CO2 hydrogenation to fungible liquid fuels on Fe-based catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56(45): 13334-13355. |
25 | DE SMIT Emiel, WECKHUYSEN Bert M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews, 2008, 37(12): 2758-2781. |
26 | SAEIDI Samrand, AMIN Nor Aishah Saidina, RAHIMPOUR Mohammad Reza. Hydrogenation of CO2 to value-added products—A review and potential future developments[J]. Journal of CO2 Utilization, 2014, 5: 66-81. |
27 | SCHULZ Hans. Selforganization in Fischer-Tropsch synthesis with iron- and cobalt catalysts[J]. Catalysis Today, 2014, 228: 113-122. |
28 | ZHU Jie, WANG Peng, ZHANG Xiaoben, et al. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation[J]. Science Advances, 2022, 8(5): eabm3629. |
29 | ZHANG Yulong, CAO Chenxi, ZHANG Chao, et al. The study of structure-performance relationship of iron catalyst during a full life cycle for CO2 hydrogenation[J]. Journal of Catalysis, 2019, 378: 51-62. |
30 | LEE Sung-Chul, KIM Jun-Sik, SHIN Woo Cheol, et al. Catalyst deactivation during hydrogenation of carbon dioxide: Effect of catalyst position in the packed bed reactor[J]. Journal of Molecular Catalysis A: Chemical, 2009, 301(1/2): 98-105. |
31 | Wilfried NGANTSOUE-HOC, ZHANG Yongqing, O’BRIEN Robert J, et al. Fischer-Tropsch synthesis: Activity and selectivity for Group I alkali promoted iron-based catalysts[J]. Applied Catalysis A: General, 2002, 236(1/2): 77-89. |
32 | Satyen Kumar DAS, MOHANTY Pravakar, MAJHI Sachchit, et al. CO-hydrogenation over silica supported iron based catalysts: Influence of potassium loading[J]. Applied Energy, 2013, 111: 267-276. |
33 | KOELBEL Herbert, LUDWIG Hans-Bolko, HAMMER Hans. Study on the formation mechanism of methane by hydrocracking in the Fischer-Tropsch synthesis[J]. Journal of Catalysis, 1962, 1(2): 156-164. |
34 | YOU Zhenya, DENG Weiping, ZHANG Qinghong, et al. Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst[J]. Chinese Journal of Catalysis, 2013, 34(5): 956-963. |
35 | CHOI Pyoung Ho, Ki-Won JUN, LEE Soo-Jae, et al. Hydrogenation of carbon dioxide over alumina supported Fe-K catalysts[J]. Catalysis Letters, 1996, 40(1/2): 115-118. |
36 | RAMIREZ Adrian, GEVERS Lieven, BAVYKINA Anastasiya, et al. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins[J]. ACS Catalysis, 2018, 8(10): 9174-9182. |
37 | HAN Yu, FANG Chuanyan, JI Xuewei, et al. Interfacing with carbonaceous potassium promoters boosts catalytic CO2 hydrogenation of iron[J]. ACS Catalysis, 2020, 10(20): 12098-12108. |
38 | RIBEIRO Mauro C, JACOBS Gary, DAVIS Burtron H, et al. Fischer-Tropsch synthesis: An in-situ TPR-EXAFS/XANES investigation of the influence of group Ⅰ alkali promoters on the local atomic and electronic structure of carburized iron/silica catalysts[J]. The Journal of Physical Chemistry C, 2010, 114(17): 7895-7903. |
39 | LIANG Binglian, DUAN Hongmin, SUN Ting, et al. Effect of Na promoter on Fe-based catalyst for CO2 hydrogenation to alkenes[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 925-932. |
40 | ZHAI Peng, XU Cong, GAO Rui, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angewandte Chemie International Edition, 2016, 55(34): 9902-9907. |
41 | LIANG Binglian, SUN Ting, MA Junguo, et al. Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins[J]. Catalysis Science & Technology, 2019, 9(2): 456-464. |
42 | XU Yao, ZHAI Peng, DENG Yuchen, et al. Highly selective olefin production from CO2 hydrogenation on iron catalysts: A subtle synergy between manganese and sodium additives[J]. Angewandte Chemie International Edition, 2020, 59(48): 21736-21744. |
43 | LIU Bing, GENG Shunshun, ZHENG Jiao, et al. Unravelling the new roles of Na and Mn promoter in CO2 hydrogenation over Fe3O4-based catalysts for enhanced selectivity to light α-olefins[J]. ChemCatChem, 2018, 10(20): 4718-4732. |
44 | ZHANG Zhiqiang, HUANG Gongxun, TANG Xinglei, et al. Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation[J]. Fuel, 2022, 309: 122105. |
45 | ZHANG Zhiqiang, YIN Haoren, YU Guangde, et al. Selective hydrogenation of CO2 and CO into olefins over Sodium- and Zinc-Promoted iron carbide catalysts[J]. Journal of Catalysis, 2021, 395: 350-361. |
46 | 董子超, 吴玉, 张博风, 等. 新型FeCo双金属催化剂催化CO2加氢制低碳烯烃[J]. 化工学报, 2021, 72(5): 2647-2656. |
DONG Zichao, WU Yu, ZHANG Bofeng, et al. Preparation and performances of FeCo/MC catalysts for CO2 hydrogenation to light olefins[J]. CIESC Journal, 2021, 72(5): 2647-2656. | |
47 | YU Yingzhe, ZHANG Jie, LEI Hao, et al. Carbon chain growth reaction of synthesis of lower olefins from syngas on Fe-Co catalyst[J]. Applied Surface Science, 2020, 504: 144211. |
48 | YUAN Fei, ZHANG Guanghui, ZHU Jie, et al. Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity[J]. Catalysis Today, 2021, 371: 142-149. |
49 | ZHU Minghui, TIAN Pengfei, FORD Michael E, et al. Nature of reactive oxygen intermediates on copper-promoted iron-chromium oxide catalysts during CO2 activation[J]. ACS Catalysis, 2020, 10(14): 7857-7863. |
50 | YANG Haiyan, DANG Yaru, CUI Xu, et al. Selective synthesis of olefins via CO2 hydrogenation over transition-metal-doped iron-based catalysts[J]. Applied Catalysis B: Environmental, 2023, 321: 122050. |
51 | LI Zhongling, WU Wenlong, WANG Menglin, et al. Ambient-pressure hydrogenation of CO2 into long-chain olefins[J]. Nature Communications, 2022, 13(1): 2396. |
52 | 邓国才, 李梦青, 穆瑞才, 等. 稀土对二氧化碳加氢合成低碳烯烃催化剂活性的影响[J]. 中国稀土学报, 1997, 15(3): 278-280. |
DENG Guocai, LI Mengqing, MU Ruicai, et al. Effects of rare earth addition on Fe system catalysts used in CO2 hydrogenation to light olefins[J]. Journal of the Chinese Society of Rare Earth, 1997, 15(3): 278-280. | |
53 | ZHANG Jianli, SU Xiaojuan, WANG Xu, et al. Promotion effects of Ce added Fe-Zr-K on CO2 hydrogenation to light olefins[J]. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124(2): 575-585. |
54 | PIRIYASURAWONG Kanyarat, PANPRANOT Joongjai, MEKASUWANDUMRONG Okorn, et al. CO2 hydrogenation over FSP-made iron supported on cerium modified alumina catalyst[J]. Catalysis Today, 2021, 375: 307-313. |
55 | GUO Lisheng, SUN Jian, JI Xuewei, et al. Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts[J]. Communications Chemistry, 2018, 1: 11. |
56 | 刘洋洋, 孙超, Malhi Haripal Singh, 等. 载体对铁基催化剂结构及CO2加氢制烯烃反应性能的影响特性[J]. 化工学报, 2020, 71(10): 4631-4641. |
LIU Yangyang, SUN Chao, SINGH Malhi Haripal, et al. Effects of identities of supports on Fe-based catalyst and their consequences on activities of CO2 hydrogenation to olefins[J]. CIESC Journal, 2020, 71(10): 4631-4641. | |
57 | LOPEZ LUNA Mauricio, TIMOSHENKO Janis, KORDUS David, et al. Role of the oxide support on the structural and chemical evolution of Fe catalysts during the hydrogenation of CO2 [J]. ACS Catalysis, 2021, 11(10): 6175-6185. |
58 | Laura TORRENTE-MURCIANO, CHAPMAN Robert S L, Ana NARVAEZ-DINAMARCA, et al. Effect of nanostructured ceria as support for the iron catalysed hydrogenation of CO2 into hydrocarbons[J]. Physical Chemistry Chemical Physics, 2016, 18(23): 15496-15500. |
59 | ZHU Jie, ZHANG Guanghui, LI Wenhui, et al. Deconvolution of the particle size effect on CO2 hydrogenation over iron-based catalysts[J]. ACS Catalysis, 2020, 10(13): 7424-7433. |
60 | TORRES GALVIS Hirsa M, BITTER Johannes H, DAVIDIAN Thomas, et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134(39): 16207-16215. |
61 | LIU Junhui, LI Kuan, SONG Yakun, et al. Selective hydrogenation of CO2 to hydrocarbons: Effects of Fe3O4 particle size on reduction, carburization, and catalytic performance[J]. Energy & Fuels, 2021, 35(13): 10703-10709. |
62 | XIE Tianze, WANG Jianyang, DING Fanshu, et al. CO2 hydrogenation to hydrocarbons over alumina-supported iron catalyst: Effect of support pore size[J]. Journal of CO2 Utilization, 2017, 19: 202-208. |
63 | BUKUR Dragomir B, CARRETO-VAZQUEZ Victor H, MA Wenping. Catalytic performance and attrition strength of spray-dried iron catalysts for slurry phase Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2010, 388(1/2): 240-247. |
64 | WAN Haijun, WU Baoshan, ZHANG Chenghua, et al. Study on Fe-Al2O3 interaction over precipitated iron catalyst for Fischer-Tropsch synthesis[J]. Catalysis Communications, 2007, 8(10): 1538-1545. |
65 | WU Tijun, LIN Jun, CHENG Yi, et al. Porous graphene-confined Fe-K as highly efficient catalyst for CO2 direct hydrogenation to light olefins[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23439-23443. |
66 | CHEN Xiaoqi, DENG Dehui, PAN Xiulian, et al. Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins[J]. Chinese Journal of Catalysis, 2015, 36(9): 1631-1637. |
67 | WANG Shunwu, WU Tijun, LIN Jun, et al. Iron-potassium on single-walled carbon nanotubes as efficient catalyst for CO2 hydrogenation to heavy olefins[J]. ACS Catalysis, 2020, 10(11): 6389-6401. |
68 | Elisa GARCÍA-HURTADO, Aída RODRÍGUEZ-FERNÁNDEZ, MOLINER Manuel, et al. CO2 hydrogenation using bifunctional catalysts based on K-promoted iron oxide and zeolite: Influence of the zeolite structure and crystal size[J]. Catalysis Science & Technology, 2020, 10(16): 5648-5658. |
69 | WEI Jian, GE Qingjie, YAO Ruwei, et al. Directly converting CO2 into a gasoline fuel[J]. Nature Communications, 2017, 8: 15174. |
70 | RAMIREZ Adrian, GONG Xuan, CAGLAYAN Mustafa, et al. Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis[J]. Nature Communications, 2021, 12(1): 5914. |
71 | WANG Linkai, HAN Yu, WEI Jian, et al. Dynamic confinement catalysis in Fe-based CO2 hydrogenation to light olefins[J]. Applied Catalysis B: Environmental, 2023, 328: 122506. |
72 | ZHU Can, HUANG Chao, ZHANG Mingwei, et al. Design of ZSM-5 encapsulating FeMnK nanocatalysts for light olefins synthesis with enhanced carbon utilization efficiency[J]. Fuel, 2023, 335: 126745. |
73 | QURESHI Ziyauddin S, ARUDRA Palani, BARI SIDDIQUI M A, et al. Enhanced light olefins production via n-pentane cracking using modified MFI catalysts[J]. Heliyon, 2022, 8(3): e09181. |
74 | JI Yajun, SHI Bofang, YANG Honghui, et al. Synthesis of isomorphous MFI nanosheet zeolites for supercritical catalytic cracking of n-dodecane[J]. Applied Catalysis A: General, 2017, 533: 90-98. |
75 | TIAN Yajie, ZHANG Bofeng, LIANG Hairui, et al. Synthesis and performance of pillared HZSM-5 nanosheet zeolites for n-decane catalytic cracking to produce light olefins[J]. Applied Catalysis A: General, 2019, 572: 24-33. |
76 | HAO Jing, CHENG Dangguo, CHEN Fengqiu, et al. n-Heptane catalytic cracking on ZSM-5 zeolite nanosheets: Effect of nanosheet thickness[J]. Microporous and Mesoporous Materials, 2021, 310: 110647. |
77 | WANG Jie, SHAN Junwei, TIAN Yajie, et al. Catalytic cracking of n-heptane over Fe modified HZSM-5 nanosheet to produce light olefins[J]. Fuel, 2021, 306: 121725. |
78 | WANG Chengtao, FANG Wei, LIU Zhiqiang, et al. Fischer-Tropsch synthesis to olefins boosted by MFI zeolite nanosheets[J]. Nature Nanotechnology, 2022, 17(7): 714-720. |
79 | DOKANIA Abhay, DUTTA CHOWDHURY Abhishek, RAMIREZ Adrian, et al. Acidity modification of ZSM-5 for enhanced production of light olefins from CO2 [J]. Journal of Catalysis, 2020, 381: 347-354. |
80 | LIU Renjie, LESHCHEV Denis, STAVITSKI Eli, et al. Selective hydrogenation of CO2 and CO over potassium promoted Co/ZSM-5[J]. Applied Catalysis B: Environmental, 2021, 284: 119787. |
81 | LIU Renjie, MA Zhiqiang, SEARS Jeffrey D, et al. Identifying correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over Fe-based ZSM-5 catalysts[J]. Journal of CO2 Utilization, 2020, 41: 101290. |
82 | RAMIREZ Adrian, DUTTA CHOWDHURY Abhishek, DOKANIA Abhay, et al. Effect of zeolite topology and reactor configuration on the direct conversion of CO2 to light olefins and aromatics[J]. ACS Catalysis, 2019, 9(7): 6320-6334. |
83 | BATTEN Stuart R, CHAMPNESS Neil R, CHEN Xiaoming, et al. Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013)[J]. Pure and Applied Chemistry, 2013, 85: 1715-1724. |
84 | HU Shen, LIU Min, DING Fanshu, et al. Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins[J]. Journal of CO2 Utilization, 2016, 15: 89-95. |
85 | LIU Junhui, ZHANG Anfeng, LIU Min, et al. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. Journal of CO2 Utilization, 2017, 21: 100-107. |
86 | FANG Wei, WANG Chengtao, LIU Zhiqiang, et al. Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration[J]. Science, 2022, 377(6604): 406-410. |
87 | XU Yanfei, LI Xiangyang, GAO Junhu, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science, 2021, 371(6529): 610-613. |
88 | DING Fanshu, ZHANG Anfeng, LIU Min, et al. Effect of SiO2-coating of FeK/Al2O3 catalysts on their activity and selectivity for CO2 hydrogenation to hydrocarbons[J]. RSC Advances, 2014, 4(17): 8930-8938. |
89 | WANG Chao, ZHAI Peng, ZHANG Zhichao, et al. Synthesis of highly stable graphene-encapsulated iron nanoparticles for catalytic syngas conversion[J]. Particle & Particle Systems Characterization, 2015, 32(1): 29-34. |
90 | LIU Yang, SHAO Wenli, ZHENG Yi, et al. Preparation of low carbon olefins on a core-shell K-Fe5C2@ZSM-5 catalyst by Fischer-Tropsch synthesis[J]. RSC Advances, 2020, 10(44): 26451-26459. |
91 | JIANG Nan, YANG Guohui, ZHANG Xiongfu, et al. A novel silicalite-1 zeolite shell encapsulated iron-based catalyst for controlling synthesis of light alkenes from syngas[J]. Catalysis Communications, 2011, 12(11): 951-954. |
92 | SONG Faen, YONG Xiaojing, WU Xuemei, et al. FeMn@HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: Studies on depressing the CO2 formation[J]. Applied Catalysis B: Environmental, 2022, 300: 120713. |
93 | ZHU Can, ZHANG Mingwei, HUANG Chao, et al. Controlled nanostructure of zeolite crystal encapsulating FeMnK catalysts targeting light olefins from syngas[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 57950-57962. |
94 | GUPTA Sharad, JAIN Vivek K, JAGADEESAN Dinesh. Fine tuning the composition and nanostructure of Fe-based core-shell nanocatalyst for efficient CO2 hydrogenation[J]. ChemNanoMat, 2016, 2(10): 989-996. |
95 | WEBER Daniel, RUI Ning, ZHANG Feng, et al. Carbon nanosphere-encapsulated Fe core-shell structures for catalytic CO2 hydrogenation[J]. ACS Applied Nano Materials, 2022, 5(8): 11605-11616. |
96 | LIU Junhui, ZHANG Anfeng, JIANG Xiao, et al. Overcoating the surface of Fe-based catalyst with ZnO and nitrogen-doped carbon toward high selectivity of light olefins in CO2 hydrogenation[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 4017-4023. |
97 | HE Ruosong, WANG Yang, LI Meng, et al. Tailoring the CO2 hydrogenation performance of Fe-based catalyst via unique confinement effect of the carbon shell[J]. Chemistry, 2023, 29(65): e202301918. |
[1] | SU Liangjian, XIAO Junyan, ZHANG Chunguang, ZHAO Yuansheng, YANG Xu. Deep regeneration of fixed-bed HDCCR catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 728-734. |
[2] | LI Zhuoyu, YU Meiqi, CHEN Xiaoyan, HU Ruohui, WANG Qinghong, CHEN Chunmao, ZHAN Yali. Effects and mechanism on the removal of nitrobenzene from water by adsorption of refining waste catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1076-1087. |
[3] | ZHANG Haibing, LIU Yun’e, HUANG Zhihao, SHEN Rong. Electrocatalytic reduction of NO3--N by the prepared Ti foam-Ni-Sn/Bi cathode [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1100-1109. |
[4] | LIU Fazhi, ZHANG Pengwei, LIU Tao, XIE Yuxian, HE Jianle, SU Sheng, XU Jun, XIANG Jun. Mechanism of anti-CO poisoning of Sb-modified vanadium-titanium SCR denitrification catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1129-1137. |
[5] | YANG Qun, LI Hongyan, ZHANG Feng, MAO Libo, CUI Jiali, DONG Yinghong, GUO Zirui. Removal of gatifloxacin from water by cobalt-nitrogen co-doped mushroom stick biological carbon activated PMS [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1088-1099. |
[6] | ZHANG Qi, WANG Tao, ZHANG Xuebing, LI Weizhen, FENG Bo, JIANG Zhihui, LYU Yijun, MEN Zhuowu. Advances in Co-based catalysts for syngas to higher alcohol [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 773-787. |
[7] | HONG Siqi, GU Fangwei, ZHENG Jinyu. Development status and prospect of low iridium catalysts for hydrogen production by PEM electrolysis [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 158-168. |
[8] | WANG Shixin, YAN Feng, LIU Xiaoli, SONG Guangchun, LI Yuxing, HU Qihui. Review of carbon dioxide pipeline transportation technology under the background of “dual carbon” [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 17-26. |
[9] | SONG Shunming, ZHANG Jingwen, ZHANG Liangqing, QIU Jiarong, CHEN Jianfeng, ZENG Xianhai. Catalytic transformation of biomass-derived polyols to diols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 228-252. |
[10] | QIN Tingting, NIU Qiang. Research progress on Fe-based catalysts for CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 253-265. |
[11] | ZHUANG Ke, CHEN Hong, XU Yun, ZHONG Zhaoping, ZHOU Junwu, ZHOU Kai, DONG Yuehong. Resistance of SiO2 modified Ce-V-W/Ti catalyst support to alkali (earth) metal poisoning [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 266-276. |
[12] | DONG Jiatong, SHAN Mengqing, WANG Hua. Improved electrocatalytic CO2 reduction to ethanol by Au-CuO/Cu2O catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 277-285. |
[13] | YOU Xiaoyin, WANG Chuqiao, LIU Caihua, PENG Xiaoming. Z-scheme CN/NGBO/BV catalytic system and its photo-like Fenton degradation performance of tetracycline [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 286-296. |
[14] | LI Jiayou, ZHANG Yuhan, JIANG Nan, JIANG Bolong. Preparation of transition metal sulfide NiS(x)@NFcatalyst by hydrothermal method and its hydrogen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 297-304. |
[15] | WANG Ning, LU Shijian, LIU Ling, LIANG Jing, LIU Miaomiao, SUN Mengyuan, KANG Guojun. Research progress of catalytic regeneration for energy-efficient CO2 capture in amine absorption system [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 445-464. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |