Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 277-285.DOI: 10.16085/j.issn.1000-6613.2024-0107
• Industrial catalysis • Previous Articles Next Articles
DONG Jiatong(), SHAN Mengqing, WANG Hua(
)
Received:
2024-01-14
Revised:
2024-03-15
Online:
2025-02-13
Published:
2025-01-15
Contact:
WANG Hua
通讯作者:
王华
作者简介:
董家彤(2000—),女,硕士研究生,研究方向为电催化二氧化碳还原。E-mail:2021207183@tju.edu.cn。
基金资助:
CLC Number:
DONG Jiatong, SHAN Mengqing, WANG Hua. Improved electrocatalytic CO2 reduction to ethanol by Au-CuO/Cu2O catalyst[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 277-285.
董家彤, 单梦晴, 王华. Au-CuO/Cu2O串联催化增强电催化CO2还原制乙醇[J]. 化工进展, 2025, 44(1): 277-285.
1 | QIAO Jinli, LIU Yuyu, HONG Feng, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. |
2 | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
ZHANG Yuxin, WANG Can, SHU Wenxiang. Research progress of carbon dioxide reduction and utilization[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 944-956. | |
3 | FAN Lei, XIA Chuan, YANG Fangqi, et al. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products[J]. Science Advances, 2020, 6(8): eaay3111. |
4 | LI Zhao, WU Rui, ZHAO Lei, et al. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives[J]. Nano Research, 2021, 14(11): 3795-3809. |
5 | WANG Wei, SHANG Lu, CHANG Guojing, et al. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide[J]. Advanced Materials, 2019, 31(19): e1808276. |
6 | HOANG Thao T H, VERMA Sumit, MA Sichao, et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol[J]. Journal of the American Chemical Society, 2018, 140(17): 5791-5797. |
7 | GAO Dunfeng, SINEV Ilya, SCHOLTEN Fabian, et al. Selective CO2 electroreduction to ethylene and multicarbon alcohols via electrolyte-driven nanostructuring[J]. Angewandte Chemie International Edition, 2019, 58(47): 17047-17053. |
8 | GAO Dunfeng, SCHOLTEN Fabian, ROLDAN CUENYA Beatriz. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect[J]. ACS Catalysis, 2017, 7(8): 5112-5120. |
9 | LI Haobo, JIANG Yunling, LI Xinyu, et al. C2+ selectivity for CO2 electroreduction on oxidized Cu-based catalysts[J]. Journal of the American Chemical Society, 2023, 145(26): 14335-14344. |
10 | LI Hefei, LIU Tianfu, WEI Pengfei, et al. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst[J]. Angewandte Chemie International Edition, 2021, 60(26): 14329-14333. |
11 | SUN Rongbo, WEI Cong, HUANG Zixiang, et al. Cu2+1O/CuO x heterostructures promote the electrosynthesis of C2+ products from CO2 [J]. Nano Research, 2023, 16(4): 4698-4705. |
12 | FAN Qikui, ZHANG Xue, GE Xiaohu, et al. Manipulating Cu nanoparticle surface oxidation states tunes catalytic selectivity toward CH4 or C2+ products in CO2 electroreduction[J]. Advanced Energy Materials, 2021, 11(36): 2101424. |
13 | CLARK Ezra L, HAHN Christopher, JARAMILLO Thomas F, et al. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity[J]. Journal of the American Chemical Society, 2017, 139(44): 15848-15857. |
14 | 张轩, 黄耀桢, 邵秀丽, 等. 结构化铜基催化剂电化学还原CO2为多碳产物研究进展[J]. 化工进展, 2021, 40(7): 3736-3746. |
ZHANG Xuan, HUANG Yaozhen, SHAO Xiuli, et al. Recent progress in structured Cu-based catalysts for electrochemical CO2 reduction to C2+ products[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3736-3746. | |
15 | TOMBOC Gracita M, CHOI Songa, KWON Taehyun, et al. Potential link between Cu surface and selective CO2 electroreduction: Perspective on future electrocatalyst designs[J]. Advanced Materials, 2020, 32(17): e1908398. |
16 | ASIRI Abdullah M, GAO Jing, KHAN Sher Bahadar, et al. Revisiting the impact of morphology and oxidation state of Cu on CO2 reduction using electrochemical flow cell[J]. The Journal of Physical Chemistry Letters, 2022, 13(1): 345-351. |
17 | CHANG Fangfang, LIU Yongpeng, WEI Juncai, et al. In situ surface/interface generation on Cu2O nanostructures toward enhanced electrocatalytic CO2 reduction to ethylene using operando spectroscopy[J]. Inorganic Chemistry Frontiers, 2023, 10(1): 240-249. |
18 | WANG Shengnan, WANG Dan, TIAN Benqiang, et al. Synergistic Cu+/Cu0 on Cu2O-Cu interfaces for efficient and selective C2+ production in electrocatalytic CO2 conversion[J]. Science China Materials, 2023, 66(5): 1801-1809. |
19 | MA Yangbo, YU Jinli, SUN Mingzi, et al. Confined growth of silver-copper Janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction[J]. Advanced Materials, 2022, 34(19): e2110607. |
20 | LIU Yuting, LIU Hua, WANG Cheng, et al. Reconstructed Cu/Cu2O(Ⅰ) catalyst for selective electroreduction of CO2 to C2+ products[J]. Electrochemistry Communications, 2023, 150: 107474. |
21 | CAO Bo, LI Fuzhi, GU Jun. Designing Cu-based tandem catalysts for CO2 electroreduction based on mass transport of CO intermediate[J]. ACS Catalysis, 2022, 12(15): 9735-9752. |
22 | ZHANG Haochen, CHANG Xiaoxia, CHEN Jingguang G, et al. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane[J]. Nature Communications, 2019, 10(1): 3340. |
23 | WAN Xiankai, WANG Jiaqi, WANG Quanming. Ligand-protected Au55 with a novel structure and remarkable CO2 electroreduction performance[J]. Angewandte Chemie International Edition, 2021, 60(38): 20748-20753. |
24 | RINGE Stefan, MORALES-GUIO Carlos G, CHEN Leanne D, et al. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on gold[J]. Nature Communications, 2020, 11(1): 33. |
25 | ZHANG Lijie, LI Mei, ZHANG Shengbo, et al. Promoting carbon dioxide electroreduction toward ethanol through loading Au nanoparticles on hollow Cu2O nanospheres[J]. Catalysis Today, 2021, 365: 348-356. |
26 | ZHANG Binbin, WANG Yahui, XU Shanmin, et al. Tuning nanocavities of Au@Cu2O yolk-shell nanoparticles for highly selective electroreduction of CO2 to ethanol at low potential[J]. RSC Advances, 2020, 10(33): 19192-19198. |
27 | MORALES-GUIO Carlos G, CAVE Etosha R, NITOPI Stephanie A, et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst[J]. Nature Catalysis, 2018, 1: 764-771. |
28 | SHAN Mengqing, LU Dongsheng, DONG Jiatong, et al. Combined effects of sea urchin-like structure and mixed Cu+/Cu0 states on promoting C2 formation in electrocatalytic CO2 reduction[J]. Frontiers of Chemical Science and Engineering, 2024, 18(3): 30. |
29 | ZHANG Jianfang, WANG Yan, LI Zhengyuan, et al. Grain boundary-derived Cu+/Cu0 interfaces in CuO nanosheets for low overpotential carbon dioxide electroreduction to ethylene[J]. Advanced Science, 2022, 9(21): e2200454. |
30 | ZHANG Wei, HUANG Chuqiang, XIAO Qin, et al. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction[J]. Journal of the American Chemical Society, 2020, 142(26): 11417-11427. |
31 | SHANGGUAN Wenchao, LIU Qing, WANG Ying, et al. Molecular-level insight into photocatalytic CO2 reduction with H2O over Au nanoparticles by interband transitions[J]. Nature Communications, 2022, 13(1): 3894. |
32 | CHANG Fangfang, WEI Juncai, LIU Yongpeng, et al. Surface/interface reconstruction in situ on Cu2O catalysts with high exponential facets toward enhanced electrocatalysis CO2 reduction to C2+ products[J]. Applied Surface Science, 2023, 611: 155773. |
33 | LIU Bingqian, YAO Xi, ZHANG Zijing, et al. Synthesis of Cu2O nanostructures with tunable crystal facets for electrochemical CO2 reduction to alcohols[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39165-39177. |
34 | PAN Wenhao, ZHONG Lei, SHI Zhikai, et al. Interfacial engineering of copper(Ⅰ) oxide nanocubes wrapped with functionalized carbon nanotubes toward carbon dioxide electroreduction to ethylene[J]. Surfaces and Interfaces, 2023, 37: 102708. |
[1] | ZHOU Yu, TANG Tian, XIONG Ziyou, WEI Qi. Methanol to olefin wastewater treatment based on a two-stage microchannel separation process [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 100-108. |
[2] | HU Yang, HAN Chuanjun, HU Qiang, LI Wenying, AN Quancheng, SU Yang, WU Hongsong, YUAN Guo. Research progress on methanol steam reforming reactors for SOFC [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 169-183. |
[3] | QIN Tingting, NIU Qiang. Research progress on Fe-based catalysts for CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 253-265. |
[4] | ZHOU Yu, XIA Taiyang, WEI Qi, TANG Tian, TIAN Lei. Optimization of micro-channel coupled reverse osmosis membrane series treatment of methanol to olefin wastewater [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 43-51. |
[5] | LONG Tao, ZHOU Feng, ZHANG Wei, WU Hong, WANG Jian, CHEN Lin. Synthesis and modification of deuterated methanol catalyst used in CO-CO2 system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4411-4420. |
[6] | GUO Peng, LI Hongwei, LI Guixian, JI Dong, WANG Dongliang, ZHAO Xinhong. Mechanisms and coping strategies on deactivation of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3812-3823. |
[7] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
[8] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
[9] | ZHOU Qiuming, NIU Congcong, LYU Shuaishuai, LI Hongwei, WEN Fuli, XU Run, LI Mingfeng. Promoting CO2 hydrogenation to methanol through product transformation and separation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2776-2785. |
[10] | LI Haipeng, WU Tong, WANG Qi, GAO Shiwang, WANG Xiaolong, LI Xu, GAO Xinhua, NIAN Pei, WEI Yibin. Effective methanol production by CO2 hydrogenation using water-permeable NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2834-2842. |
[11] | WANG Dongliang, LI Jingwei, MENG Wenliang, YANG Yong, ZHOU Huairong, FAN Zongliang. Influencing factors of CO2 and H2 utilization rate in CO2 hydrogenation to methanol and process optimization design [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2843-2850. |
[12] | TONG Zhenwei, LYU Fei, MA Ziran, LI Ge, PENG Shengpan. Recent advances in copper-based catalysts for electrocatalytic reduction of CO2 to ethanol [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6735-6749. |
[13] | XU Kai, CUI Jinna, LIU Zhanying. Research progress in the production of cellulosic ethanol via consolidated bioprocessing [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6873-6882. |
[14] | FANG Chong, LIU Yunyun, XU Huijuan, ZHOU Yu, QIU Yuxin, JU Miaomiao. Bioconversion of low-carbon syngas to ethanol and the process development [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6111-6118. |
[15] | FENG Kai, MENG Hao, YANG Yusen, WEI Min. Research progress on catalysts for hydrogen production by methanol steam reforming [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5498-5516. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 23
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |